
Programming
and
Operations
Manual

1772 Mini

PLC�2/05

Processor

(Cat. No. 1772-LS,
�LSP)

Allen�Bradley

Because of the variety of uses for this product and because of the differences
between solid state products and electromechanical products, those responsible
for applying and using this product must satisfy themselves as to the
acceptability of each application and use of this product. For more information,
refer to publication SGI-1.1 (Safety Guidelines For The Application,
Installation and Maintenance of Solid State Control).

The illustrations, charts, and layout examples shown in this manual are intended
solely to illustrate the text of this manual. Because of the many variables and
requirements associated with any particular installation, Allen-Bradley
Company cannot assume responsibility or liability for actual use based upon the
illustrative uses and applications.

No patent liability is assumed by Allen-Bradley Company with respect to use of
information, circuits, equipment or software described in this text.

Reproduction of the contents of this manual, in whole or in part, without written
permission of the Allen-Bradley Company is prohibited.

Throughout this manual we make notes to alert you to possible injury to people
or damage to equipment under specific circumstances.

ATTENTION: Identifies information about practices or
circumstances that can lead to personal injury or death, property
damage or economic loss.

Attention helps you:

- Identify a hazard

- Avoid the hazard

- recognize the consequences

Important: Identifies information that is critical for successful application and
understanding of the product.

Important User Information

Summary of Changes

 i

Summary of Changes

This release of the publication contains updated information:

For this updated information: See:

revised conventions chapter 1

clarification to switch settings for 1772�LSP chapter 3

description of keys on keytop overlay (1770�KCB) chapter 3

corrections to the discussion about
automatic restart

chapter 18

corrections to the discussion about
program control

chapter 18

addition of ZCL to glossary appendix B

new format all chapters and appendices

To help you find new information in this publication, we have included
change bars as shows to the left of this paragraph.

Summary of Changes

Part

Hardware Overview

1 Before You Begin
2 An Introduction to Programmable Con-
trollers
3 Hardware

A�B

INTFC

MINI PLC�2/05

MEMORY
STORE

ON

ON

P
R
O
C

RUN

FAULT

W/O Power Supply

A�B

P/S
ACTIVE

P/S
PARALLEL

POWER
ON

OFF
I.0A 125V

SLOW BLOW

INTFC

120V
AC
L1

N

GND

MEMORY
STORE

ON

ON

P
R
O
C

RUN

FAULT

MINI PLC�2/05
W Power Supply

Channel A

Industrial Terminal
(rear view)

Program Panel
Interconnect Cable Interface

Mini�PLC�2/05

PLC�2 Family

Part

Memory / Instruction Set

4 Memory Organization
5 Scan Theory
6 Relay-type Instructions
7 Program Control Instructions
8 Timers and Counters
9 Data Manipulation Instructions
10 Math Instructions
11 Data Transfer File Instructions
12 Sequencers
13 Jump Instructions and Subroutines
14 Block Transfer
15 Selectable Timed Interrupt

Data Table

Main Program

Subroutine

Message Storage Area

User Program

00

010

00

110

10

110

12

110 110

11

110

13

110

11

16 Program Editing

Part

Program Editing

�(P)�

FOR USE WITH PLC�2 FAMILY CAT. NO. 1770 KCB

 1982 ALLEN�BRADLEY 975343�02

�(�)�

Part

Report Generation /
Application Programming Techniques

17 Report Generation
18 Programming Techniques

MS.0

198 MESSAGES SELECTED

MESSAGE CONTROL WORDS (ENTER 5 DIGIT WORD ADDRESS)

ADDRESS 00200 – 00227

MESSAGE MESSAGE MESSAGE MESSAGE MESSAGE MES-
SAGE
CONTROL NUMBERS CONTROL NUMBERS CONTROL NUM-
BERS
WORDS WORDS WORDS

027 1–6

00200 010–017 00210 1010–1017 00220 2010–2017
00201 110–117 00211 1110–1117 00210 2110–2117
00202 210–217 00212 1210–1217
00203 310–317 00213 1310–1317
00204 410–417 00214 1410–1417
00205 510–517 00215 1510–1517
00206 610–617 00216 1610–1617
00207 710717 00217 17101717

Part

Program Troubleshooting

19 Program Troubleshooting

hr.mn.sec.

�OFF or ON 00:00'00.00�
�ON 00:00:00.00�OFF 00:00:00.00�ON 00:00:00.00�

On Time Off Time On Time

WORD ADDRESS: 0030

BIT NO.: 17 16 15 14 13 12 11 10 07 06 05 04 03 02 01 00

STATUS : 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FORCE :

Part

Appendices

A Number Systems
B Glossary
C Quick Reference
Index

3 5 7

192
40
7

3 x 82 = 192

5 x 81 = 40

7 x 80 = 7 23910

8

23910 = 3578

This appendix contains defines terms and abbreviations that because of their
complexity or recent introduction are not widely understood. These terms are:

AC Input Module
An I/O module that converts various AC signals originating at user devices to the
appropriate logic level signal for use within the processor.

AC Output Module
An I/O module that converts the logic level signal of the processor to a usable
output signal to control a user AC device.

[SEARCH]
[5][3]

[Address]

[↑]or[↓]

[SEARCH]
[5][3]

[←] or [→]
[1] or [0]

[SEARCH]
[Instruction key]

(Address)

Key Sequences:

Summary of Changes i.

Before You Begin 1�1.

An Introduction to Programmable Controllers 2�1.

Hardware 3�1.

Memory Organization 4�1.

Scan Theory 5�1.

Relay�type Instructions 6�1.

Program Control Instructions 7�1.

Timers and Counters 8�1.

Data Manipulation Instructions 9�1.

Math Instructions 10�1.

Three�Digit Math 10�1.

Expanded Math 10�4.

Chapter Summary 10�21.

Data Transfer File Instructions 11�1.

Types of File Instructions 11�1.

Sequencers 12�1.

Comparison with File Instructions 12�1.

Chapter Summary 12�22.

Jump Instructions and Subroutines 13�1.

Label Instruction 13�3.

Subroutine Area Instruction 13�4.

Chapter Summary 13�7.

Table of Contents

Table of Contentsii

Block Transfer 14�1.

Selectable Timed Interrupt 15�1.

Program Editing 16�1.

Rules for Editing Instructions 16�1.

Report Generation 17�1.

Programming Techniques 18�1.

Program Troubleshooting 19�1.

Number Systems A�1.

Glossary B�1.

Quick Reference C�1.

Chapter

1

1�1

Before You Begin

Important: Read this chapter before you use the Mini-PLC-2/05 Processor (cat.
no. 1772-LS,-LSP). It tells you how to use this manual.

The Mini-PLC-2/05 processor is functionally similar to the Mini-PLC-2/15
processor. The Mini-PLC-2/05 processor has some additional features:

 selectable timed interrupt
 memory protect switch
 fast I/O scan
 user selectable PROM/RAM backup
 3K memory
 expanded mathematics

However, this processor does not have a mode select switch.

This manual is divided into six parts (Table 1.A).

Table 1.A
Parts of the Mini�PLC�2/05 Processor Programming and Operations Manual

Part Title What's Covered

A Hardware Overview basic theory concerning the hardware features available when using
this processor

B Memory/Instruction Set describes the memory and informs you about the techniques you can
use when programming this processor

C Program Editing how to edit your program once it has been entered into the memory

D Report Generation/Application
Program Techniques

how to do report generation and use special program techniques

E Program Troubleshooting acts as a guide so you can minimize production down time

F Appendices contains tables and reference information useful when programming
your processor

This manual is procedure oriented. It tells you how to program and operate your
Mini-PLC 2/05 Processor. If you need to learn more about the Mini-PLC-2/05
Processor, contact your local Allen-Bradley representative or distributor.

Purpose

To the Reader

Before You Begin
Chapter 1

1�2

To make this manual easier to read and understand, we refer to the:

We Refer to the: As the:

Mini�PLC�2/05 Processor processor

Electrically Erasable Programmable
Read Only Memory

 EEPROM

Execute Auxiliary Function EAF

Complementary Metal Oxide
Semi�conductor Random Access Memory

CMOS RAM

Industrial Terminal (cat. no. 1770�T3) 1770�T3 terminal

A glossary at the back of this manual clarifies technical terms.

A word equals 16 bits; a byte equals 8 bits (1/2 a word).

Words in [] denote the key name or symbol. Words in < > denote information
that you must provide - for example, an address value.

Word values are displayed in:

 decimal (0-9) for timers, counters, and mathematics

CTU
010

00

030

PR 555
AC 123Decimal

 hexadecimal values (0-9, A-F) for gets and puts

010

00

030

Hexadecimal

010

00

011 012
G G

00FFF 123

Important: Numbers 0-9 are displayed the same in decimal and hexadecimal.

 octal for byte values

0101 030

Octal

00

B
237

Vocabulary

Conventions

Before You Begin
Chapter 1

1�3

Keystroke directions are divided into two columns:

 tells you what key or keys to press

 tells you the processor’s action.

The publication index, publication SD 499, lists all available publications to
further inform you about products related to the Mini-PLC-2/05 processor.
Consult your local Allen-Bradley distributor or sales engineer for information
regarding this publication or any needed information.

Related Publications

Chapter

2

2�1

An Introduction to Programmable Controllers

In this chapter, you review general fundamentals common to our programmable
controllers. This chapter:

 describes what a programmable controller does
 describe the four major sections of a programmable controller
 describes how the four major sections of a programmable controller interact
 gives an example of a simple program

You are probably familiar with the traditional methods of machine control.

Control PanelRelays

Machine
Sensing
Devices

Output
Devices

11591

Sensing devices located on the machine detect changes in the machine’s
condition. For instance, a part arriving at a work station contacts and closes a
limit switch, the sensing device. As a result, an electrical circuit is completed
and a signal is sent to the control panel.

At the control panel, the electrical signal enters a bank of relays or other
devices, such as solid state modules. Circuits within the control panel open or
close causing additional electrical signals to be sent to output devices at the
machine. For example, a relay energized by the limit switch closed by the
arriving part may complete another circuit energizing the output device, a
clamp, which secures the part at the work station.

Chapter Objectives

Traditional Controls

An Introduction to
Programmable Controllers

Chapter 2

2�2

Programmable controllers can perform many of the functions of traditional
controls. Sensing devices report to the processors. The output devices at the
machine operate the same as they would with traditional controls.

Control PanelProgrammable

Machine
Sensing
Devices

Output
Devices 11592

Conditons

Controller

Action
Command

The field wiring between the machine and the control panel provides electrical
paths from the sensing devices to the control panel, and from the control panel
to the output devices.

However, inside the control panel you’ll find a programmable controller rather
than relays or discrete solid state devices. Instead of wiring those devices and
relays together to produce a desired response, you simply tell your
programmable controller by means of a program how you want it to respond to
the same conditions.

Programming is telling your programmable controller what you want it to do.
A program is nothing more than a set of instructions you give the programmable
controller telling it how to react to different conditions within the machine.

Let’s take a closer look at a typical programmable controller. It usually consists
of four major sections:

 processor
 input
 output
 power supply

Programmable Controls

The Four Major Sections

An Introduction to
Programmable Controllers

Chapter 2

2�3

Power Supply

Processor

Information

Limit, Proximity, Pressure,

Action

(Decision Making)

•
Temperature Switches

Push Buttons

Logic

BCD

Analog

•
•

•
•

Solenoids•
Motor Starters

Indicators

Alarms

Logic

BCD

Analog

•
•

•

•
•
•

Input Output

Processor

The first section of a programmable controller is the processor. The processor
might be called the “brains” of the programmable controller. It is divided
into halves:

 central processing unit
 memory

CPU

Data
Table

Program
Storage

Message
Storage

MemoryProcessor
Section

Central Processing Unit
The central processor unit (CPU) makes decisions about what the
processor does.

An Introduction to
Programmable Controllers

Chapter 2

2�4

Memory
Memory serves three functions:

 stores information in the data table that the CPU may need
 stores sets of instructions called a program
 stores messages

Data Table
The area of memory where data is controlled and used, is called the data table.
The data table is divided into several smaller sections according to the type of
information to be remembered. These smaller sections are called:

 output image table
 input image table
 timer/counter storage

Output Image Table

Input Image Table

Timer/Counter
Storage

Data Table

At this time, we will only discuss the input and output image tables and
program storage.

I/O Image Tables
The input image table reflects the status of the input terminals. The output
image table reflects the status of bits controlled by the program.

Each image table is divided into a number of smaller units called bits. A bit is
the smallest unit of memory. A bit is a tiny electronic circuit that the processor
can turn on or off. Bits in the image table are associated with a particular
I/O terminal in the input or output section.

When the processor detects a voltage at an input terminal, it records that
information by turning the corresponding bit on. Likewise, when the processor
detects no voltage at an input terminal, it records that information by turning the
corresponding bit off. If, while executing your program, the CPU decides that a
particular output terminal should be turned on or off, it records that decision by
turning the corresponding bit on or off. In other words, each bit in the
I/O image tables corresponds to the on or off status of an I/O terminal.

When people who work with personal computers talk about turning a bit on,
they use the term “set.” For example - “The processor sets the bit” means
“turns it on.” On the other hand, we use the term “reset” when we talk about
turning the bit off - for example, “The processor reset the bit.”

An Introduction to
Programmable Controllers

Chapter 2

2�5

Picture memory as a page that has been divided into many blocks. Each block
represents one bit. Since each bit is either on or off, we could show the state of
each bit by writing “on” or “off” in each block. However, there is an easier
way. We can agree that the numeral one (1) means on and that the numeral zero
(0) means off. We can show the status of each bit by writing 1 or 0 into the
appropriate block. For example, you might hear expressions like, “The CPU
responded by writing a one into the bit when the limit switch closed.” Of
course, the processor didn’t really write a one into memory: it simply set the bit
by turning it on.

When the I/O device is: The bit status is said to be:

on
on
1

set

off
off
0

reset

If you heard the expression, “The processor wrote a zero into that bit location.”
What actually happened? If you said the processor merely reset the bit by
turning it off, you’re right.

Program Storage
The other major area of memory, program storage, takes up the largest portion
of memory. You’ll recall that this is where your instructions to the
programmable controller are stored. You’ll also recall that this set of
instructions is called a program.

Program Language
A program is made up of set of statements. Each statement does two things:

 It describes an action to be taken. For instance, it might say, “Energize motor
starter number one.”

 It describes the conditions that must exist in order for the action to take place.

Statement

Statement

Statement

Statement

Statement

Statement

Program Storage Area
of Memory

ActionConditions
Program
Statement

Program

An Introduction to
Programmable Controllers

Chapter 2

2�6

For example, you may want this action to take place: ”Whenever a certain limit
switch closes.” So your condition could be: “If limit switch number two is
closed,...” The action would be: “energize motor starter number one.” The entire
statement is then: “If limit switch number two is closed, then energize motor
starter number one.” Therefore, when limit switch number two at the machine
closes, the programmable controller energizes the motor starter. If limit switch
number two does not close, the programmable controller does not energize the
motor starter. Thus, when limit switch number two opens, the programmable
controller de-energizes the motor starter because that action is implied in
the statement.

A program is made up of a number of similar statements. Typically, there is one
statement for each output device on the machine. Each statement lists the
conditions that must be met and then, states the action to be taken.

Instructions
Each condition is represented by a specific instruction; therefore, each action is
represented by a specific instruction. These instructions tell the processor to do
something with the information stored in the data table.

Some instructions tell the processor to read what’s written in the image table.
When the processor is instructed to read from an image table, it examines a
specific bit to see if a certain I/O device is on or off.

Other instructions tell the processor to write information into the image table.
When the processor is instructed to write into the output image table, it writes a
one or a zero into a specific bit. The corresponding output device will turn on or
off as a result.

Input

The second section is the input, which serves four very important functions:

 termination
 indication
 conditioning
 isolation

Termination
The input provides terminals for the field wiring coming from the sensing
devices on the machine.

Indication
The input of most modules also provides a visual indication of the state of each
input terminal with indicators. The indicator is on when there is a voltage
applied to it terminal. It is off when there is no voltage applied to its terminal.
Since the indicator reveals the status of its terminal, it’s usually called an input
status indicator.

An Introduction to
Programmable Controllers

Chapter 2

2�7

You should also notice another important characteristic of input indicators. They
are only associated with terminals used for wiring sensing devices to the input
section. The terminal that’s used to provide a ground for the sensing circuits
has no indicator.

Conditioning
Another function of the input is signal conditioning. The electrical power used
at the machine is usually not compatible with the signal power used within the
programmable controller. Therefore, the input section receives the electrical
signal from the machine and converts it to a voltage compatible with the
programmable controller’s circuitry.

Isolation
The input isolates the machine circuitry from the programmable controller’s
circuitry. Isolation helps protect the programmable controller’s circuitry from
unwanted and dangerous voltage levels that may occur occasionally at the
machine or in the plant’s wiring system.

Output

The third section is the output, which serves functions similar to those of the
input image table:

 termination
 indication
 conditioning
 isolation

Termination
The output provides terminals for the field wiring going to the output devices on
the machine.

Indication
The output of most modules provides a visual indication of the selected state of
each output device with indicators.

The output status indicator is on when the output device is energized. A
common term applied to either input status indicators or output status indicators
is I/O status indicators. I/O stands for either input or output.

In addition, the output section of modules with fuses has blown fuse indicators.
When one of the fuses in the group opens, the blown fuse indicator lights.

Conditioning
The output conditions the programmable controller’s signals for the machine.
That is, it converts the low-level dc voltages of the programmable controller to
the type of electrical power used by the output devices at the machine.

An Introduction to
Programmable Controllers

Chapter 2

2�8

Isolation
The output isolates the more sensitive electronic circuitry of the programmable
controller from unwanted and dangerous voltages that occasionally occur at the
machine or the plant’s wiring system. Some situations require additional
external protection.

Power Supply

The fourth section is the power supply. It provides a low level dc voltage
source for the electronic circuitry of the processor. It converts the higher level
line voltages to low level logic voltages required by the processor’s
electronic circuitry.

Let’s look at a simple example to see the sequence of events that take place in
controlling a machine with a programmable controller (Figure 2.1). Suppose
you are making a part. The motor driven conveyor carries a unit to the work
area. The limit switch detects wen the part arrives at the work area. When that
happens, we want the conveyor to stop so you can work on the part.

Figure 2.1
A Simplified Example of a Machine with a Programmable Controller

Conveyor
Motor

Limit
Switch

Conveyor Unit

Controller

Input Output

11594

Notice how the limit switch and motor are wired to the programmable
controller. The limit switch, wired to terminal 02, is normally-closed. The
arriving part will open the switch. Therefore, the program statement controlling
the conveyor motor must read: “If there is voltage at input terminal 02 (limit
switch), then energize output terminal 02 (conveyer motor).” The conveyor
motor is wired to output terminal 02.

Control Sequence

An Introduction to
Programmable Controllers

Chapter 2

2�9

Important: Figure 2.1 is for demonstration purposes only. We do not show the
associated wiring, a motor starter, or an emergency stop button.

Since the limit switch is wired normally-closed, the conveyor motor will run
until the arriving part opens the switch. At that time, the condition for
energizing the motor is not longer met. Therefore, the motor is de-energized.

When the condition is met, we say it is true. When the condition is not met, we
say it is false. There may be more than one condition which must be met before
an action is executed. When all the conditions are met, the action is executed
and we say the statement is true. When one or more of the conditions are false,
the action is not executed and we say the statement is false.

On power up, the processor begins the scan sequence (Figure 2.2) with the
I/O scan. During the I/O scan, data from input modules is transferred to the
input image table. Data from output image table is transferred to the
output modules.

Scan Sequence

An Introduction to
Programmable Controllers

Chapter 2

2�10

Figure 2.2
Scan Sequence

11597

Output
Image
Table

Input
Terminals

Input
Image
Table

Output
Terminals

Copy output image table status
into output terminal circuits.

Copy input terminal status into
input image table.

Program Statement

Execute each program rung in
sequence, writing into bits in the
data table, including the output
image table.

I/O
Scan

Program
Scan

An Introduction to
Programmable Controllers

Chapter 2

2�11

Next, the processor scans the program. It does this statement by statement.
Each statement is scanned in this way:

1. For each condition, the processor checks, or “reads,” the image table to see
if the condition has been met.

2. If the set of conditions has been met, the CPU writes a one into the bit
location in the output image table corresponding to the output terminal to
be energized. On the other hand, if the set of conditions has not been met,
the processor writes a zero into the bit location, indicating that the output
terminal should not be energized.

Here is a simple explanation of the program. If input 02 is on, then turn on
output 02. If input 02 is off, then turn off output 02. The program could be
written this way:

If (condition) Then (action)

Input bit 02 is on Turn output bit 02 on

In this example, the processor reads a 1 at input bit location 02 and knows that
the condition has been met. The processor then carries out the action
instruction by writing a 1 into output bit location 02.

If there were more statements in the program, the processor would continue in
this same manner scanning each statement and executing each instruction until
it reached the end of the program. Statement by statement, the processor would
write a 0 or a 1 into an output bit as directed by the program. Then, the
processor would read specific image table bits to see if the proper set of
conditions were met. After reading and executing all program statements, the
processor scans the output image table and energizes or de-energizes output
terminals. The processor then goes to the input modules to update the input
image table.

Now the entire process is repeated. In fact, it’s repeated over and over again,
many times a minute. Each time, the processor sets or resets output bits. Next,
the processor senses the status of the input terminals. Finally, the processor
scans the program and orders each output terminal on or off according to the
state of its corresponding bit in the output image table.

When forcing is attempted, the processor’s I/O scan slows down to do the
forcing (see chapter 19). When forcing is terminated, the processor
automatically switches back to the faster I/O scan mode.

When this example begins, the processor is energizing output terminal 02
because output bit 02 is on.

When the part is conveyed to the work station, it turns the limit switch off.
When the limit switch is off, there is no voltage at input terminal 02. The
processor scans the input image table, senses no voltage, and responds by
writing a zero into bit 02 in the input image table.

An Introduction to
Programmable Controllers

Chapter 2

2�12

The processor scans the program. Our program states that if (conditions) input
bit 02 is on, turn on output 02. If input bit 02 is off then output bit 02 is off.
Since the alter condition is not true, the processor turns off output bit 02.

When the processor next scans the output image table, it sees the zero in output
bit 02 and responds by de-energizing output terminal 02. The action causes the
conveyor to stop.

We reviewed fundamentals common to A-B processors. The next chapter
summarizes hardware features of the Mini-PLC-2/05 processors.

Chapter Summary

Chapter

3

3-1

Hardware

This chapter is a summary of the Mini-PLC-2/05 Processor Assembly and
Installation Manual, publication 1772-6.6.6. In this chapter, you will
read about:

 major features
 general features
 hardware features
 optional features

A complete processor system consists of the following major components:

 Mini-PLC-2/05 processor
 I/O chassis
 power supply
 I/O modules (up to 16 modules)
 industrial terminal (cat. no. 1770-T3)

The processor has the following features:

 3K CMOS RAM memory
 488 timers
 up to 2944 word capacity data table (23 blocks)
 ladder diagram and functional block instruction set
 four function arithmetic capabilities
 remote mode selection
 on-line programming
 block transfer capability
 70 message storage (with the 1770-T3 terminal only)
 198 message storage with the PLC-2 Family Report Generation Module

(catalog number 1770-RG)
 data highway compatibility
 selectable timed interrupts
 expanded math capability

Chapter Objectives

Major Features

General Features

Hardware

Chapter 3

3-2

Mini�PLC�2/05 Processor (cat. no. 1772�LS)

The Mini-PLC-2/05 Processor (cat. no. 1772-LS) comes equipped with the
following hardware features (Figure 3.1):

Figure 3.1
Mini�PLC�2/05 Processor (cat. no. 1772�LS)

10663�I

A�B

INTFC

MINI PLC�2/05

MEMORY
STORE

ON

ON

P
R
O
C

RUN

FAULT

W/O Power Supply

Hardware Features

Hardware
Chapter 3

3-3

Processor Status Indicator
PROC RUN/FAULT: This red/green LED keeps you informed of the
processor’s operating conditions.

Table 3.A
Status Indication

Status
Indicator

If the
color is

Then the Indication represents

PROC RUN/FAULT Green

Blinking Green

Red

Off

The processor module is in the run mode and will
begin operation.
The EEPROM memory module (if present) is being
programmed.
There is a fault. Recycle power to reset the
processor module.
Either program mode of operation, run time error,
memory error or a program error.

P/S ACTIVE Green
Off

AC and DC is all right.
There has been a power supply fault, overcurrent
condition, improper input voltage or the module has
been turned off.

MEMORY STORE (Switch)
Purpose: Enables you to backup or copy the program into the optional
EEPROM Memory Module.

Hardware: An optional EEPROM Memory Module (cat. no. 1772-MJ) can
be installed in the module.

INTFC (Interface socket)
Purpose: The 15 pin socket, labeled INTFC, provides communication
between the processor and the programming terminal (1770-T3 or
1784-T50), the 1770-RG report generation module, the 1770-T11 hand
held terminal, the 1772-KG interface module or 1771-KA communications
interface module.

Processor Module and: Through: Catalog Number:

Industrial Terminal (cat. no. 1770�T3) PLC�2 Program Panel
Interconnect Cable

1772�TC

Industrial Terminal (cat. no. 1784�T50) PLC�2 Program Panel
Interconnect Cable

1772�TC or 1784�CP2

Data Highway Communication Modules Data Highway/Processor Cables 1771�CN, �CO, or �CR

PLC�2 Family Report Generation Module
(cat. no. 1770�RG)

PLC�2 Program Panel
Interconnect Cable

1772�TC
(with external ground wire only)

The 1784-T50 also requires PLC-2 6200 programming software (cat. nos.
6201-PLC2, 6203-PLC2, 6211-PLC2, or 6213-PLC2).

Function: Provides interface to the above devices.

Hardware

Chapter 3

3-4

Mini�PLC�2/05 Processor (cat. no. 1772�LSP)

The Mini-PLC-2/05 Processor (cat. no. 1772-LSP) contains all the
hardware features of the LS processor and in addition contains the
following (Figure 3.2):

Figure 3.2
Mini�PLC�2/05 Processor with Power Supply (cat. no. 1772�LSP)

10717�I

A�B

P/S
ACTIVE

P/S
PARALLEL

POWER
ON

OFF
I.0A 125V

SLOW BLOW

INTFC

120V
AC
L1

N

GND

MEMORY
STORE

ON

ON

P
R
O
C

RUN

FAULT

MINI PLC�2/05
W Power Supply

Processor Status Indicator
P/S ACTIVE: This green LED keeps you informed of the power supply
section’s operating conditions (table 3.A).

P/S PARALLEL (socket)
Purpose: Enables paralleling connections between these two sockets on
two power supply modules.

POWER (switch)
Purpose: This is on/off toggle switch lets you provide power to
your processor.

If the switch is: Then you are:

On Supplying power to your processor module.

Off Not supplying power to your processor module.

Hardware
Chapter 3

3-5

Fuse
Purpose: Guards against overcurrent conditions on the input line.

Sizes: 1.0 amp fuse for 120V AC operations

Terminal Strip
Purpose: To provide wire connections for the processor.

Hardware: Terminals L1, N and GND label the AC input connections.

Switch Assembly on the I/O Chassis
Purpose: Determines processor response to memory protect and
power-up sequence.

Location: Left side of the I/O chassis backplane.

Settings:

If Then

Switch 8 is on Memory protection is on. Memory above 2008 cannot be changed by
the programmer.

Switch 8 is off Memory protection is disabled. memory can be changed by the
programmer. Memory can be changed when the processor module is
in the program mode.

Switch 6 is off Contents of the EEPROM is always transferred to the CMOS RAM at
power�up.

Switch 6 is on
and

Switch 7 is off

Memory transfer does not occur and the module gives a fault
indication.

Switch 6 is on
and

Switch 7 is on

If the CMOS RAM passes its checksum on power�up, the contents of
the EEPROM transfer to the CMOS RAM.

The settings for Switch 1- Switch 5 do not matter.

Important: Series A/Revision A of the 1770-T3 industrial terminal is not
compatible with memory protect feature.

ATTENTION: Use a ball point pen to set each switch. Do not
use a lead pencil because the tip can break off and jam
the switch.

Hardware

Chapter 3

3-6

Battery Backup
Purpose: Provides battery backup power for the processor’s memory.

Hardware: Size AA, 3.6V Lithium Battery, 1.785 amp hr, 0 to 70oC

Function: In order for you to retain processor memory after loss of power,
the processor contains an AA size lithium battery. A removeable holder
located at the rear of the processor module houses your battery. This
battery supports stored memory for up to two years. We recommend
documenting the start-up date of your processor. Put the date on the label
at the side of the processor.

Industrial Terminal

Purpose: You need the Industrial Terminal System (cat. no. 1770-T3) or an
Industrial Terminal (cat. no. 1784-T50) with 6200 programming software
(6201-, 6203-, 6211-, 6213-PLC2) to program the processor and access the
processor modes of operation (Figure 3.3).

Figure 3.3
Industrial Terminal System

10697�I

Function: With your industrial terminal you can:

 enter
 edit
 test
 troubleshoot

your program.

Optional Features

Hardware
Chapter 3

3-7

Installation
Before you start to program your processor make sure all of your
peripheral equipment is installed properly. Follow these basic instructions
to install the industrial terminal to the processor. Refer to Figure 3.4 when
following these instructions.

Figure 3.4
Industrial Terminal Installation

Channel A

Industrial Terminal
(rear view)

Program Panel
Interconnect Cable

Interface

Mini�PLC�2/05

PLC�2 Family 10249

1. Plug the ac power cord of the industrial terminal to the incoming
ac power source.

2. Connect one end of the PLC-2 Program Panel Interconnect Cable
(cat. no. 1772-TC) to CHANNEL A at the rear of the
industrial terminal.

3. Connect the other end of the cable to the socket labeled INTFC at the
front of the processor.

Hardware

Chapter 3

3-8

4. Place the PLC-2 Family Keytop Overlay (cat. no. 1770-KCB)
(Figure 3.5) onto the keyboard.

Figure 3.5
PLC�2 Family Keytop Overlay

MODE
SELECT

DATA
INIT

EXPAND
ADDR

SBR

T.END

�(RET)�

�(JSR)�

LBL

�(JMP)�

EAF

�(SCT)�
CONVERT FILE SEQ SHIFT

REG
BLOCK
X�FER

RECORD RUNG SEARCH �(P)� �[G]� �[I]� �(CTU)� �(TON)� �(L)�
A

7

B

8

C

9

DISPLAY INSERT REMOVE �(X)� �[=]� �[L]� �(CTD)� �(TOF)� �(U)�
D

4

E

5

F

6

HELP

SHIFT

CLEAR
MEMORY

CANCEL

COMMAND

�(-)� �[<]� �[B]� �(CTR)� �(RTO)� �(MCR)� 1 2 3

�(+)� �(PUT)� �(IOT)� �(ZCL)� �(RTR)� �()� FORCE
OFF

FORCE
ON

0

FOR USE WITH PLC�2 FAMILY CAT. NO. 1770 KCB

 1982 ALLEN�BRADLEY 975343�02

10291–I

�(�)�

Table 3.B
Definitions of Keys

This key: Does this: This key: Does this: This key: Does this:

top row of keys

MODE
SELECT

select terminal mode
DATA
INIT

enter data into a file
EXPAND

ADDR

enter expanded address

SBR

T.END enter temporary
d

SHIFT – enter sub-
routine

�(RET)�

�(JSR)�

SHIFT – enter
returnenter jump to sub-

i

LBL

�(JMP)�

SHIFT – enter
labelenter jump to jump

EAF

�(SCT)�

SHIFT – enter
EAF, expanded
mathnot applicable
to Mini-
PLC-2/05

CONVERT

not applicable to
Mini�PLC�2/05 FILE

enter file instruction

SEQ

enter sequencer
SHIFT
REG

not applicable to
Mini�PLC�2/05 BLOCK

X�FER

enter block transfer

Hardware
Chapter 3

3-9

second row of keys

RECORD

enter new data
RUNG

specify rung
SEARCH

specify search

�(�)�

enter 3�digit divide
�[G]�

enter get
�[I]�

enter immediate input

�(CTU)�

enter up counter
�(TON)�

enter timer on�delay
�(L)�

enter output latch

enter branch end
A

7

SHIFT – enter A

enter 7

B

8

SHIFT – enter B

enter 8

C

9 enter 9

SHIFT – enter C

third row of keys

DISPLAY

display specified data
INSERT

insert the next specified
item REMOVE

remove the next specified
item

�(X)�

enter 3�digit multiply
�[=]�

enter equal
�[L]�

enter limit test

�(CTD)�

enter down counter
�(TOF)�

enter timer off�delay
�(U)�

enter output unlatch

enter branch start
D

4 enter 4

SHIFT – enter D E

5 enter 5

SHIFT – enter E

F

6 enter 6

SHIFT – enter F

fourth row of keys

HELP

display help directory
CLEAR

MEMORY

clear processor memory

move cursor up

SHIFT – move cur-
sor up

SHIFT – move cur-
sor down
move cursor
down

�(-)�

enter 3�digit subtract
�[<]�

enter less than

�[B]�

enter get byte
�(CTR)�

enter counter reset
�(RTO)�

enter retentive timer
on�delay

�(MCR)�

enter master control reset enter examine off
1

enter a 1

2

enter a 2

3

enter a 3

Hardware

Chapter 3

3-10

fifth row of keys

SHIFT

access function on top
half of keys that support
two functions

CANCEL

COMMAND

end current function
without saving

move cursor left

SHIFT – move cur-
sor left

SHIFT – move cur-
sor right
move cursor
right

�(+)�

enter 3�digit add
�(PUT)�

enter put

�(IOT)�

enter immediate output
�(ZCL)�

enter zone control
last state �(RTR)�

enter retentive timer reset

�()�

enter output energize enter examine on
FORCE

ON

specify force off

0

enter a 0
FORCE

OFF

specify force off

5. Turn the power switch on the front of the industrial terminal to the
ON position.

6. After a short while the following display will appear.

DIAGNOSTICS PASSED

MODE SELECTION

KEYBOARD MODULE 1770-FDC SERIES B/E

FOR USE WITH
THE FOLLOWING
PROCESSORS:

INSERT
KEYTOP OVERLAY:MODE:

10 = PLC
= PLC-211

12 = ALPHANUMERIC

1770-KBA
1770-KCB

1770-KAA

PLC
MINI-PLC-2, PLC-2
MINI-PLC-2/15
PLC-2/20 (LP1)
PLC-2/20 (LP2)
PLC-2/30

SELECT DESIRED MODE?

11595

Select your desired processor mode by pressing 11 on the
1770-T3 terminal.

7. After initialization has been completed, select the processor mode of
operation using the keystrokes below:

Hardware
Chapter 3

3-11

Run/Program [SEARCH] 590
Remote test [SEARCH] 591
Remote Program [SEARCH] 592

ATTENTION: Use only Allen-Bradley authorized
programming devices to program Allen-Bradley programmable
controllers. Using unauthorized programming devices may
result in unexpected operation, possibly causing equipment
damage and/or injury to personnel.

Important: When power is re-applied following a power failure and if
switch 6 is on, the processor returns to the last programmed mode
of operation.

If you are not familiar with each mode of operation, here is the way we
define each term:

Run/Program - This is the normal mode of operation where the
program controls your outputs. you can edit your program and make
on-lien data changes when you are in this operational mode.

Remote Test - The program is executed, the inputs are scanned, the
outputs are disabled. The selectable timed interrupts are executed.

Remote Program - The processor stops scanning and executing its
stored program and waits for commands from the programmer. If you
have an optional EEPROM memory module, you must be in the remote
program mode when duplicating RAM memory contents to the
EEPROM memory module. Refer to Memory Module Product Data
(publication 1771-936) for operational details on memory transfer.

Industrial Terminal Keyboard

Function: The detachable keyboard houses PROM memory, a sealed
touchpad, and a keytop overlay.

There are three keytop overlays:

PLC-2 Family - for use with any PLC-2 family processor.

PLC - for use with any PLC family processor.

Alphanumeric - for alphanumeric characters and graphic
characters generation.

Key Symbols - There are no numbered keys greater than 9. To display
numbers which are greater than 9 press the individual keys. For example:

Hardware

Chapter 3

3-12

To display: 1011
Press individually: 1011

Some keys have two symbols occupying one key (Figure 3.5). To display
the top section of each key use your shift key before the desired symbol.
For example:

Press 7: To display 7
Press[SHIFT] A: To display A

Data Monitor Functions - You can display on a CRT and print directly to a
data terminal - binary, hexadecimal, and ASCII data monitor functions by
performing the keystrokes in table 16.B.

Paralleling Cable

Purpose: using the 1772-CT parallel cable, you can parallel with 1772-P3,
1771-P4 power supply for start up.

EEPROM Memory Module

Purpose: Provides you with a 3K non-volatile backup.

Hardware: EEPROM Memory Module (cat. 1772-MJ)

Function: After you’ve entered the application program into the processor
module’s CMOS RAM memory, the program can be copied into
the EEPROM.

So far, we’ve briefly described the hardware associated with your
Mini-PLC-2/05 processors. The next chapter explains memory and how the
processor stores and manipulates data. Read the next chapter carefully. It
is a fundamental concept that you must master before continuing.

Chapter Summary

Chapter

4

4�1

Memory Organization

In this chapter, you will read about:

 hardware and its relationship to your program
 memory and its components

This chapter provides detailed concepts of the memory’s organization and its
structure. Understanding these concepts aids you in programming your
processor.

Before we explain memory organization and its structure, read the
following definitions:

Bit - the smallest unit of information that memory is capable of retaining

Byte - a group of 8 consecutive bits (00-0708 or 10-1708)

Word - a group of 16 consecutive bits (00-1708)

Hardware and Your Program

Figure 4.1 and the following chart represents how the hardware of your
processor relates to the input and output image tables. Understanding the two
figures help you understand programming.

Chapter Objectives

Introduction

Memory Organization
Chapter 4

4�2

Figure 4.1
Word Address Equals Memory Bits

10248

Concept Example

Hardware Terminology Hardware Terminology

Input (1) or Output (0)

Rack No. (Always 1)

Module Group No.
(0-7)

Terminal No.
(00-07, 10-17)

Output: 0

Rack No.: 1

Module Group No.: 0

Terminal No.: 12

X X/XXX

Word

Data Table Terminology

Address
Bit
Address

0 0/121

Word
Address

Bit
Address

Data Table Terminology

 Hardware vs Your Program

I/O terminal bit

module group word

module slot byte

one rack eight words

if the terminal has voltage (on state) a specific bit is on, which is a 1 in memory

if the terminal has no voltage (off state) a specific bit is off, which is a 0 in memory

To calculate the input and output image tables’ areas and how these values
compare with the hardware of your processor.

Remember: 1 rack = 8 words
 You can only have one rack in this system.

Therefore: 8 words/rack x 16 bits - 128 I/O

Conclusion: The combined amount of usable bits in the input image
table and/or the output image table is 128 I/O.

Memory Organization
Chapter 4

4�3

Memory is divided into three major sections: data table, user program and a
message storage area. The areas store input status, output status, your program
instructions and messages.

We describe these areas in detail so you can gain programming flexibility using
your processor.

Data Table

The first part of memory is the data table (Figure 4.2). The processors are
factory configured for 128 words. Figure 4.3 shows memory structure with a
factory configured data table. The specific concepts throughout this publication
refer to a factory configured data table.

Figure 4.2
Memory Structure

Data Table

Main Program

Subroutine

Message Storage Area

User Program

10151�I

Memory Areas

Memory Organization
Chapter 4

4�4

Figure 4.3
Data Table Organization, Factory Configured

Processor Work Area
No. 1

Output
Image Table

Bit/Word Storage

Reserved

Timer/Counter
Accumulated Values (AC)

(or Bit/Word Storage)

Processor Work Area
No. 2

Input
Image Table

Bit/Word Storage

Timer/Counter
Preset Values (PR)

(or Bit/Word Storage)

Expanded Data Table
and/or User Program

Total
Decimal
Words

8

16

24

64

72

88

128

2944

80

Decimal
Words

Per
Area

8

8

8

40

8

8

40

2816

8

Word
Address

Bit
Address

000

007

010

017

020

026

027

030

077

100

107

110

117

120

127

130

177

200

End of Memory

00

17

00

17

00

17

00

17

00

17

00

17

00

17

00

17

00

May not be used for accumulated values.

Not available for bit/word storage. Bits in this word are used by the processor.

Unused timer/counter memory words can reduce data table size and increase user program area.

May not be used for preset values.
Do not use word 127 for block transfer data storage.

1

2

3

4

5

1

2

3

4

Factory-
Configured
Data
Table

5

3072 128
User Program

5577 17

Maximum
Size of
Data Table

6

Can be decreased to 48 words.6

10148�I

Memory Organization
Chapter 4

4�5

The data table area is a major part of memory. It is divided into six sections
which includes the input and output image tables. (These two areas were
described in chapter 2). The processor controls and utilizes words stored in the
data table. The input devices coupled with the control logic from your program
determines the status of the output devices. Input devices are limit switches,
pushbutton switches, pressure switches, etc. Output devices are solenoids,
motor starters, alarms, etc. Transfer of input data from input devices and the
transfer of output data to output devices occur during I/O scan. If the status of
the output instruction changes in the program then the on or off status of the
output devices update during the I/O scan to reflect the change.

To use the data table, you must understand the following:

 The processor initially reserves the first 128 words in the memory for the
data table.

 You can decrease the data table size to 48 words in two word increments.

 You can increase the data table size to 256 words in two word increments.
Then you can increase the data table size in blocks of 128 words.

 When the data table is set to 256 words, you can program up to 104
timer/counter instructions.

 You can change the data size from 48 words to 2,944 words using the
1770-T3 terminal.

Data Table Expansion
Using the 1770-T3 industrial terminal, you can adjust the data table size to be
anywhere from 48 words to 2944 words. Expanding the data table provides
additional timers/counters and space for files (see chapter 8 for timers/counters
and chapter 10 for file information), but it also proportionally reduces the
program storage and memory areas.

Expansion is in increments of two words until a table of 256 is reached and then
in increments of 128 words.

Important: When using the data table expansion capability, allow sufficient
room for both data table and user program.

Memory Organization
Chapter 4

4�6

To expand your data table do this:

SEARCH The word SEARCH appears in the lower left hand corner of

the screen.

50 DATA TABLE CONFIGURATION

NUMBER OF 128�WORD D.T. BLOCKS 01

NUMBER OF INPUT/OUTPUT RACKS 2

NUMBER OF T/C (if applicable) 40

DATA TABLE SIZE 128

The following chart helps you adjust the data table size for your processor:

Enter Data Table Size

01 128

02 256

03 384

04 512

05 640

06 768

07 896

08 1024

09 1152

10 1280

11 1408

12 1536

13 1664

14 1792

15 1920

16 2048

17 2176

18 2304

19 2432

20 2560

21 2688

22 2816

23 2944

After you adjust the data table, press [CANCEL COMMAND].

Important: Other industrial terminal commands are summarized in
appendix C.

Memory Organization
Chapter 4

4�7

Data Table Areas
The following areas make up the data table. They are:

 processor work area no. 1
 output image table
 bit/word storage (020-027)
 timer/counter accumulated values and internal storage
 processor work area no. 2
 input image table
 bit/word storage (120-127)
 timer/counter preset values and internal storage

Chapter 1 describes the input and output image tables. The following sections
describe the remaining areas.

Processor Work Areas
Purpose: The processor uses these 16 words for its internal control functions.

Description: There are two processor work areas. They are located at addresses
000-007 and 100-107. You cannot access these data table words. Their word
addresses are not available for addressing.

Important: The term address is defined in chapter 6. Remember, all addresses
are in octal values.

Accumulated Values and Internal Storage
Purpose: Stores accumulated values of timer or counter instructions. This area
also stores data by words and/or bits from your program instructions
(addresses 030-077).

Description: Each timer or counter instruction uses two words of data table.
one word is stored in the accumulated value area, the other is the preset value
area. When the accumulated value equals the preset value (AC=PR), a status bit
is set and can be examined to turn on or off an output device.

Preset Values and Internal Storage
Purpose: Stores preset values (PR) of timer or counter instructions. This area
also stores data by words and/or bits from your program (addresses 130-177).

Description: The preset value is the number of timed intervals or events to be
counted. The preset value is 100 octal words above the accumulated word.
Therefore, a timer/counter having an address of 030 automatically has its preset
value stored at address 130.

Memory Organization
Chapter 4

4�8

User Program

The second major part of memory is the user program (Figure 4.2). It is divided
into two areas:

 main ladder diagram program
 subroutine area

The user program area begins at the end of the data table.

Main Program
Purpose: The program is a group of ladder diagram and functional block
instruction used to control an application.

Description: A program is a list of instructions that guides the processor. These
instructions can examine or change the status of bits in the memory of the
processor. The status of these bits determines the operation of output devices.

The program specifies the things you want done in your application and the
conditions that must be met before those things are done. For example, if you
want a solenoid energized when a limit switch is closed, you would specify:

Condition: If limit switch is closed
Action: Energize solenoid

Programming logic differs from relay logic in an important way. Programming
logic is only concerned with whether or not conditions have been met. These
conditions may be open or closed input or output devices. We must have a
continuous or unbroken path of true logic conditions for an action to be taken.
The number of conditions is not important. There can be none, one, or many
conditions preceding an output action.

When the path of conditions is continuous, we say that the rung is true. When
the path of conditions is not continuous, we say the rung is false.

Subroutine Area
Purpose: Used to jump to a defined ladder diagram area. This allows you to
perform ladder diagram subroutines.

Description: The subroutine area is between the main program and the message
store areas. This area acts as the end of program statement for the main
program. It allows storage of small programs that are to be accessed
periodically. Subroutine areas are not scanned unless you program the
processor to jump to this area.

A maximum of eight subroutines can be programmed in the subroutine area.
Each subroutine begins with a label instruction and (when you want to exit to
your main program) ends with a return instruction.

Memory Organization
Chapter 4

4�9

Message Storage Area

The third major part of memory is the message storage area (Figure 4.2). You
can print out messages in hard copy form. You can store up to 70 messages
using the 1770-T3 industrial terminal, or 198 messages using the 1770- T3
terminal with the 1770-RG module.

Message storage follows the end statement of your program and is limited by
the number of unused words remaining in memory. Each word stores two
message characters. A character is any alpha or numerical figure (this includes
blank spaces).

Messages are written to display current data table information such as the
number of parts rejected in a production run for a particular time period. you
can write your program to display messages when a pushbutton switch
is activated.

Address 027 controls messages 1-6. You designate control words which control
your messages in groups of 8. Your control word must be arranged in
consecutive order.

Report generation (see chapter 17) is a function of your message control words.
Reserve bit addresses 02710 thru 02717 for this automatic report generation
function to determine status of this function. These bit addresses should not be
used for any other functions if you want to achieve maximum flexibility within
your program.

We described detailed concepts of memory organization and its structure. The
next chapter explains how the processor scans the program.

Chapter Summary

Chapter

5

5�1

Scan Theory

In this chapter you will read about:

 scan function
 scan time

The processor controls the status of output devices or instructions in accordance
with program logic. Every instruction in your program requires execution time.
These times vary greatly depending upon the instruction, the amount of data to
be operated on, and whether the instruction is true or false.

As a review from chapter 1, there are two types of scans (Figure 5.1):

 I/O scan (775µs without forcing: 1 ms with forcing)
 Program scan (15ms/K of user memory)

Chapter Objectives

Scan Function

Scan Theory
Chapter 5

5�2

Figure 5.1
Scan Sequence

11597

Output
Image
Table

Input
Terminals

Input
Image
Table

Output
Terminals

Copy output image table status
into output terminal circuits.

Copy input terminal status into
input image table

Program Statement

Execute each program rung in
sequence, writing into bits in the
data table, including the output
image table.

I/O
Scan

Program
Scan

Scan Theory
Chapter 5

5�3

On power-up, the processor begins the scan sequence with the I/O scan. Data
from output image table is written to the output modules. Data from the input
modules is read into the input image table.

Next, the processor scans the program statement by statement:

1. For each condition, the processor checks, or “reads,” the image table to see
if the condition has been met.

2. If the set of conditions has been met, the processor writes a one into the bit
location in the output image table corresponding to the output terminal to
be energized. On the other hand, if the set of conditions has not been met,
the processor writes a zero into that bit location, indicating that the output
terminal should not be energized.

Important: When your processor is in the remote test mode, all outputs are
held off. When your processor is in the run/program mode, all outputs are
controlled by the user program.

Average scan time is the average amount of time it takes the processor to
monitor and update input and outputs, and to execute instructions in the
program. The scan is performed serially; first the I/O image table is updated,
(other parts of the data table are not scanned), then the user program is scanned.

There are two ways to measure average scan time:

 Append the rungs in Figure 5.2 to your program.

Figure 5.2
Average Scan Time

031

14

CTU

031

PR 999

031

14

CTU

031

PR 999

RTO

032

0.1

032

000

Store

010

G G :

Store

000

AC 000

AC 000

PR 999
AC 000

1

031

14
RTR

032

PR 999

:

Store

000 .

2 3

AC 000
031

14
RTR

032

PR 999
AC 000

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

Rung 6

Average Scan Time

Scan Theory
Chapter 5

5�4

 Add the execution values for each instruction by using Table 5.A. The sum of
these values added to the I/O scan time is the average scan time.

Table 5.A
Approximate Execution Time Per Scan (in average microseconds)

Instruction Name Symbol
Instruction

True
Instruction

False

Examine on, Examine off �| |�,�| / |� 14 11

Output energize �()� 16 16

Output latch �(L)� 17 13

Output unlatch �(U)� 17 13

Get �[G]� 28 �

Put �(PUT)� 26 14

Equal �(=)� 23 11

Less than �(<)� 25 13

Get byte �|B|� 16 �

Limit test �|L|� 24 11

Counter reset �(CTR)� 20 14

Retentive timer reset �(RTR)� 20 14

Timer on�delay �(TON)� 75 47

Retentive timer on�delay �(RTO)� 78 48

Timer off�delay �(TOF)� 82 60

Up counter �(CTU)� 70 55

Down counter �(CTD)� 75 60

3 Digit Math

Add �(+)� 48 15

Subtract �(�)� 80 19

Multiply �(x)�(x)� 615 60

Divide �(÷)�(÷)� 875 60

Add to any of the above when its
address is 4008 or greater

27 27

Expanded Math

Add EAF 01 400�500 40

Subtract EAF 02 400�500 40

Multiply EAF 03 800�2250 40

Divide EAF 04 500�3250 40

Square root EAF 05 1850 40

BCD to binary EAF 13 500 40

Binary to BCD EAF 14 500 40

Master control reset �(MCR)� 16 16

Zone control last state 1 �(ZCL)� 22(no skip) 20+(13 per word skipped)

Branch start 16 16

Branch end 18 18

End, temporary end T.END 27 27

Subroutine area SBR 27 27

Immediate input update �[I]� 45 (with forcing on 55) �

Immediate output update �(IOT)� 70(with forcing on 80) 17

Scan Theory
Chapter 5

5�5

Instruction Name
Instruction

False
Instruction

TrueSymbol

Label LBL 34 �

Return �(RET)� 30 15

Jump to subroutine �(JSR)� 100 15

Jump �(JMP)� 55 15

Block transfer read BLOCK
X�FER 1

80 75

Block transfer write BLOCK
X�FER 0

80 75

Sequencer load SEQ 2 390(80/extra word) 105

Sequencer input SEQ 1 420(90/extra word) 55

Sequencer output SEQ 0 470(90/extra word) 110

File�to�word move FILE 12 250 45

Word�to�file move FILE 11 250 45

File�to�file move FILE 10440 (+10/word
transferred)

200

1 When a rung that contains a ZCL instruction is false, the execution time of each instruction between the start fence and
end fence is 17 microseconds per word.

Here is an explanation of the rungs in Figure 5.2:

Rung 1 - The count increments its accumulated value each time this rung
is true.

Rung 2 - This rung enables the counter to increment on the next scan. If we did
not have this rung, the counter would always be true and it would not
increment. Remember: Counters increment only on false to true transitions.

Rung 3 - The timer times in tenths of seconds when we are counting. This
value is displayed on the industrial terminal screen.

Rung 4 - The average scan time is displayed beneath store 2 and store 3
in milliseconds.

Important: Refer to three digit math in chapter 10.

Rung 5 - The counter overflow bit is re-setting the timer.

Rung 6 - The counter overflow bit is resetting the counter.

We described scan sequence and a method to measure average scan time. The
next chapter explains some of the instructions you use in a program.

Chapter Summary

Chapter

6

6�1

Relay�type Instructions

This chapter describes:

 relay-type instructions
 how to define conditions before an action takes place

A program is a list of instructions that the processor executes. These
instructions can examine or change the status of bits in the data table of the
processor. The status of these bits can determine the operation of
other instructions.

The program you specifies the order of things you want done in your
application and the conditions that must be met before those things are done.
For example, if you want a solenoid energized when a limit switch is closed,
you specify:

Condition: if limit switch is closed
Action: energize solenoid

Programming logic differs from relay logic in an important way. Programming
logic is only concerned with whether or not conditions have been met. These
conditions may be open or closed input or output devices. We must have a
continuous or unbroken path or true logic conditions for an action to be taken.
The number of conditions is not important. There can be none, one, or many
conditions preceding an output action.

Perhaps an example might make this clearer:

C1

True

C2

True

C3

True

A

True

False

Here, a series of conditions (C2, C2, C3) must be true before action A
is performed.

Chapter Objectives

Programming Logic

Relay-type Instructions
Chapter 6

6�2

C1 = Input switch 1. When the switch is on, this condition is true. This switch
turns on a conveyer belt.

C2 = Input sensor 1. When the sensor is off, this condition is true. This sensor
detects if the temperature in the factory is below 40oC.

C3 = Input sensor 2. When the sensor is on, this condition is true. This sensor
detects the presence of a part of the conveyer belt.

A = The part will be drilled. = The path of conditions is continuous, that is, all
conditions are true.

When C1, C2, and C3 are true, then a continuous path is made to a particular
action. In this case, the continuous path causes the part to be drilled. When the
path of conditions is continuous, we say that the rung is true. When the path of
conditions is not continuous, we say the rung is false.

C1

True

C2

False

C3

True

A

True

False

Here the path of conditions is not continuous because condition 2 is false.
Therefore, the action A is not performed. We say the rung is false.

Set vs. Reset

As a review, if the device goes on, then we say the corresponding bit in data
table is set to a 1. If the device goes off, we say the corresponding bit in data
table is reset to a 0. (From this point on, set means the on-condition or 1. Reset
means the off-condition or 0.)

If the device is: Then a bit in memory is

on set

off reset

Addresses

The processor scans the status of inputs and controls output devices. It does not
go to the input or output terminals to see if outputs are on or off. Rather, it
checks the status of the input and output devices by scanning corresponding bits
in the input and output image area of the data table. The processor uses
addresses to refer to words and bits in the data table.

Relay-type Instructions
Chapter 6

6�3

Each input and output bit has a five-digit address. Reading from left to right:

 the first number denotes the type of I/O module:

- 0 output
- 1 input

 the second number denotes an I/O chassis and it always is a 1.
 the third number denotes a module group. This number will range from 0-7.
 the fourth and fifth numbers denote a terminal designation:

- 00-07 left slot of the module group
- 10-17 right slot of the module group

Important: Remember a Mini-PLC-2/05 processor can use only one rack.

Important: For addressing purposes, I/O modules in a given I/O rack are
organized into “module groups.” A module group is a pair of adjacent I/O
modules. Thus, the module group number of an individual I/O module depends
only on the I/O slot the module occupies. It is important to note that the first
module group in any I/O chassis is always module group 0.

You can use seven programming instructions to write a program. These
instructions are divided into three categories: bit examining, bit controlling, and
branch instructions.

Bit Examining

Examine On and Examine Off
Purpose: The Examine On -] [- and Examine Off -]/[- instructions tell the
processor to examine a bit at a specified data table location

112

04

112

05

012

13

Bit Examining
Examine On

Bit Examining
Examine Off

012

14

Determines the bit condition. The bit condition becomes:

True - Examine On detects a bit in the data table that is set.
True - Examine Off detects a bit in the data table that is reset.
False - Examine On detects a bit in the data table that is reset.
False - Examine Off detects a bit in the data table that is set.

Programming Instructions

Relay-type Instructions
Chapter 6

6�4

Keystrokes: Enter an Examine On or Examine Off instruction by performing
the following steps.

1. Press either -] [- or -]/[- as required.

2. Enter <address>.

Removing the Examine On or Examine Off Instruction
You remove an Examine On or a Examine Off instruction by performing the
following steps.

1. Position the cursor over the Examine On or Examine Off instruction you
want to remove.

2. Press [REMOVE] -] [- or -]/[-.

Editing a Partially Completed or a Completed Rung
You edit an Examine On or Examine Off by performing the following steps.

If you are editing a completed rung, proceed to step 1. If you are editing a
partially completed rung, enter the next instruction and proceed to step 1.

1. Position the cursor over the Examine On or Examine Off instruction you
want to edit.

2. Press either -] [- or -]/[- or any other appropriate instruction type key.

3. Enter <address>.

Bit Controlling

Output Energize
Purpose: This Output Energize instruction tells the processor to set or reset a
specified data table bit.

112

06

012

15
Bit Controlling
Output Energize

Controls a specific bit based on the rung condition. When its rung
conditions are:

True - Output Energize sets a specified bit.
False - Output Energize resets a specified bit.

Relay-type Instructions
Chapter 6

6�5

Keystrokes: You enter an Output Energize instruction by performing the
following steps.

1. Press -()-.

2. Enter <address>.

Removing an Output Energize Instruction
The only way you remove an Output Energize instructions is to remove the
entire rung. See chapter 16.

Editing in a Completed Rung
You edit the Output Energize instruction by performing the following steps.
However, you cannot remove an output instruction.

1. Position the cursor over the Output Energize instruction you want
to change.

2. Press -()- or any other appropriate output instruction type key.

3. Enter <address>.

Output Latch/Unlatch
Purpose: The Output Latch -(L)- instruction tells the processor to latch and set
a specified data table bit. It is usually paired with an unlatch instruction.

113

04

L

010

00
Bit Controlling

Output Latch

The Output Unlatch -(U)- instruction tells the processor to unlatch and reset a
specific data table bit. It is usually paired with a latch instruction.

113

05

U

010

00
Bit Controlling
Output Unlatch

Important: The conditions for the Output Unlatch instruction must be different
than the conditions that precede the Output Latch instruction.

These are retentive instructions. Retentive means that when the rung condition
goes false, the latched bit remains set and the unlatched bit remains reset until
changed by the program.

Relay-type Instructions
Chapter 6

6�6

These instructions control a specific bit based on the rung condition. When its
rung conditions are:

True - Output Latch sets a specified bit.
True - Output Unlatch resets a specified bit.
False - No action is taken.

Keystrokes: You enter an Output Latch or Unlatch instruction by performing
the following steps.

1. Press either -(L)- or -(U)- as required.

2. Enter <address>.

Important: You can initially condition the latch or unlatch instruction to on or
off by pressing 1 or 0, respectively.

Editing in a Completed Rung
You edit an Output Latch or Unlatch instruction by performing the
following steps.

1. Position the cursor over the Output Latch or Unlatch instruction you want
to change.

2. Press either -(L)- or -(U)- or any other output instruction type as required.

3. Enter <address>.

Important: If power is lost, all latch bits remain in their last state. When power
is restored, all outputs connected to latch bits are energized immediately.

Branching Instructions

Use branching instructions when you want several parallel sets of conditions to
make an output action possible. A program with branching says, “If this set of
conditions is true, or if that set of conditions is true, perform the following
action.” Branching allows two or more paths to reach the same
output destination.

True

C2

C1 A

False

Relay-type Instructions
Chapter 6

6�7

Here two conditions are parallel. As long as one of the conditions (C1 or C2) is
true, a continuous path to the action exists. Therefore, the action is performed.

True

True

C3

C1 A

False

True

C4

C2

Here are two sets of parallel conditions. If either set of conditions are true, the
action is performed.

010

00

010

00

110

10

110

12

This illustration shows a program rung with branching, as it would appear by
the 1770-T3 terminal display. You create a branch by using two different
branch instructions. These are the branch start and branch end instructions.

Branch Start/End
Purpose: A Branch Start instruction begins each parallel logic branch of a rung.
It allows more than one combination of input conditions to energize an
output device.

A Branch End instruction completes a set of parallel branches.

Keystrokes: You enter a Branch Start or Branch End instruction by performing
the following steps

1. Press either [] or [].

Important: You must begin each rung of parallel conditions with a Branch
Start instruction.

Relay-type Instructions
Chapter 6

6�8

Removing a Branch Start or Branch End Instruction
You remove either a Branch Start or Branch End instruction or change an
instruction type by performing the following steps.

1. Position the cursor over either the Branch Start or Branch End instruction.

2. Press [REMOVE] [] or [].

Inserting a Branch Instruction in a Completed Rung
You insert either a Branch Start or Branch End instruction or change an
instruction type by performing the following steps.

1. Position the cursor over the instruction immediately preceding the position
you want to insert a Branch Start instruction.

2. Press [INSERT] [].

Important: Once you press the Branch Start instruction, the statement
BRANCH END OMITTED appears in the lower lefthand corner of the screen.
It stays there until you enter a Branch End instruction.

3. Insert the conditioning instructions for this rung.

4. You must begin each set of parallel conditions or rung with a
Branch Start instruction.

Complete the set of parallel conditions by:

5. Press [INSERT] [].

Important: Once you press the Branch End instruction, the statement
BRANCH END OMITTED disappears.

Nesting

The following rung shows a nested branch.

00

010

00

110

10

110

12

110 110

11

110

13

Relay-type Instructions
Chapter 6

6�9

Creating nested branches is not possible because the branch end instruction
completes a branch group. But the above rung shows a single branch group
with two branch end instruction. Above, the examine on instruction with the
address 11012 is actually a branch group within a branch group.

The following rung achieves the same result and avoids nested branching:

00

010

00

110

10

110

12

110 110

11

110

13

110

11

We showed you how enter and edit bit examining, bit controlling, and branching
instructions. The next chapter shows you how to use program control
instructions to update I/O ahead of their usual scan time.

Chapter Summary

Chapter

7

7�1

Program Control Instructions

This chapter describes these program control instructions:

 output override
 immediate I/O update

Some applications need programming techniques designed to override a group
of non-retentive outputs or update I/O ahead of the usual I/O scan time. The
program control instructions satisfy this need.

The output override, or zone type instructions, operate similarly to a hardwired
master control relay in that they affect a group of outputs in the user program.
But these instructions are not a substitute for a hardwired master control relay,
which provides emergency I/O power shutdown.

The following table illustrates specific instructions for these categories:

Output Override Immediate Update I/O

Master Control Reset Immediate Input Update

Zone Control Last State Immediate Output Update

Master Control Reset and Zone Control Last State

Purpose: A Master Control Reset (MCR) establishes a zone in the user program
in which all non-retentive outputs are turned off simultaneously.

Important: Retentive instructions (-(U)-, -(L)-, -(RTO)-) should not be placed
within an MCR zone, because the MCR zone maintains retentive instructions in
the last active state when the start fence goes false.

A Zone Control Last State (ZCL) instruction allows control of one or a group of
outputs in more than one manner in the same program. It establishes a zone in
the user program which controls the same outputs, through separate rungs, at
different times.

Chapter Objectives

Introduction

Output Override Instructions

Program Control Instructions
Chapter 7

7�2

To override a group of output devices, you must use two MCR (Figure 7.1) or
ZCL (Figure 7.2) instructions: one each to begin the zone and one each to end
the zone. The start fence is always programmed with a set of input conditions.
The end fence must be programmed unconditionally.

Figure 7.1
Master Control Reset

010

00

016

00

MCR
011

00

012

00
010

00

010

00
015

00

017

00

011

00

020

00

021

00

012

00
022

00

023

00

013

00
025

00

024

00
026

00

014

00

MCR

Figure 7.2
Zone Control Reset

010

00

016

00

ZCL

011

00

012

00
010

00

010

00
015

00

017

00

011

00

020

00

021

00

012

00

022

00

023

00

013

00
025

00

024

00
026

00

014

00

ZCL

Program Control Instructions
Chapter 7

7�3

If the start fence becomes:

True - Each rung condition controls their output instruction.
False - All output instructions within the zone are left in their last state. The

same outputs may now be controlled by another zone program.
Only one zone may control a set outputs at one time.

Keystrokes: You enter an MCR or ZCL instruction by performing the
following steps.

1. Press either -(MCR)- or -(ZCL)-.

Editing in a Completed Rung
You edit these instructions by performing the following steps:

1. Position the cursor over the MCR or ZCL instruction you want to change.

2. Press either -(MCR)- or -(ZCL)- or any other appropriate instruction
type key.

3. Enter any parameters that may be required by a new instruction.

Immediate I/O update instructions interrupt the program scan to update I/O data
before the normal I/O update sequence. Use these instructions where I/O
modules interface with I/O devices that operate in a shorter time period than the
processor scan.

Immediate Input/Immediate Output Update

Purpose: An Immediate Input Update instruction interrupts the program scan to
update input image table with data from the corresponding module group. The
image table is updated before the normal I/O scan and executed each program
scan (Figure 7.3). This instruction is always considered logic true and
execution takes place whether or not other rung conditions allow
logic continuity.

Immediate I/O Update
Instructions

Program Control Instructions
Chapter 7

7�4

Figure 7.3
Immediate Input Instruction

2

I/O Scan

Program Scan

Word 112

Examine Bits in
Word 112 Here
in Program

Module
Group
(Input)

16 Bits from
One Module Group
Written into Input
Image Table Word

Returns to
Program

Immediate Input Instruction
Interrupts Program Scan

10151�I

Scan

An Immediate Output Update instruction interrupts the program scan to update
the module group with data from corresponding output image table word
address (Figure 7.4). The image table is updated before the normal I/O scan
and executed each program scan when the rung is true. It can be programmed
unconditionally. This instruction immediately transfers output data from the
selected 16-bit word in the output image table without waiting for the normal
I/O scan.

Program Control Instructions
Chapter 7

7�5

Figure 7.4
Immediate Output Instruction

4

I/O Scan

Program Scan

Control Bits
of Word 014
Here in
Program

Immediate Output Instruction
Interrupts Program Scan

Word 0

Module
Group
(Output)

Writes All 16 Bits from
One Output Image Table
Word to One Module Group

Returns to
Program
Scan

10152�I

Important: These instructions significantly impact program scan time. Use
them only when absolutely necessary.

Keystrokes: You enter an Immediate Input or Immediate Output Update
instruction by performing the following steps.

1. Press either -[I]- or -[IOT]-.

2. Enter <address>.

Program Control Instructions
Chapter 7

7�6

Removing an Immediate Output Update Instruction
The only way to remove an Immediate Output Update instruction is to remove
the entire rung. See chapter 11.

Removing an Immediate Input Update Instruction
You remove an Immediate Input Update instruction by performing the
following steps.

1. Position the cursor over the Immediate Input Update instruction you want
to remove.

2. Press [REMOVE]-[I]-.

Editing a Partially Completed Rung or a Completed Rung
You edit an Immediate Input or Immediate Output Update instruction by
performing the following steps.

If you are editing a completed rung, proceed to step 1. If you are editing a
partially completed rung, enter the next instruction and proceed to step 1.

1. Position the cursor over the Immediate Input or Immediate Output Update
instruction you want to change.

2. Press -(I)-, -[IOT]-, or any other appropriate instruction type key.

3. Enter <address>.

We have shown you how to override a group of non-retentive outputs to update
I/O ahead of their usual scan time. The next chapter shows you how to keep
track of timed intervals or counted events according to the logic of your
ladder diagram.

Chapter Summary

Chapter

8

8�1

Timers and Counters

This chapter describes two instructions that keep track of timed intervals or
counted events:

 timers
 counters

Timer and counter instructions are output instructions internal to the processor.
They provide many of the capabilities available with timing relays and solid
state timing/counting devices. Usually conditioned by examine instructions,
timers and counters keep track of timed intervals or counted events according to
the logic continuity of the rung. You can program up to 488 internal timers.
The last valid timer address is 1677.

Each timer or counter instruction has two 3-digit values. Each value requires
one word of data table memory. These 3-digit values are:

Accumulated Value (AC)

Storage: Begins at word address 030.

Function: Timers - number of elapsed timed intervals
Counters - number of counted events
Both - upper 4 bits of accumulated word (14-17)
are the status bits.

Preset Value (PR)

Storage: Always at address 100 words greater than its corresponding AC value.

Function: Denotes the number of timed intervals or events to be counted. When
the accumulated value equals the preset value, AC = PR, a status bit is set and
can be examined to turn an output device on or off.

A timer counts the elapsed time-base intervals and stores this count in the
accumulated value word. All timers must be placed within the first eight data
table blocks. Timer instructions have three time bases: 1.0 second, 0.1 second,
or 0.01 second.

Chapter Objectives

Introduction

Timer Instructions

Timers and Counters

Chapter 8

8�2

Two bits in the accumulated value word are status bits:

 Bit 15 is the timed bit. It is either set or reset when the timer has timed out.
The setting or resetting depends on the type of timer instruction used.

 Bit 17 is the enable bit. It is set when rung conditions are true and is reset
when rung conditions are false.

There are four types of timer instructions available with the controller:

 timer on-delay
 timer off-delay
 retentive timer on-delay
 retentive timer reset

We will look at these timers in detail.

Timer On/Timer Off Delay

Purpose: The Timer On and Timer Off Delay instructions can be used to turn a
device on or off once an interval is timed out.

Timer On Delay
The Timer On Delay instruction is programmed as an output instruction.

010

00

TON

030

1.0

PR 150

AC 000

When the timer on delay rung condition becomes:

True

 Timer cycle begins.
 Timer increments its AC value.
 Bit 15 is set when AC=PR and the timer stops timing.
 Bit 17 is set.

False

 Accumulated value resets to 000.
 Bits 15 and 17 are reset.

Timers and Counters

Chapter 8

8�3

Timer Off Delay
The Timer Off Delay instruction is programmed as an output instruction.

010

00

TOF

030

1.0

PR 150

AC 000

When the timer off delay rung condition becomes:

True

 Bit 15 is set.
 Bit 17 is set.
 Accumulated value resets to 000.

False

 Timer cycle begins.
 Timer increments its AC value.
 Bit 15 resets when the AC=PR and the timer stops timing.
 Bit 17 is reset.

Keystrokes: You enter a Timer On or a Timer Off Delay instruction by
performing the following steps.

1. Press either -(TON)- or -(TOF)-.

2. Enter <address>.

3. Enter <time base>.

4. Enter <preset value>.

Editing in a Completed Rung
You edit the Timer On or Timer Off Delay instruction by performing the
following steps.

1. Position the cursor over the Timer On or Timer Off Delay instruction you
want to change.

2. Press -(TON)-, -(TOF)-, or any other appropriate instruction type.

3. Enter <address>.

4. Enter <time base>.

5. Enter <preset value>.

Timers and Counters

Chapter 8

8�4

Retentive Timer On/Reset

Retentive Timer On
Purpose: The Retentive Timer On accumulates the amount of time that the
preconditions of its rung are true. It controls one or more outputs (by means of
other rungs) after the total accumulated time is equal to the preset time.
Whenever the rung is false, the accumulated time is retained. If the outputs
have been energized, they remain on. The accumulated time and energized
outputs are retained if power is removed from the processor. A separate rung,
containing a retentive timer reset instruction must be programmed in order to
reset the accumulated time to zero and turn off the outputs.

010

00

RTO

030

1.0

PR 150

AC 000

When the rung condition becomes:

True

 Timer begins counting time-base intervals.
 Bit 15 is set when AC=PR and the timer stops timing.
 Bit 17 is set.

False

 Accumulated value is retained.
 Bit 15 - no action is taken.
 Bit 17 is reset.

Important: The RTO instruction retains its AC value when the:

 Rung condition turns false.
 Processor changes to remote/program mode.
 Power outage occurs and memory backup is maintained.

Retentive Timer Reset
Purpose: The Retentive Timer Reset instruction resets the accumulated value
and timed bit of the retentive timer to zero. This instruction is given the same
word address as its corresponding RTO instruction. When the rung conditions
go true, the RTR instruction resets the ac value and resets the status bits to zero.

010

00

RTR

030

PR 150

AC 000

Timers and Counters

Chapter 8

8�5

When the rung condition becomes:

True

 RTR instruction resets the accumulated value of the RTO instruction.
 Bits 15 and 17 are reset.

False

 No action is taken.

Keystrokes: You enter a Retentive Timer On or a Retentive Timer Reset
instruction by performing the following steps.

1. Press -(RTO)- or -(RTR)-.

2. Enter <address>.

Perform the following step for a Retentive Timer instruction only.

3. Enter <time base>.

4. Enter <preset value>.

Editing in a Completed Rung
You edit a Retentive Timer On or a Retentive Timer Reset instruction by
performing the following steps.

1. Position the cursor over the Retentive Timer or Retentive Timer Reset you
are going to change.

2. Press -(RTO)-, -(RTR)-, or any other appropriate instruction type key.

3. Enter <address>.

Important: Do not perform steps 4 and 5 for a Retentive Timer
Reset instruction.

4. Enter <time base> if appropriate.

5. Enter <preset value>.

A counter counts the number of events that occur and stores this count in its
accumulated value word. Counters can be located anywhere in the data table.
The last valid counter address is 5477 (in a fully expanded data table). An
event is defined as a false-to-true transition. Counter instructions have no
time base.

Counter Instructions

Timers and Counters

Chapter 8

8�6

The upper four bits in the accumulated value (AC) word are status bits:

Bit 14 - Overflow/underflow bit. It is set when the AC value of the CTU
instruction exceeds 999 or when the AC value of the CTD instruction falls
below 000.

Bit 15 - Count complete bit. it is set when the AC value > PR value.

Bit 16 - Enable bit for CTD instruction. It is set when the rung condition
is true.

Bit 17 - Enable bit for CTU instruction. It is set when the rung condition
is true.

There are three types of counter instructions available with the controller:

 up counter
 down counter
 counter reset

Up Counter

Purpose: An Up Counter instruction increments its accumulated value for each
false-to-true transition of the rung condition.

010

00

CTU

030

PR 150

AC 000

When the rung condition becomes:

True

 Accumulated value increments by 1.
 Bit 14 is set if the AC > 999.
 Bit 15 is set when AC > PR. Incrementing the accumulated value continues

after the preset value is reached.
 Bit 17 is set and stays set until the rung goes false.

False

 Accumulated value is retained.
 Bit 14 - no action is taken.
 Bit 15 - no action is taken.
 Bit 17 is reset.

Timers and Counters

Chapter 8

8�7

The Up Counter instruction retains its AC value when:

 You change the mode to the remote program.
 The rung condition turns false.
 A power outage occurs and memory backup is maintained.

Important: Bit 14 of the accumulated value word is set when the accumulated
value either overflows or underflows. when a down counter preset is 000, the
underflow bit 14 will not be set when the count goes below 0.

Down Counter

Purpose: The Down Counter instruction subtracts one from its accumulated
value for each false to true transition of its rung conditions. A count is only
added on a false to true transition, so rung conditions must go from true to false
and back to true before the next count is registered.

010

00

CTD

030

PR 150

AC 000

When the rung condition becomes:

True

 Accumulated value decrements by 1.
 Bit 14 is set when AC < 000.
 Bit 15 is reset when AC < PR; counting continues.
 Bit 16 is set and stays set until the rung goes false.

False

 Accumulated value is retained.
 Bit 14 - no action is taken.
 Bit 15 - no action is taken.
 Bit 16 is reset.

Counter Reset

Purpose: The Counter Reset instruction resets the up counter down counter
instructions accumulated value and status bits to 0.

010

00

CTR

030

PR 150

AC 000

Timers and Counters

Chapter 8

8�8

When the rung condition becomes:

True

 Accumulated value of the specified counter is reset to 000.
 Status bits (14,15,16,17) are reset.

False

 No action is taken.

Keystrokes: You enter an Up Counter, Down Counter or Counter Reset
instruction by performing the following steps.

1. Press -(CTU)-, -(CTD)-, or -(CTR)-.

2. Enter <address>.

Important: Do not perform steps 3 and 4 for a Counter Reset instruction.

3. Enter <preset value>.

4. Enter <accumulated value>.

Editing in a Completed Rung

You edit an Up Counter, a Down Counter, or a Counter Reset instruction by
performing the following steps.

1. Position the cursor over the Up Counter, Down Counter or Counter Reset
you want to change.

2. Press either -(CTU)-, -(CTD)-, -(CTR)-, or any other appropriate
instruction type.

3. Enter <address>.

4. Enter <preset value> if appropriate.

Important: Do not perform steps 4 and 5 for a Counter Reset instruction.

5. Enter <accumulated value>.

We showed you how to use timer and counter instructions to keep track of timed
intervals and counted events. The next chapter shows you how to transfer and
compare data.

Chapter Summary

Chapter

9

9�1

Data Manipulation Instructions

In this chapter, you will read about two types of instructions used to transfer and
compare data and how to use these instructions to perform operations of data
that is stored in the data table. These types of instructions are:

 transfer instructions
 compare instructions

There are two data transfer instructions. They are:

 get
 put

Get

Purpose: A Get instruction accesses all 16 bits of one word location in the data
table. It does not determine rung or require logic continuity. A Get also
provides a time base for a selectable timed interrupt. In an STI, the Get
instruction is the first instruction in the subroutine area. See chapter 15 for
more information.

ATTENTION: Use the subroutine area carefully because
unintended subroutine execution can cause unexpected
machine operation.

Programmed in the condition area of the ladder diagram rung. It can be located
at the beginning of a rung or with one or more conditions preceding it. It is
always true and intensified.

Get always accesses the word to which it is addressed. It displays a three
hexadecimal value of lower 12 bits (bits 0-13) of the specified word.

111

11

130

238

PUT

040

000

G

Chapter Objectives

Transfer Instructions

Data Manipulation Instructions
Chapter 9

9�2

Put

Purpose: A Put instruction receives all 16 bits of data from the immediately
preceding Get instruction and stores the data at the specified data table word
location. Use with a Get instruction to form a data transfer rung.

Programmed in the output side of the ladder diagram rung. This instruction can
have the same address as other instructions in the program. It must be
immediately preceded by a Get or a Get-Byte instruction.

111

11

130

238

PUT

040

000

G

When rung conditions become:

True

 A Get instruction transfers data to the Put instruction.
 The lower 12 bits are displayed in hexadecimal beneath the Put instruction.
 Bits 14-17 are transferred but not displayed.

False

 Because he Put instruction is retentive, any change in Get instruction data
does not change Put instruction data.

Keystrokes: You enter a Get or Put instruction by performing the
following steps.

1. Press -[G]- or -(PUT)-.

2. Enter <address>.

Important: Do not perform step 3 for a Put instruction.

3. Enter <data> if appropriate.

Removing a Get Instruction
You remove a Get instruction by performing the following steps.

1. Position the cursor over the Get instruction you are going to remove.

2. Press [REMOVE] -[G]-.

Removing a Put Instruction
The only way to remove a Put instruction is to remove the whole rung. See
chapter 16.

Data Manipulation Instructions
Chapter 9

9�3

Editing a Get Instruction in a Partially Completed Rung
1. Enter the next instruction.

2. Position the cursor over the Get instruction you want to change.

3. Press -[G]- or any other appropriate instruction type key.

4. Enter <address>.

5. Enter <data> if appropriate.

Editing a Get or Put Instruction in a Completed Rung
1. Position the cursor over the Get or Put instruction you want to change.

2. Press -[G]-, -(PUT)-, or any other appropriate instruction type key.

3. Enter <address>.

Important: Do not perform step 4 for a Put instruction.

4. Enter <data> if appropriate.

There are three compare instructions:

 equal to
 less than
 limit test

Equal To

Purpose: An equal to comparison is made with the Get and Equ instructions.
The get value is the changing variable and is compared to the reference value of
the Equ instruction for an equal to condition. When the get value equals the equ
value, the comparison is true and logic continuity is established. It determines
the rung condition. Compares only the lower 12 bits to the immediately
preceding get instruction.

120

03

030

YYY

010

02

G

035

100

=

Reference Value

When YYY = 100, GET/EQU comparison is true and 010/02 is energized.

If the rung condition becomes:

True - If there is equality.
False - If there is no equality.

Compare Instructions

Data Manipulation Instructions
Chapter 9

9�4

Keystrokes: You enter an Equal To instruction by performing the
following steps.

1. Press -[=]-.

2. Enter <address>.

3. Enter <reference value> if appropriate.

Removing an Equal To Instruction
You remove an Equal To instruction by performing the following steps.

1. Position the cursor over the Equal To instruction you are going to remove.

2. Press [REMOVE] -[=]-.

Editing a Completed Rung
You edit an Equal To instruction by performing the following steps.

1. Position the cursor over the Equal To instruction you are going to edit.

2. Press -[=]- or any other appropriate instruction type key.

3. Enter <address>.

4. Enter <reference value> if appropriate.

Less Than

Purpose: The Less Than instruction compares the data in your specified address
with the data stored at another address in memory. It determines the rung
condition. Compares only the lower 12 bits to the immediately preceding
Get instruction.

Programmed after the Get instruction in the condition side of the ladder
diagram rung.

120

01

030

YYY

010

02

G

037

654

<

Reference Value

When YYY < 654, GET/LES comparison is true and 010/02 is energized.

The rung condition becomes:

True - If the get value is less than the reference value stored in the
Less Than instruction.

False - If the get value is equal to or greater than the less than value.

Data Manipulation Instructions
Chapter 9

9�5

Keystrokes: You enter a Less Than instruction during initial programming by
performing the following steps.

1. Press -[<]-.

2. Enter <address>.

3. Enter <reference value>.

Removing the Less Than Instruction
You remove a Less Than instruction by performing the following steps.

1. Position the cursor over the Les Than instruction you want to remove.

2. Press [REMOVE] -[<]-.

Editing a Completed Rung
You edit a Less Than instruction by performing the following steps

1. Position the cursor over the Less Than instruction you are going to edit.

2. Press -[<]- or any other appropriate data comparison instruction.

3. Enter <address>.

4. Enter (reference value).

Limit Test

Purpose: The limit test checks to see if a byte value is between two reference
byte values in the limit test instruction.

 Programmed with a Get Byte instruction located in the condition area of the
ladder diagram.

 Do not place compare instructions between the Get Byte and
Limit Test instruction.

 The Get Byte and Limit Test instructions work only with octal values.

Data Manipulation Instructions
Chapter 9

9�6

There are two cases for comparison:

Case 1. Lower Limit ��YYY ��Upper Limit

120

06

0451 010

05

B

050

L

200

YYY8 170

If YYY is equal to or greater than 170 and equal to or less than 200, the
comparison is true and logic continuity is established. If YYY is less than 170
or greater than 200, the comparison is false and logic continuity is
not established.

YYY8

3778

2008

1708

000

False

False

True

Case 2. Lower Limit � YYY � Upper Limit

120

06

0451 010

05

B

050

L

170

YYY8 200

False

TrueYYY8

3778

2008

1708

000

YYY8

True

True

Data Manipulation Instructions
Chapter 9

9�7

If YYY is equal to or less than 200 and equal to or greater than 170, the
comparison is false and logic continuity is not established. If YYY8 is
greater than 200 or less than 170, the comparison is true and logic continuity
is established.

Keystrokes: You enter a Limit Test instruction by performing the
following steps.

1. Press -[L]-.

2. Enter <address>.

3. Enter <upper limit>.

4. Enter <lower limit>.

Editing a Completed Rung
You edit the Limit Test comparison by performing the following steps.

1. Press -[L]-.

2. Enter <address>.

3. Enter <upper limit>.

4. Enter <lower limit>.

You can perform five operations involving transfer and comparison instructions.

 equal to or less than
 greater than
 equal to or greater than
 get byte
 get byte/put

Equal To or Less Than

Purpose: The equal to/les than comparison is made using the Get, Les, Equ and
branching instructions. The get value is the changing value. The Les and Equ
instructions are assigned a reference value. When the get value is either less
than or equal to the value at Les and Equ instructions, the comparison is true
and logic continuity is established.

Operations Involving Transfer
and Comparison Instructions

Data Manipulation Instructions
Chapter 9

9�8

120

04

030

YYY

010

02

G

037

237

<

When YYY � 237, GET/LES�EQU comparison is true and 010/03 is energized.

037

237

=

Important: Only one Get instruction is required for a parallel comparison. The
Les and Equ instructions are programmed in parallel branches.

Keystrokes: You enter an equal to or less than comparison by following the
following steps.

1. Press -[G]-.

2. Enter <address>.

3. Enter <reference value>.

4. Press []

5. Press -[<]-.

6. Enter <address>.

7. Enter <reference value>.

8. Press [].

9. Press -[=]-.

10. Enter the same address as that entered for the Less Than instruction.

11. Enter <reference value>.

12. Press []

13. Press -()-.

14. Enter <address>.

Editing the Operation
See the editing for the Get, Les, Equ and Branching instructions.

Data Manipulation Instructions
Chapter 9

9�9

Greater Than

Purpose: A greater than comparison is also made with the Get/Les pair of
instructions. This time the Get instruction BCD value is the reference and the
Les instruction BCD value is the changing value. The Les value is compared
with to the Get value for a greater than condition. When the Les value is greater
than the Get value, the comparison is true and logic continuity is established.

120

03

030

YYY

010

02

G

010

000

<

Reference Value

When YYY > 100, GET/LES comparison is true and 010/02 is energized.

Keystrokes: You enter a greater than comparison by performing the
following steps.

1. Press -[G]-.

2. Enter <address>.

3. Enter <reference value>.

4. Press -[<]-.

5. Enter <address>.

6. Enter <reference value>.

Editing the Operation
See the editing for the Get and Less instructions

Equal To or Greater Than

Purpose: This comparison is made using the Get, Les, Equ and branching
instructions. The Get value is assigned a reference value. The Les and Equ
values are changing and are compared to the Get value. When the Les and Equ
values are greater than or equal to the Get value, the comparison is true and
logic continuity is established.

120

05

030

440

010

02

G

042

YYY

<

When YYY � 440, GET/LES�EQU comparison is true and 010/04 is energized.

042

YYY

=

Reference Value

Data Manipulation Instructions
Chapter 9

9�10

Keystrokes: You enter an Equal To or Greater Than comparison by performing
the following steps.

1. Press -[G]-.

2. Enter <address>.

3. Enter <reference value>.

4. Press [].

5. Press -[=]-.

6. Enter <address>.

7. Enter <reference value>.

8. Press [].

9. Press -[<]-.

10. Enter <address>.

11. Enter <reference value>.

12. Press [].

13. Press -()-.

14. Enter <address>.

Editing the Operation
See the editing Get, Les, Equ and branching instructions.

Get Byte

Purpose: The Get Byte instruction accesses 1 byte (instead of word) from one
address in the data table.

 The Get Byte instruction can be programmed with a limit test instruction
located in the condition area of the ladder diagram rung.

 Use with a Put instruction to transfer either the upper or lower byte to the
upper or lower byte of the Put instruction address.

 Do not place compare instructions between the Get Byte and
Limit Test instructions.

Data Manipulation Instructions
Chapter 9

9�11

Keystrokes: You enter a Get Byte instruction by performing the
following steps.

1. Press -[B]-.

2. Enter <address>.

3. Enter <byte designation>.

Editing the Operation
You edit the Get Byte comparison by performing the following steps.

1. Position the cursor over -[B]-.

2. Press -[B]-.

3. Enter <address>.

4. Enter <by designation>.

Get Byte/Put

Purpose: The Get Byte instruction can be programmed either at the beginning
of the rung or with one or more condition instructions preceding it. Condition
instructions, however, should not be programmed after a Get Byte instruction.
When one or more condition instructions precede the Get Byte instruction, they
determine whether the rung is true or false.

The Get Byte instruction addresses either the upper or lower byte of a data table
word. A 1 is entered after the word address for an upper byte; a 0 is entered for
the lower byte.

There are two ways to perform a Get Byte/Put instruction.

Case 1. One Get Byte

XXXD 040

ZZZ

B

YYY8

PUT

ZZZZ
16

only these three letters
are displayed

The Get Byte instruction is programmed in the condition area of the ladder
rung. It tells the processor to make a duplicate of all 8 bits in the addressed
byte. When the rung containing the Get Byte/Put instructions goes true, the
data is transferred to both the upper and lower byte of the word address of the
Put instruction.

Data Manipulation Instructions
Chapter 9

9�12

Case 2. Two Get Bytes

XXXD 040

BCC

B

WWW8

PUT

BBCCC
16

only these three letters
are displayed

XXXD

B

YYY8

XXX word address

WWW

YYY
octal values � upper or lower byte

D
0

1

� lower byte

� upper byte

Two Get Byte instructions are programmed in the condition area of the ladder
rung. It tells the processor to make a duplicate of all 8 bits in each addressed
byte. When the rung containing the Get Byte/Put instructions goes true, the
data from the first get byte is transferred into the upper byte of the addressed
Put instruction. Also, the data from the second get byte is transferred into the
lower byte of the addressed Put instruction.

Keystrokes: You enter a Get Byte/Put instruction by performing the
following steps.

1. Press -[B]-.

2. Enter <address>.

3. Enter <byte designation>.

Important: Repeat steps 1, 2 and 3 when using two Get Byte instructions.

4. Press -(PUT)-.

5. Enter <address>.

Data Manipulation Instructions
Chapter 9

9�13

Editing the Operation
You edit a Get Byte/Put instruction by performing the following steps.

6. Position the cursor over -[B]-.

7. Press -[B]-.

8. Enter <address>.

9. Enter <byte designation>.

Important: Repeat steps 2, 3 and 4 when using two Get Byte instructions.

10. Press -(PUT)-.

11. Enter <address>.

We showed you how to transfer and compare data. Also, we showed you how
to use these instructions to perform comparison operations. The next chapter
shows you how to perform operations involving three digit and expanded math.

Chapter Summary

Chapter

10

10�1

Math Instructions

This chapter describes two different types of math operations:

 three digit math
 expanded math

Table 10.A lists definitions of some mathematical terms.

Table 10.A
Common Arithmetic Terms

Terms A B C

Operands Operand A Operand B

Addition Augend + Addend Sum

Subtraction Minuend � Subtrahend Difference

Multiplication Multiplicand Multiplier Product

Division Dividend Divisor Quotient

Square Root Root Square Root

Your processor can perform four operations using three-digit math:

 addition
 subtraction
 multiplication
 division

These operations are not signed functions.

Chapter Objectives

Three�Digit Math

Math Instructions
Chapter 10

10�2

Addition, Subtraction, Multiplication and Division

Addition
Reports the sum of two values from the two Get instructions immediately
preceding the addition instruction. Programmed in the output position of the
ladder diagram rung. The sum is stored in the add instruction word address.

030

320

+

032

700

G

031

380

G

When the sum exceeds 999, the overflow bit (bit 14) in the add instruction word
is set. When the processor is operating in the run, program, or remote test
mode, the overflow condition appears on the industrial terminal screen as a “1”
preceding the sum.

Important: If an overflow value (four digits) is used for subsequent
comparisons or other arithmetic operations, inaccurate results could occur.

030

999

+

032

1998

G

031

999

G

Subtraction
Reports the difference between two get values immediately preceding the
subtraction instruction. The second get word value is subtracted from the first
get word value. Programmed in the output position of the ladder diagram rung.
The difference is stored in the subtract instruction word address.

070

134

-

072

095

G

071

039

G

When the difference is a negative number, the underflow bit (bit 16) in the
subtract instruction word is set. When your processor is in the run, program, or
remote test mode, the negative sign appears on the industrial terminal screen
preceding the difference.

070

100

-

072

034

G

071

134

G

Important: Use only positive values. If you use a negative BCD value for
subsequent operation, inaccurate results could occur.

Math Instructions
Chapter 10

10�3

Multiplication
Reports the product of two values stored in the Get instruction words
immediately preceding the multiply instruction. Programmed in the output
position of the ladder diagram. The product is stored in two multiplication
instruction words. The first word contains the most significant digit and the
second word contains the least significant digit. If the product is less than six
digits, leading zeros appear in the product.

130

123

X

052

503

G

131

061

G X

051

007

Important: Use consecutive word addresses for the two addresses of the
multiply instruction.

Division
Reports the quotient of two values stored in the two Get instructions
immediately preceding division instruction. Programmed in the output position
of the ladder diagram rung. The quotient is stored in two divide instruction
words. The first word contains the most significant word and the second word
contains the least significant digit.

140

050

067

G

141

025

G

066

002 000

� �

Important: Use consecutive word addresses for the two addresses of the divide
instruction. Quotient is expressed as a decimal, accurate to 3 decimal places.
Any remaining data is rounded. Division by zero (including 0 : 0) gives the
result of 999.999. This result differs from the PLC-2/20 and PLC -2/30
controllers where 0.0 = 1.000.

140

000

067

G

141

000

G

066

999

� �

999

Keystrokes: You enter a three-digit math operation by performing the
following keystrokes.

1. Start the rung. Press -[G]-.

2. Enter <address>.

3. Enter <data> if appropriate.

4. Press -[G]-.

5. Enter <address>.

Math Instructions
Chapter 10

10�4

6. Enter <data> if appropriate.

7. Close the rung by pressing the appropriate math instruction key
(Table 10.B).

Table 10.B
Three Digit Math Functions

Addition �(+)�

Subtraction �(�)�

Multiplication �(x)�

Division �(÷)�

8. Enter <address(es)>.

Editing a Completed Rung
You edit a three digit math operation to change an address or the instruction
type by performing the following steps.

1. See chapter 9 and follow the editing procedure for a Get instruction.

2. Position the cursor over the math function.

3. Press the appropriate instruction type key.

4. Enter <address(es)>.

The processor can perform four math operations involving two operands:

Addition A + B = C
Subtraction A - B = C
Multiplication A x B = C
Division A ÷ B = C

The processor can perform three additional operations that involve only one
operand, the equations are:

A = CSquare Root

Conversion
(BCD to Binary) E (BCD) = F (Binary)

Conversion
(Binary to BCD) F (Binary) = E (BCD)

You solve these equations with expanded math operations using the EAF
function of your processor. Figure 10.1 shows operand and result locations in a
ladder diagram rung.

Expanded Math

Math Instructions
Chapter 10

10�5

Figure 10.1
Primary Ladder Diagram for EAF Addition

050

000

G

051

000

G

052

000

G

053

000

G Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

01

040

060

Operand B Operand A

Result
(Term C)

Start

Data Address

The data address (operand A) is the starting address of four consecutive data
table words that contain the:

 augend
 minuend
 multiplicand
 dividend
 root
 conversion word

The data table can also contain a default value when performing square roots
and conversions. The default value directs the processor to get its data from
the rung.

The operand has a format like that shown in Figure 10.2. Enter the instructions
for operand A from the keyboard of the 1770-T3 industrial terminal or through
ladder diagram instructions. Once you select the data address(s), the EAF
automatically reserves the next three addresses (four total) for the
remaining words.

Math Instructions
Chapter 10

10�6

Figure 10.2
Data Address Format

X S X X M L K

X X X X J H G

X X X X F E D

X X X X C B A

M L K J H G F E D C B A

•

implied and not displayed.

Operand A is displayed in the 1770�T3 industrial terminal like this:

Operand A is stored in the data table like this:

Integer High Word

Integer Low Word

Decimal High Word

Decimal Low Word

17 16 15 14 10 7 4 3 0

S = Sign Bit
X = Additional Storage Bits

13

Important: Valid data addresses include the I/O image table and the data table
(except word 027). Specifically, valid addresses are from 010 to 026, from 030
to 077, and from 110 to the end of the data table. Data addresses and result
addresses must not reside in the input image table.

The most significant four bits of the integer high word of the data address
(Figure 10.2) are reserved for status bits.

 bit 17 - not used
 bit 16 - sign (+/-)
 bit 15 - not used
 bit 14 - not used

There is an implied decimal point between the integer low word and the decimal
high word. The decimal point is implied but not displayed (Figure 10.2).

Math Instructions
Chapter 10

10�7

Conditioning Instructions

The conditioning instructions (operand B) may require up to four data table
words (Figure 10.2). We use Get instructions to enter data for operand B that
can contain an:

 addend
 subtrahend
 multiplier
 divisor
 root
 conversion word

Operand B has the format xxx xxx.xxx xxx. Enter it from the keyboard of the
1770-T3 industrial terminal or through ladder diagram instructions. The
number you enter has a fixed decimal point. To include the range of numbers
between 999 999.999 999 to 000 000.000 000 requires 12 bits from each of the
four data words.

To enter the number MLK takes only one get or one data table word.

G XXX MLK . XXX XXX

+\ - MLK

To enter the number MLK JHG takes two gets or two data words.

G G MLK JHG . XXX XXX

+\ - MLK JHG

To enter the number MLK JHG.FED takes three gets or three data table words.

G G G MLK JHG . FED XXX

+\ - MLK JHG FED

To enter the number MLK JHG.FED CBA takes four gets or data table words.

G G G G MLK JHG . FED CBA

+\ - MLK JHG FED CBA

Access an expanded math function by pressing [SHIFT][EAF] or
[SHIFT][SCT]. The EAF instruction is an output instruction and must be
preceded by the gets of operand B. This operand may be preconditioned but
nothing can be programmed between the gets and the EAF instruction. Should
you program five gets, the last four gets are the only ones to be processed. The
four gets need not have consecutive addresses. They can have any address
except 000-007 and 100-107 in the processor work area.

Math Instructions
Chapter 10

10�8

Figure 10.3
Result Address Format

X S Z
o

M L K

X X X X J H G

X X X X F E D

X X X X C B A

M L K J H G F E D C B A

Operand A is displayed i the 1770�T3 industrial terminal like this:

N

N + 1

N + 2

N + 3

17 16 15 14 10 7 4 3 0

S = Sign Bit

X = Additional Storage Bits

13

u

o
u

= Overflow/Underflow
Z = Zero Indicator

Result Address

Result Address

The result address (term C) is the starting address of four consecutive data table
words that contain the:

 sum
 difference
 product
 quotient
 root
 converted word

The result word has the format shown in Figure 10.3. The format is similar to
the data address except that there are three status bits.

Once you select the result address, the EAF instruction automatically reserves
the next three addresses for the remaining words of the result (Figure 10.3). Be
careful not to select data and result addresses so close together that the
addresses of the operands following the data address overlap the result address.

 bit 17 - not used
 bit 16 - sign bit: 0 = positive (+), 1 = negative (-)
 bit 15 - zero indicator: 0 = non-zero; 1 = zero result

Math Instructions
Chapter 10

10�9

 bit 14 - overflow/underflow/illegal bit; significance depends on the
arithmetic operation being performed at the time

overflow (addition) - set indicates result exceeds displayable result

overflow (subtraction) - set indicates result exceeds displayable result

overflow or underflow (multiplication) - set indicates result exceeds
displayable result

illegal (division) - set indicates division by zero or result exceeds result
word range

In this section, unused status bits are shown blank for the following reasons:

 Whether the content of an unused status bit in an input word is 0 or 1 is
irrelevant as such bits are ignored in EAF instruction execution.

 The EAF instruction reset unused status bits in result words. For simplicity
the bits are left blank.

The processor can “chain” the results of the last executed EAF instruction with
the current EAF instruction. You can use the last result as either the augend,
minuend, multiplicand or dividend. Or, you can also use the last result as either
the addend, subtrahend, multiplier or divisor.

Branch Instructions

The least amount of instructions required to make the processor execute an EAF
instruction is shown in Figure 10.1. The instructions composing the three terms
A, B, and C are probably in different locations of your ladder diagram. Chances
are that you would never see them. You can monitor the values in these
instructions using the ladder diagram shown in Figure 10.4. The ladder diagram
serves two purposes. It contains both the least amount of instructions required
to execute an EAF instruction and display branches. Therefore, you have a
choice of using either one of two ladder diagrams to execute an EAF
instruction. These two ladder diagrams are named:

 primary
 optional

Math Instructions
Chapter 10

10�10

Figure 10.4
Optional Ladder Diagram for EAF Addition

060

000

G

061

000

G

062

000

G

063

000

G Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

01

040

060

Operand B

Operand A

Result

Start

050

000

G

051

000

G

052

000

G

053

000

G

040

000

G

041

000

G

042

000

G

043

000

G

In the optional ladder diagram (Figure 10.4), the first branch contains the result
(term C). The second branch contains the data address or operand A (term A).
The third branch contains operand B (term B).

Function Numbers

To program a specific operation, enter the appropriate function number
(Table 10.C). This entry identifies a specific EAF math operation.

Table 10.C
EAF Function Numbers

Function
Number

Mathematical
Operation

01
02
03
04
05
13
14

Add
Subtract
Multiply
Divide
Square Root
BCD to Binary
Binary to BCD

Error Handling

Two types of run-time errors can occur when you use EAF instructions. They
are illegal opcode and illegal address errors. An illegal opcode occurs if you
enter a function number other than 1, 2, 3, 4, 5, 13, or 14. An illegal address
error occurs if the operand pointed to by the data address or if the result pointed
by the result address is located in the processor’s work areas or in the
program areas.

Math Instructions
Chapter 10

10�11

Expanded Math Operations

Your processor executes the following expanded math operations and maintains
the proper sign of the result:

 addition
 subtraction
 multiplication
 division
 BCD to binary conversion
 Binary to BCD conversion
 square root (not a signed function)

Addition, Subtraction, Multiplication, and Division

Addition
Reports the sum (result address) of the augend (operand A, the data address)
and the addend (operand B, the conditioning gets). The addition function uses
up to 12 digits for each operand. When the sum exceeds 999 999.999 999, the
overflow bit (bit 14) in the result address word is set.

060

000

G

061

000

G

062

000

G

063

000

G Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

01

040

060

Start

050

000

G

051

000

G

052

000

G

053

000

G

040

000

G

041

000

G

042

000

G

043

000

G

Important: If an overflow value is used for subsequent comparisons or other
arithmetic operations, inaccurate results could occur.

Subtraction
Reports the difference (result address) between two operands, a minuend (data
address) and subtrahend (conditioning gets). The operands can use up to
12 digits.

060

000

G

061

000

G

062

000

G

063

000

G Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

02

040

060

Start

050

000

G

051

000

G

052

000

G

053

000

G

040

000

G

041

000

G

042

000

G

043

000

G

Math Instructions
Chapter 10

10�12

Multiplication
Reports the product (result address) of a multiplicand (data address) and a
multiplier (conditioning gets). Operands can only be six digits.

060

000

G

061

000

G

062

000

G

063

000

G Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

03

040

060

Start

050

000

G

051

000

G

052

000

G

053

000

G

040

000

G

041

000

G

042

000

G

043

000

G

Division
Reports the quotient (result address) of a dividend (data address) and a divisor
(conditioning instructions).

060

000

G

061

000

G

062

000

G

063

000

G Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

04

040

060

Start

050

000

G

051

000

G

052

000

G

053

000

G

040

000

G

041

000

G

042

000

G

043

000

G

Important: The quotient has at least six decimal digits. Any remaining data is
rounded. Division of a number by zero (including 0 : 0) gives the result of
999.999 and the illegal bit is set.

Primary Ladder Diagram
Keystrokes: You enter the instructions for a primary ladder diagram to execute
an addition, subtraction, multiplication, or division operation by performing the
following steps.

1. Open the rung. Press -[G]-.

2. Enter <address>.

3. Enter <data> if appropriate.

4. Press -[G]-.

5. Enter <address>.

6. Enter <data> if appropriate.

7. Press -[G]-.

8. Enter <address>.

Math Instructions
Chapter 10

10�13

9. Enter <data> if appropriate.

10. Press -[G]-.

11. Enter <address>.

12. Enter <data> if appropriate.

13. Close the rung. Press [SHIFT][EAF].

14. Enter the appropriate function number

15. Enter <data address>.

16. Enter <result address>.

Optional Ladder Diagram
Keystrokes: You enter the instructions for an alternate ladder diagram to
monitor an addition, subtraction, multiplication, or division operation by
performing the following groups of steps.

The first group of steps you perform enters the branch for term C.

1. Open the rung. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

8. Press -[G]-.

9. Enter <address>.

10. Enter <data> if appropriate.

11. Press -[G]-.

12. Enter <address>.

13. Enter <data> if appropriate.

The second group of steps you perform enters the branch for term A.

Math Instructions
Chapter 10

10�14

1. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

8. Press -[G]-.

9. Enter <address>.

10. Enter <data> if appropriate.

11. Press -[G]-.

12. Enter <address>.

13. Enter <data> if appropriate.

The third group of steps you perform enters the branch for term B.

1. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

8. Press -[G]-.

9. Enter <address>.

10. Enter <data> if appropriate.

11. Press -[G]-.

12. Enter <address>.

Math Instructions
Chapter 10

10�15

13. Enter <data> if appropriate.

14. Close the branches. Press the branch end key [].

15. Complete the rung. Press [SHIFT][EAF].

16. Enter the appropriate function number (Table 10.C).

17. Enter <data address>.

18. Enter <result address>.

Editing a Completed Rung
Operands A, B and Result: Follow the editing procedures for a Get instruction.

EAF Instruction: You can edit an EAF instruction to change an address or the
function by performing the following steps.

1. Press [SHIFT][EAF].

2. Enter the appropriate function number (Table 10.C).

3. Enter <data address>.

4. Enter <result address>.

Square Root
You must decide whether or not to enter a data address. If you choose to enter a
data address, the processor seeks its data at that address in the data table. If you
choose not to enter a data address and use the default number (010), the
processor seeks its data from the instructions in the rung.

The primary ladder diagram that enables the processor to execute an EAF
square root instruction is shown in Figure 10.5. You can monitor the values of
an expanded math square root operation using the optional ladder diagram
shown in Figure 10.6.

Figure 10.5
Primary Ladder Diagram for EAF Square Root

Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

05

010

060

Start
050

000

G

051

625

G

052

000

G

053

000

G

Math Instructions
Chapter 10

10�16

Figure 10.6
Optional Ladder Diagram for EAF Square Root

Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

05

010

060

Start
060

000

G

061

625

G

062

000

G

063

000

G

050

000

G

051

625

G

052

000

G

053

000

G

Only the six most significant digits are taken for a square root. The result is
displayed in the result address words.

Primary Ladder Diagram
Keystrokes: You enter the instructions for the primary ladder diagram to
execute a square root operation by performing the following steps.

1. Press -[G]-.

2. Enter <address>.

3. Enter <data> if appropriate.

4. Press -[G]-.

5. Enter <address>.

6. Enter <data> if appropriate.

7. Press -[G]-.

8. Enter <address>.

9. Enter <data> if appropriate.

10. Press -[G]-.

11. Enter <address>.

12. Enter <data> if appropriate.

13. Close the rung. Press [SHIFT][EAF].

14. Enter 05 (function number).

15. Enter 010 (data address).

16. Enter <result address>.

Optional Ladder Diagram
Keystrokes: You enter the instructions for an optional ladder diagram to

Math Instructions
Chapter 10

10�17

execute and monitor an square root operation by performing the
following steps.

The first group of steps you perform enters the branch for the result.

1. Open the rung. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

8. Press -[G]-.

9. Enter <address>.

10. Enter <data> if appropriate.

11. Press -[G]-.

12. Enter <address>.

13. Enter <data> if appropriate.

The second group of steps you perform enters the branch for the number taken
for a root.

1. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

8. Press -[G]-.

9. Enter <address>.

Math Instructions
Chapter 10

10�18

10. Enter <data> if appropriate.

11. Press -[G]-.

12. Enter <address>.

13. Enter <data> if appropriate.

14. Close the branches. Press the branch end key [].

15. Close the rung. Press [SHIFT][EAF].

16. Enter 05 (function number).

17. Enter 010 (data address).

18. Enter <result address>.

Editing a Completed Rung
Operand and Result: Follow the editing procedures for a Get instruction.

EAF Instruction: You can edit a square root operation to change an address by
performing the following steps.

1. Press [SHIFT][EAF].

2. Enter 05 (function number).

3. Enter 010 (data address).

4. Enter <result address>.

BCD to Binary
You must decide whether or not to enter a data address. If you choose to enter a
data address, the processor seeks the conversion number at that address in the
data table. If you choose not to enter a data address and use the default number
(010), the processor seeks its conversion number from the instructions in
the rung.

The ladder diagram that enables the processor to perform a BCD to Binary
conversion is shown in Figure 10.7. The default number is used as the
data address.

Math Instructions
Chapter 10

10�19

Figure 10.7
Optional ladder diagram for BCD to Binary Conversion

Executive Aux

Function

Function Number:

Data Addr:

Result Addr:

13

010

060

Start
060

2DE

G

050

000

G

051

734

G

If the operand is greater than (+) 32 767, the result 7FFFh is displayed. If the
operand is more negative than (-) 32 767, the result 8001 is displayed at the
result address. All negative values are stored as 2’s complement.

Keystrokes: You enter instructions to perform a BCD to Binary EAF
conversion by performing the following steps.

The first group of steps you perform enters the branch for the result (term F).

1. Open the rung. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

The second group of steps you perform enters the branch for the conversion
number (term E).

1. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

8. Close the branches. press the branch end key [].

9. Close the rung. Press [SHIFT][EAF].

Math Instructions
Chapter 10

10�20

10. Enter 13 (function number).

11. Enter 010 (default number).

12. Enter <result address>.

Editing a Completed Rung
Operand and Result: Follow the editing procedures for a Get instruction.

EAF Instruction: You can edit a conversion operation to change an address by
performing the following steps.

1. Press [SHIFT][EAF].

2. Enter 13 (function number).

3. Enter 010 (data address).

4. Enter <result address>.

Binary to BCD Conversion
You must decide whether or not to enter a data address. If you choose to enter a
data address, the processor seeks the binary number to be converted at that
address in the data table. If you choose not to enter a data address and use the
default number (010), the processor seeks its binary number to be converted at
that address in the data table.

The ladder diagram that enables the processor to execute a Binary to BCD
conversion is shown in Figure 10.8.

Figure 10.8
Optional Ladder Diagram for Binary to BCD Conversion

Executive Aux
Function

Function Number:
Data Addr:
Result Addr:

13
010
060

Start
060

000
G

050

2DE
G

061

734
G

Keystrokes: You enter the instructions for a Binary to BCD conversion by
performing the following steps.

The first group of steps you perform enters the branch for the result (term E).

1. Open the rung. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

Math Instructions
Chapter 10

10�21

4. Enter <data> if appropriate.

5. Press -[G]-.

6. Enter <address>.

7. Enter <data> if appropriate.

The second group of steps you perform enters the branch for the number to be
converted (term F).

1. Open the rung. Press the branch start key [].

2. Press -[G]-.

3. Enter <address>.

4. Enter <data> if appropriate.

5. Close the branches. press the branch end key [].

6. Close the rung. Press [SHIFT][EAF].

7. Enter 14 (function number).

8. Enter 010 (data address).

9. Enter <result address>.

Editing a Completed Rung
Operand and Result: Follow the editing procedures for a Get instruction.

EAF Instruction: You edit an EAF instruction to change an address by
performing the following steps.

1. Press [SHIFT][EAF].

2. Enter 14 (function number).

3. Enter 010 (data address).

4. Enter <result address>.

We showed you how to program different types of math functions. The next
chapter tells how to transfer data files.

Chapter Summary

Chapter

11

11-1

Data Transfer File Instructions

This chapter describes the data transfer file instructions:

 file to file move
 word to file move
 file to word move

A file is a group of consecutive data table words used to store information.
A file can be between 1 and 999 words in length. The address of word 1
defines the address of the file. When displayed, the words of a file are
designated consecutively by positions 001-999 according to the length of
the file.

The word address defines:

 the location in the data table to which or from which the data will
be moved.

 this word address can be manipulated by ladder diagram logic

There are two types of file instructions:

 those with an externally indexed counter (word-to-file move and
file-to-word move)

 those with an internally indexed counter (file-to-file move)

Figure 11.1 shows the difference in format between these two types of
file instructions.

Chapter Objectives

Types of File Instructions

Data Transfer File Instructions

Chapter 11

11-2

Figure 11.1
Types of Counter Indexing

DM

Word�to�File Move
Counter Addr:
Position:
FIle Length:
Word Addr:
File R:

001
007
110

500� 506

200
200

15

DM

File�to�Word Move
Counter Addr:
Position:
FIle Length:

Word Addr:
File A:

001
007

110
400� 406

200
200

15

EN

File�to�File Move
Counter Addr:
Position:
FIle Length:

File R:
File A:

001
007

500� 506
400� 406

200
200

17

Rate Per Scan 007
DM
200

15

externally indexed
file instructions

internally indexed
file instructions

Externally Indexed

An externally indexed counter must be controlled by other rungs of your
program. The counter address is used to identify the file instruction. The
counter address holds the accumulated value. The accumulated value of
the counter points to the file’s position value. The position value is the
accumulated value and it represents the specific word location within the
file. The preset value of the counter represents the length of the file.

Another characteristic of the externally indexed file instruction is that it
only has a done bit. This is bit 15. The done bit is automatically entered
from the counter address. It is set when the operation is complete and
remains set as long as the rung condition is true.

Internally Indexed

Internally indexed means that the counter is internally incremented by the
instruction itself. No outside control is required. You assign an address to
the counter.

In Figure 11.1 notice that a value for rate per scan is needed. The rate per
scan defines the number of words which are operated upon during one
scan. For example, suppose you have a file that contains twelve words. If
you assign the value of 004 for the rate per scan that means that the
instruction executes four words per scan at a time. Therefore, the entire
operation is completed in three consecutive scans.

Data Transfer File Instructions
Chapter 11

11-3

An internally indexed file instruction has a done bit and an enable bit. The
done bit is bit 15 and the enable bit is bit 17. These bits are automatically
entered from the counter address. The enable bit is set when the rung logic
goes from a false to true transition; the done bit is set when the file
instruction is completed.

There are three modes of operation based on the rate per scan. They are:

 complete
 distributed complete
 incremental

The following three sections describe each mode of operation.

Complete Mode

In the complete mode, the rate per scan is equal to the file length value and
the entire file is operated upon in one scan. For example, if there are 12
words in your file and your rate per scan value is 12 then all 12 words are
operated upon during one scan.

For each false-to-true transition of the rung condition, the instruction is
enabled, the accumulated value of the file counter is internally indexed
from the first to the last word of the file. As the accumulated value points
to each word, the operation defined by the file instruction is performed.
After the instruction has operated on the last word, the done bit (bit 15) is.
When the rung condition goes false, both the done and enable bits are reset
and the counter resets to position 001. If the rung was enabled for only
one scan, the done bit would come on during that scan and remain set for
one additional scan.

Distributed Complete Mode

In the distributed complete mode, the rate per scan is less than the file
length value and the entire file is operated over several program scans. For
example, if there are twelve words in your file and your rate per scan value
is three, then three words are operated upon during each scan. Therefore,
it takes four consecutive scans to execute the entire file
instruction operation.

Modes of Operation

Data Transfer File Instructions

Chapter 11

11-4

For each true rung condition, the instruction is enabled. The number of
words equal to the rate per scan is operated upon during one scan. The
process is repeated over a number of consecutive scans until the entire file
has been operated upon. Once the file instruction is enabled it remains
enabled for the number of scans necessary to complete the operation. The
rung could become repeatedly false and true during this time without
interrupting the operation of the instruction.

At the time of completion, if the rung is true, the enable bit (bit 17) and the
done bit (bit 15) are both set. If the rung is false, the enable bit is reset
after the last group of words is operated upon. At the same time, the done
bit is set and stays set for one scan. During the next scan the done bit is
reset, and the counter is reset to position 001.

Incremental Mode

In the incremental mode, the rate per scan is equal to 0. This means that
upon each false-to-true transition one word is operated upon per scan, then
the counter increments to the next position. When the rung is true the
enable bit (bit 17) is set. After the last word in the file has been operated
upon, the done bit (bit 15) is set. When the rung goes false, the done and
enable bits are reset (after the last word has been operated upon), and the
counter is reset to position 001. If the rung remains true for more than one
scan, the operation does not repeat. The operation only occurs in the scan
in which the false-to-true transition occurs.

To change from one mode to another, use Table 11.A to determine
the values.

Table 11.A
Changing Modes

To change Enter the Rate per Scan Value

Complete to Distributed Complete 001 thru 006

Distributed Complete to Incremental 000

Distributed Complete to Complete 007

Incremental to Complete 007

Data Transfer File Instructions
Chapter 11

11-5

Once you establish your file data, you’ll want to edit, load, or monitor your
file data. To do these functions the processor has a data monitor mode.
This mode lets you access your file in three ways; either by displaying
binary, hexadecimal, or ASCII values (Figure 11.2)

Figure 11.2
Data Monitor Display

BINARY DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

00010010
00000111
00001000
00000010
00011001
10010111
01010111

01010111
00100001
01111001
10000001
10000010
00010101
01100001

00010010
00000111
00001000
00000001
00011001
10010111
01010111

01010111
00100001
01111001
01100010
10000010
00010101
01100001

Data: 0010010 01010111

Header

File
Section

Command
Buffer

HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data: 1257

Header

File
Section

Command
Buffer

1257
0721
0879
0281
1982
9715
5761

1257
0721
0879
0162
1982
9715
5761

ASCII DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data: 1257

Header

File
Section

Command
Buffer

DC2
BEL
BS
STX
EM
97
W

W
!
<Y
81
82
NAK
<A

DC2
BEL
BS
SDH
EM
97
W

W
!
<Y
<B
82
NAK
<A

Data Monitor Display

Data Transfer File Instructions

Chapter 11

11-6

The binary data monitor display lets you manipulate one word at a time by
displaying each bit using binary digits. The hexadecimal monitor display
lets you manipulate 4 digits which represents word values. The ASCII
monitor display converts 4 digits to the ASCII code. The industrial
terminal can automatically convert data from one number system to the
other when the alternate display is selected. You can print this display
directly from the CRT to a data terminal by following these steps:

Table 11.B
Monitor Functions

Function Key Sequence Mode Description

Display [DISPLAY][0] Any Displays binary data monitor.

Print [DISPLAY][0]
[RECORD]

Any Prints first 20 lines of binary data monitor.

Display [DISPLAY][1] Any Displays hexadecimal data monitor.

Print [DISPLAY][1]
[RECORD]

Any Prints first 20 lines of hexadecimal data monitor.

Display [DISPLAY][2] Any Displays ASCII data monitor.

Print [DISPLAY][2]
[RECORD]

Any Prints first 20 lines of ASCII data monitor.

Three sections divide the data monitor display. They are identified as
(Figure 11.2):

 Header: located at the top of the screen and contains information
pertaining to its corresponding file instruction. For example: counter,
file, word addresses, and file length.

 File Section: located in the center of the screen and displays the data
stored in a file. The column labeled POSITION refers to each word’s
position in the file. FILE A DATA represents the original file, and
FILE R DATA represents the new file.

 Command Buffer: located at the bottom center of the screen and is used
to enter or change file data. It is always displayed in the program mode.

Data Transfer File Instructions
Chapter 11

11-7

Use the following illustration as you read about each file instruction.

Key Sequence 1770-T3 Display Instruction Notes

EN
File�To�File Move

Counter Addr:
Position:
File Length:

030
001
001

DN
File A:
File R:
Rate Per Scan:

110-110
110-110

001

030

17

030

15

Word�To�File Move
Counter Addr:
Position:
File Length:

030
001
001

DN

File R:
Word Address:

110-110
010

030

15

File�To�Word Move
Counter Addr:
Position:
File Length:

030
001
001

DN

File A: 110-110

030

15

Word Address: 010

FILE
10

FILE

FILE

11

12

Output instruction.

Modes: Complete, distributed, and incremental.

Counter is internally incremented by the instruction.

Requires 5 words of user program.

Output instruction.

Counter must be externally indexed by user program.

Data is transferred every scan that rung is true.

Requires 4 words of user program.

Same as word-to-file.

IMPORTANT: Numbers shown are default values. Numbers in shaded areas must be replaced by user�entered values. The number of 0 default
address digits initially displayed (3 or 4) will depend on the size of the data table.

Here is an explanation of each value:

This Value: Stores the:

Counter Address Address of the instruction's file position in the accumulated value
area of the data table

Position Current word being operated upon (accumulated value of the
counter)

File Length Number of words in the file (preset value of the counter)

File A Starting address of the source file

File R Starting address of the destination file

Word Address Address of the source word or destination word outside of the file

Rate Per Scan Number of data words moved per scan

[SEARCH]

50

Data Transfer File Instructions

Chapter 11

11-8

Before You Begin

Put the processor in the program mode.

You may have to expand your data table to provide additional space for
files. To do this:

There is no change in the screen display.

DATA TABLE CONFIGURATION
NUMBER OF 128-WORD D.T. BLOCKS 01
NUMBER OF INPUT/OUTPUT RACKS 2
NUMBER OF T/C (If applicable) 40
DATA TABLE SIZE 128

The following chart will help you adjust the data table size of
your processor.

Enter Data Table Size

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

128
256
384
512
640
768
896
1024
1152
1280
1408
1536
1664
1792
1920
2048
2176
2304
2432
2560
2688
2816
2944

After you adjust the data table, press [CANCEL COMMAND]
and continue.

Important: Other industrial terminal commands are summarized in
appendix C.

Data Transfer File Instructions
Chapter 11

11-9

Purpose: Duplicates and transfers the source file to the destination file
address you identified. The source file remains intact.

Programmed as an output instruction; requires five words of the user
program area. The counter is incremented internally by the instruction.

ATTENTION: The counter address for the file-to-file move
instruction should be reserved for that instruction. Do not
manipulate the counter accumulated or preset word. Changes to
these values could result in unpredictable machine operation or
a run-time error. Damage to equipment and/or injury to
personnel could occur.

When the rung becomes:

True - The data is transferred from the source file to your designated file at
the specified rate per scan.

False - no action is taken.

Keystrokes: You enter a file to file move by performing the
following steps.

[FILE]

10

The screen does not change.

EN
File�To�File Move

Counter Addr:
Position:
File Length:

30
001
001

DN
File A:
File R:
Rate Per Scan:

110-110
110-110

001

030

17

030

15

0

Parameters: Notice that the cursor is now on the first digit of the counter
address. Also, the display shows all default values.

File to File Move

Data Transfer File Instructions

Chapter 11

11-10

Insert the following values. The cursor moves automatically through the
file instruction. The values are:

COUNTER ADDR - 200
POSITION - 001
FILE LENGTH - 007
FILE A - 400
FILE R - 500
RATE PER SCAN - 007

200
EN

File�To�File Move
Counter Addr:
Position:
File Length:

200
001
001

DN
File A:
File R:
Rate Per Scan:

110-110
110-110

001

030

17

030

15

Now the cursor is on the first digit of the file length.

007
EN

File�To�File Move
Counter Addr:
Position:
File Length:

200
001
007

DN
File A:
File R:
Rate Per Scan:

116
110-110

007

030

17

030

15

110-

The cursor moved to the first digit of file A.

400
EN

File�To�File Move
Counter Addr:
Position:
File Length:

200
001
007

DN
File A:
File R:
Rate Per Scan:

400� 406
116
007

030

17

030

15
10�1

Data Transfer File Instructions
Chapter 11

11-11

The cursor moved to the first digit of file R.

500
EN

File�To�File Move
Counter Addr:
Position:
File Length:

200
001
007

DN
File A:
File R:
Rate Per Scan:

400� 406
500� 506

030

17

030

15070

Finally, the cursor is on the first digit of the rate per scan.

007
EN

File�To�File Move
Counter Addr:
Position:
File Length:

200
001
007

DN
File A:
File R:
Rate Per Scan:

400� 406
500� 506

030

17

030

15007

You can now proceed to add data to your file. Position your cursor on the
words file to file move. Use the arrow keys to move your cursor.

EN
File�To�File Move

Counter Addr:
Position:
File Length:

200
001
007

DN
File A:
File R:
Rate Per Scan:

400� 406
500� 506

030

17

030

15007

Data Transfer File Instructions

Chapter 11

11-12

This example uses the hexadecimal data monitor display.

[DISPLAY]

1

The screen does not change

HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data: 0000

0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

Important: :If you want to enter binary information, press [DISPLAY][0].
If you want to enter ASCII information, press [DISPLAY] 2.

Now, enter data in position 001 to file A.

1257 HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data:

0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

1257

Important: If you make a mistake, you can correct it by moving the cursor
left or right to the incorrect number and then pressing the correct
number key.

Data Transfer File Instructions
Chapter 11

11-13

1257 HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data:

0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

1257

1257

This information (1257) now appears in position 001 of file A. The
command buffer at the bottom of the screen now displays 1257.

Cursor down one line and add data to position 002.

0721 HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data:

0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

0721

0000

[INSERT] HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 001Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data:

0721
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000

0721

1257

Data Transfer File Instructions

Chapter 11

11-14

Load each position of file A with the following data:

POSITION 003 0879
POSITION 004 0162
POSITION 005 1982
POSITION 006 9715
POSITION 007 5761

Important: You do not have to enter data in each position. You can skip
position numbers.

[CANCEL COMMAND]

HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 007Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

1257

The file to file move rung is displayed.

The screen does not change.

Puts the processor in the run/program mode.

The screen does not change.

[SEARCH]

590

[DISPLAY]

1

0721
0879
0162
1982
9715
5761

1257
0721
0879
0162
1982
9715
5761

Notice that the data in file A transferred to file R.

Do not clear your processor memory. The next example edits this rung.

Editing in a Completed Rung
In this section, you will edit your file’s data in the hexadecimal data
monitor display.

The screen does not change.[SEARCH]

Puts the processor in the remote program mode.592

Data Transfer File Instructions
Chapter 11

11-15

HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 007Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

1257

The screen does not change.[DISPLAY]
1

0721
0879
0162
1982
9715
5761

1257
0721
0879
0162
1982
9715
5761

DATA: 1257

Notice the command buffer at the bottom of the screen. It is labeled
DATA:1257. This is also the same number in FILE A at POSITION 001.

Cursor down to POSITION 004.

Change the data in the command buffer from 0162 to 0281.

0281 HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 007Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data: 0281

[INSERT] HEXADECIMAL DATA MONITOR
FILE TO FILE MOVE

POSITION: 007Counter Addr: 200
File A: 400� 406

File Length: 007
File R: 500� 506

POSITION FILE A DATA FILE R DATA
001
002
003
004
005
006
007

Data: 0281

1257
0721
0879
0162
1982
9715
5761

1257
0721
0879
0162
1982
9715
5761

1257
0721
0879
0281
1982
9715
5761

1257
0721
0879
0162
1982
9715
5761

Data Transfer File Instructions

Chapter 11

11-16

Notice that file R’s POSITION has not changed.

Now practice by changing POSITION 006 of file A to 7777.

Important: If you want to change the data in FILE R, you follow the same
procedure. To move your cursor to file R press the [SHIFT}, [→→].

Purpose: Duplicates and transfers the data of a word from the data table to
a specified word within a file.

Programmed as an output instruction; requires four words of the user
program area. Your program must externally index the counter.

When the rung goes:

True - Data from a designated word address in the data table is transferred
to the selected position in the source file.

False - No action is taken.

Keystrokes: You enter a word to file move by performing the
following steps.

[FILE]

11

The screen does not change.

Word�To�File Move
Counter Addr:
Position:
File Length:

30
001
001

DN

Word Addr:
File R:

010
110-110

030

15
0

Parameters: The procedure for entering the parameters for a word to file
move is the same as the procedure for a file to file move.

Purpose: Duplicates and transfers the data of a word within your source
file to a specified word elsewhere in the data table.

Programmed as an output instruction; requires four words of the user
program area. Your program must externally index the counter.

Word to File Move

File to Word Move

Data Transfer File Instructions
Chapter 11

11-17

When the rung becomes:

True - The data of a word is transferred from your file to your designated
word address.

False - No action is taken.

ATTENTION: The counter address for the word-to-file move
and file-to-word move instructions should be used only for the
intended instruction and the corresponding instructions which
manipulate the accumulated value. Do not inadvertently
manipulate the preset or accumulated word. Changes to these
values could result in unpredictable machine operation or a run
time error. Damage to equipment and/or injury to personnel
could occur.

Keystrokes: You enter a file to word move by performing the
following steps.

[FILE]

12

The screen does not change.

File�To�Word Move
Counter Addr:
Position:
File Length:

30
001
001

DN

File A:
Word Addr: 010

110-110

030

15
0

Start

Parameters: The procedure for entering parameters for a file to word move
is the same as the procedure for a file to file move.

In this chapter, we have showed you three data transfer file instructions.
Also, we showed you how to use the data monitor display. The next
chapter shows you three types of sequencer instructions.

Chapter Summary

Chapter

12

12-1

Sequencers

This describes the three types of sequence instructions:

 sequencer input
 sequencer output
 sequencer load

These instructions either transfer information from the data table to output
word addresses, compare I/O word information with information stored in
tables, or transfer I/O word information into the data table.

Sequencer instructions can transfer information from the data table to
output word addresses for the control of sequential machine operation
(sequencer output); compare I/O word information stored in tables so that
machine operation conditions can be examined for control and diagnostic
purposes (sequencer input); and transfer I/O word information into the
sequencer file (sequencer load).

File instructions operate on files that are one word or 16 bits wide. In
contrast, sequencer instructions operate on files that are up to four words or
64 bits wide. A sequencer file can be represented graphically by a
sequencer table. The length or number of steps (rows) in a sequencer table
can be up to 999. The width of a sequencer table can be up to four words
(columns) as shown in Figure 12.1.

Figure 12.1
Sequencer Table

Step Word 1 Word 2 Word 3 Word 4

001
002
003

"
"
"
"
"
"

024

00110101 11000101 00011101 11001010 10111011 11001011 01011101 01011111
01110100 00011101 00010111 00110011 01010101 01010101

00010101 10100000 10100010 10101000 01010000 01011111 10111100 00110011

 "
 "
 "
 "
 "
 "

 "
 "
 "
 "
 "
 "

 "
 "
 "
 "
 "
 "

 "
 "
 "
 "
 "
 "

" " " "
"

Chapter Objectives

Comparison with File
Instructions

Sequencers

Chapter 12

12-2

Important: The data table is one word wide by many long. A sequencer
table appears in the data table as one continuous file. The length of the file
in the data table equals the product of the number of steps and the length as
shown in Figure 12.2. As an example, a 24 step x 4 word wide sequencer
table occupies 96 consecutive words in the data table.

Figure 12.2
Sequencer Table Format in the Data Table

Data Table

00 11 01 01 11 00 01 01
01 11 01 00 00 01 11 01

00 01 01 01 10 10 00 00

00 01 11 01
00 01 01 11

10 10 00 10

10 11 10 11

01 01 00 00

01 01 11 01
01 01 01 01

10 11 11 00

11 00 10 10
00 11 00 11

10 10 10 00

11 00 10 11

01 01 11 11

01 01 11 11
01 01 01 01

00 11 00 11

Data Table

Step 001
002

024

Step 001
002

024

Step 001
002

024

Step 001
002

024

Word #1

Word #2

Word #3

Word #4

The 4 words per
step (columns) of
the sequencer table
are located
sequentially in
the data table.

10152�I

Internally indexed file instructions perform the operation and then
increment to the next step. In contrast, internally indexed sequencer
instructions increment to the next step and then the operation is performed.

A special programming technique called a “mask” is used with the
sequencer instructions. A mask is a means of controlling what bits are
controlled/compared by the sequencer instruction. By masking bits, you
ensure that the sequencer instruction does not affect them. The masked
bits may then be used for other program purposes.

Mask

Sequencers
Chapter 12

12-3

A 0 in a mask bit location prevents the instruction from controlling or
comparing the data in the corresponding bit location. A 1 in a mask bit
location allows the corresponding bit to be controlled or compared. When
all the output/input bits are controlled or compared by the instruction, use a
mask of all 1’s.

Other instructions can change a mask in the user program. If a changing
mask is required for different steps in the sequencer operation use a get/put
or a file move.

ATTENTION : When choosing a mask word address, be sure
that the next 1, 2, or 3 consecutive word addresses are not
already assigned. Other data written into a mask could cause
unpredictable machine operation. This could cause damage to
your equipment and/or injury to your personnel.

Sequencer instructions can be powerful tools when programming your
operations. Two steps in the same instruction can not be operated
simultaneously.

ATTENTION: When programming a sequencer input with a
sequencer output instruction, the counter address for both
instructions must be the same. Failure to use the same counter
address for both sequencers, can result in input and output steps
becoming unsynchronized which may result in unwanted
machine motion and/or injury to personnel.

Use Figure 12.3 while you read about each sequencer instruction.

Programming Limitations

Sequencer Instructions

Sequencers

Chapter 12

12-4

Figure 12.3
Sequencer Instructions

Key Sequence 1770-T3 Display Instruction Notes

EN
Sequencer Output

Counter Addr:
Current Step:
Seq Length:

030
001
001

DN

Words Per Step:
File:
Mask:

1
110-110
010-010

030

17

030

15

SEQ 0

Output Words

SEQ 1

SEQ 2

Output instruction.

Increments, then transfers data.

Same data transferred each scan that the rung is true.

Counter is indexed by the instruction.

Input instruction.

Compares input data with current steps for equality.

Counter must be externally indexed by your program.

Requires 5-8 words of your program.

Outupt instruction

1: 010 2:
3: 4:

Unused output bits can be masked.

Requires 5-9 words of your program.

030
000
001

1
110-110
010-010

1: 010 2:
3: 4:

EN030
001
001

DN1
110-110

030

17

030

15

1: 010 2:
3: 4:

Increments, then loads data.

Counter is indexed by the instruction.

Does not mask.

Requires 4-7 words of your program.

NOTE: Numbers shown are default values. Numbers in shaded areas must be replaced by your entered values. The number of
default address digits initially displayed (3 or 4) will depend on the size of the data table.

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Sequencer Load
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:

Input Words

Output Words

Here is an explanation of each value:

This Value: Stores the:

Counter Address Address of the instruction in the accumulated value area of
the data table

Position Position in the sequencer table (accumulated value of counter)

Seq Length Number of steps (preset value of the counter)

Words per Step Width of the sequencer table

File Starting address of the source file

Mask Starting address of the mask file

Word Address Address of the source word or destination word outside of the file

Output Words Words controlled by the instruction

Load Words Words fetched by the instruction

Input Words Words monitored by the instruction

Sequencers
Chapter 12

12-5

Sequencer Input

Purpose: Compares input data to stored data for equality.

Programmed as an input instruction. The counter is externally controlled
by the ladder diagram logic in your program. This instruction requires 5-8
words of the program. May be programmed with a sequencer output
instruction. You can compare up to 64 bits. You can mask the unused
input bits.

If the rung becomes:

True - The instruction increments to the next step and compares the input
word to current step for equality.

False - No action is taken.

ATTENTION: The counter address of the sequencer input
instruction should be used only for the intended instruction and
the corresponding instructions which manipulate the preset or
accumulated value. Do not inadvertently manipulate the preset
or accumulated word. Changes to these values could result in
unpredictable machine operation or a run-time error. Damage to
equipment and/or injury to personnel could occur.

Keystrokes: Start by expanding your data table if required. Expand it to a
size large enough to store your program. See appendix C for data table
size values.

[SEARCH] The screen does not change.

The DATA TABLE CONFIGURATION appears. The cursor is on the first digit
of NUMBER OF 128 WORD D.T. BLOCKS.

50

Sequencers

Chapter 12

12-6

To be able to use the sequencer input, output, and load examples:

The cursor moves the digit 4 and DATA TABLE SIZE changed to 512.04

This gives you a 512 word data table.

After you adjust the data table press [CANCEL COMMAND]. You are
now ready to insert this program.

EN
Sequencer Output

Counter Addr:
Current Step:
Seq Length:

200
001
006

DN

Words Per Step:
File:
Mask:

2
600� 613
075� 076

200

17

200

15

Output Words
1: 012
3: 4:

200
001
006

2
400� 413
070� 071

1: 110
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2. 201 2. 013

030
000
001

1
110� 110
010� 010

1: 010
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2.

The word SEQUENCER appears in the lower left hand corner1
of the screen.

Notice that the words SEQUENCER INPUT are flashing, the cursor is on
the first digit of counter address, and the default values are shown.

Sequencers
Chapter 12

12-7

Insert the following values. The cursor moves automatically throughout
the sequencer instruction. The values are:

COUNTER ADDR: 200
CURRENT STEP: 001
SEQ LENGTH:006
WORDS PER STEP: 2
FILE: 400
MASK: 070
INPUT WORDS:
1:110 2: 201

The completed instruction should look like this:

200
001
006

2
400� 413
070� 071

1: 110
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2. 201

For this example, enter data using the binary data monitor mode. Get your
data from the worksheet (Figure 12.4). A filled in block means that a 1
should be inserted in the corresponding bit position.

EN
Sequencer Output

Counter Addr:
Current Step:
Seq Length:

030
000
001

DN

Words Per Step:
File:
Mask:

2
110- 110
010� 010

030

17

030

15

Output Words
1: 010
3: 4:

200
001
006

2
400� 413
070� 071

1: 110
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2. 201 2.

Sequencers

Chapter 12

12-8

Figure 12.4
Completed Sequencer Input Worksheet

Bottle Filling Applications

17 10 07 00

WORD #1

PROJECT NAME

DESIGNER

PROCESSOR

DATA TABLE ADDR

PAGE OF

TO

Mini–PLC–2/05

A
u

to

L
S

2

L
S

1

P
C

MASK
STEP

FROM ADDR

TO ADDR

D
E
V
I
C
E

N
A
M
E

1
2
3
4
5
6

17 10 07 00

WORD #2
17 10 07 00

WORD #3
17 10 07 00

WORD #4

T
im

e
r

Note: A filled�in box means that each device is actuated

Engineer

1 2

COUNTER ADDR:

WORD ADDR:

MASK ADDR:

FILE TO SEQ LENGTH:

SEQUENCER Input

200

110

070

400

Timer 200

071

413 006

ALLEN�BRADLEY
Programmable Controller
Data Table MAP (128�word)

10145�I

Sequencers
Chapter 12

12-9

Position the cursor on the words SEQUENCER INPUT. Use the arrow
keys to move the cursor.

[DISPLAY] The display appears in the lower left hand corner of the screen.

0
BINARY DATA MONITOR

SEQUENCER INPUT
STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 400� 413

INPUT ADDR: 110 201
DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00000000

The cursor is located on the first digit of DATA in the Command Buffer.
The digits in step 1 for word 1 are intensified.

Sequencers

Chapter 12

12-10

00000010 00000000

[INSERT]

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 400� 413

INPUT ADDR: 110 201
DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000010 00000000

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 400� 413

INPUT ADDR: 110 201
DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000010
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000010 00000000

Data is inserted into Step 001 of Word 1.

Cursor down one line. The cursor is on the first digit of DATA in the
command buffer. The digits in step 2 for word 1 are intensified.

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 400� 413

INPUT ADDR: 110 201
DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000010
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 000000

Sequencers
Chapter 12

12-11

00000010 00000000

[INSERT]

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 400� 413

INPUT ADDR: 110 201
DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000010
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000010 00000001

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 400� 413

INPUT ADDR: 110 201
DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000010
00000010
00000000
00000000
00000000
00000000

00000000
00000001
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000010 00000001

Cursor down one line. The cursor is on the first digit of DATA in the
command buffer. The digits in step 3 for word 1 are intensified.

Continue adding your data.

003: 00000010 00010001
004: 00000010 00010001
005: 00000010 01000001
006: 00000010 00000000

To add data to WORD 2 press [SHIFT][→|] and cursor up [↑] or down [

↑

]

as desired.

Do not press [CANCEL COMMAND]. The next example uses this data to
add a mask.

Sequencers

Chapter 12

12-12

[DISPLAY] The screen does not change.

000
BINARY DATA MONITOR

SEQUENCER INPUT
STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 400� 413

INPUT ADDR: 110 201
DATA:

MASK ADDR: 070 701
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000010
00000010
00000010
00000010
00000010
00000010

00000000
00000001
00010001
00010001
01000001
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00000000

00000000 0000000000000000 00000000

The cursor is on the first digit of DATA in the command buffer. INPUT
ADDR 110, DATA is intensified. You can enter additional data.

Cursor down one line. MASK ADDR 070, DATA is intensified.

11111111 00000000 The screen does not change.

[INSERT]
BINARY DATA MONITOR

SEQUENCER INPUT
STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 400� 413

INPUT ADDR: 110 201

DATA:
MASK ADDR: 070 701

DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA:

00000000 0000000011111111 00000000

11111111 00000000

[CANCEL COMMAND] To display your rung.

00000010
00000010
00000010
00000010
00000010
00000010

00000000
00000001
00010001
00010001
01000001
00000000

Sequencers
Chapter 12

12-13

Sequencer Output

Purpose: Transfers the values of the current sequencer step to a specified
output word.

Programmed as an output instruction. The counter is externally controlled
by the ladder diagram logic in your program. The instruction requires 5-8
words of your program. May be programmed with a sequencer input
instruction. You can transfer up to 64 bits. You can mask the unused
output bits.

True - The counter increments to the next step and transfers the data.

False - No action is taken.

ATTENTION: The counter address for the sequencer output
instruction should be reserved for that instruction. Do not
preset values. inadvertent changes to the values could result in
hazardous machine operation or a RUN TIME ERROR.
Damage to equipment and/or personal injury could result.

Keystrokes: You enter the sequencer output instruction by performing the
following steps.

[SEQ] The word SEQUENCER appears in the lower left hand corner
of the screen.

EN
Sequencer Output

Counter Addr:
Current Step:
Seq Length:

0
000
001

DN

Words Per Step:
File:
Mask:

2
110- 110
010� 010

030

17

030

15

Output Words
1: 010
3: 4:

200
001
006

2
400� 413
070� 071

1: 110
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2. 201 2.

03
0

Notice that the words SEQUENCER OUTPUT are flashing, the cursor is
on the first digit of the counter address, and the default values are shown.

Sequencers

Chapter 12

12-14

Insert the following values. The cursor moves automatically throughout
the instruction. The values are:

COUNTER ADDR: 200
CURRENT STEP: 001
SEQ LENGTH:006
WORDS PER STEP: 1
FILE: 600
MASK: 075
OUTPUT WORDS:
1:012 2: 013

The sequencer output instruction should look like this:

EN
Sequencer Output

Counter Addr:
Current Step:
Seq Length:

200
001
006

DN

Words Per Step:
File:
Mask:

2
600� 613
075� 076

200

17

200

15

Output Words
1: 012
3: 4:

200
001
006

2
400� 413
070� 071

1: 110
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2. 201 2. 013

For this example, enter data using the binary data monitor mode. Get your
data from the worksheet (Figure 12.5). A filled block means that a 1
should be inserted in the corresponding bit location.

Sequencers
Chapter 12

12-15

Figure 12.5
Completed Sequencer Output Worksheet

Bottle Filling Applications

ALLEN�BRADLEY
Programmable Controller
Data Table MAP (128�word)

17 10 07 00

WORD #1

PROJECT NAME

DESIGNER

PROCESSOR

DATA TABLE ADDR

PAGE OF

TO

Mini–PLC–2/05

F
T

S

F
T

F

S
O

L

F
T

R

MASK
STEP

FROM ADDR

TO ADDR

D
E
V
I
C
E

N
A
M
E

1
2
3
4
5
6

17 10 07 00

WORD #2
17 10 07 00

WORD #3
17 10 07 00

WORD #4

T
im

e
r

Note: A filled�in box means that each device is actuated

Engineer

2 2

COUNTER ADDR:

WORD ADDR:

MASK ADDR:

FILE TO SEQ LENGTH:

SEQUENCER OUTPUT

200

012

075

600

013

076

613 006

F
T

M

C
M

T

C
M

10148�I

Sequencers

Chapter 12

12-16

Position the cursor on the words SEQUENCER OUTPUT. Use the arrow
keys to move the cursor.

[DISPLAY] The word display appears in the lower left hand corner of the screen.

0
BINARY DATA MONITOR

SEQUENCER INPUT
STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 600� 613

DATA: 00000000 00000000 00000000 00000000

MASK ADDR: 075 076
DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00000000

OUTPUT ADDR: 012 013

00000010 00000000

[INSERT]

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001
COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 600� 613

DATA: 00000000 00000000 00000000 00000000

DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00001010

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 600� 613

DATA: 00000000 00000000 00000000 00000000

DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00001010
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00001010

MASK ADDR: 075 076

OUTPUT ADDR: 012 013

MASK ADDR: 075 076

OUTPUT ADDR: 012 013

Sequencers
Chapter 12

12-17

The cursor is on the first digit of DATA in the command buffer. The digits
in step 1 for word 1 are intensified.

Data is inserted into Step 1 of Word 1.

Cursor down one line. The cursor is on the first digit of DATA in the
command buffer. The digits in step 2 for word 1 are intensified.

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 600� 613

DATA: 00000000 00000000 00000000 00000000

DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00001010
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 000000

MASK ADDR: 075 076

OUTPUT ADDR: 012 013

00000010 00001010

[INSERT]

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001
COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 600� 613

DATA: 00000000 00000000 00000000 00000000

DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00001010
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00001010

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006
FILE: 600� 613

DATA: 00000000 00000000 00000000 00000000

DATA: 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00001010
00001010
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00001010

MASK ADDR: 075 076

OUTPUT ADDR: 012 013

MASK ADDR: 075 076

OUTPUT ADDR: 012 013

Sequencers

Chapter 12

12-18

Cursor down one line. The cursor is on the first digit of DATA in the
command buffer. the digits in step 3 for word 1 are intensified.

Continue adding data:

003: 00000010 00010001
004: 00000010 00010001
005: 00000010 01000001
006: 00000010 00000000

To add data to WORD 2 press [SHIFT][→] and cursor up [↑] or down [↓]
as desired.

Do not press [CANCEL COMMAND]. The next example uses this data to
enter a mask.

[DISPLAY] The screen does not change.

000
BINARY DATA MONITOR

SEQUENCER INPUT
STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 600� 613

DATA:

MASK ADDR: 075 076
DATA: 00000000 00000000

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA: 00000000 00000000

OUTPUT ADDR: 012 013
00000000 00000000 00000000 00000000

00000000 00000000

The cursor is on the first digit of DATA in the command buffer. OUTPUT
ADDR 012, DATA is intensified. You can add additional data.

Cursor down one line. MASK ADDR 075, DATA is intensified.

Sequencers
Chapter 12

12-19

00101010 10101010 The screen does not change.

[INSERT]
BINARY DATA MONITOR

SEQUENCER INPUT
STEP: 001COUNTER ADDR: 200 SEQUENCER LENGTH: 006

FILE: 600� 613

DATA:

MASK ADDR: 075 076
DATA:

STEP WORD 1 WORD 2
001
002
003
004
005
006

00000000
00000000
00000010
00000010
00000010
00000010

00001010
00001010
00010001
00010001
01000001
00000000

00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000

DATA:

OUTPUT ADDR: 012 013
00000000 00000000 00000000 00000000

00101010 10101010 00000000 00000000

00101010 10101010

[CANCEL COMMAND] To display your rung.

Sequencer Load

Purpose: Places data into sequencer file that your established in the data
table for this instruction.

Programmed as an output instruction. You can not mask any unused bits.
The counter is internally controlled by the ladder diagram logic in
your program. This instruction requires 4-7 words of the user
program area.

A false-to-true rung transition enables the instruction.

When the rung becomes:

True - The instruction increments to the next step and loads the data.

False - No action is taken.

Use this instruction for:

 Machine diagnostics - If the actual sequence of an operation becomes
mismatched with the desired sequence of operation as contained in the
sequencer input instruction, a fault signal can be enabled by the
user program.

 Teach sequential operation - The I/O conditions representing the desired
operation can be loaded into the sequencer input tables as the machine is
manually stepped through the control cycle.

Sequencers

Chapter 12

12-20

ATTENTION: The counter address of the sequencer load
instruction should be reserved for that instruction. Do not
manipulate the counter accumulated or preset word. Changes to
these values could result in unpredictable machine operation or
a run-time error. Damage to equipment and/or injury to
personnel could occur.

Keystrokes: You enter the sequencer output instruction by performing the
following steps.

EN
Sequencer Load

Counter Addr:
Current Step:
Seq Length:

030
000
001

DN

Words Per Step:
File:

1
110- 110

030

17

030

15Output Words
1: 010
3: 4:

2.

[SEQ] The screen does not change.

2

Insert the following values. The cursor moves automatically through the
The values are:

COUNTER ADDRESS - 056
CURRENT STEP - 008
SEQUENCE LENGTH - 012
WORDS PER STEP - 4
FILE - 510
LOAD WORDS
1: 110
2: 113
3: 012
4: 314

For this example, enter data using the binary data monitor mode. Get your
data from the worksheet (Figure 12.6). A filled block means a 1 will be
entered in that position.

Load the data from Figure 12.6 exactly as you did in for the sequencer
input and output instructions.

Sequencers
Chapter 12

12-21

Figure 12.6
Completed Sequencer Load Worksheet

17 10 07 00

WORD #1

PROJECT NAME

DESIGNER

PROCESSOR

DATA TABLE ADDR

PAGE OF

TO

Bottle Filling Applications Mini–PLC-2/05

MASK
STEP

FROM ADDR

TO ADDR

D
E
V
I
C
E

N
A
M
E

1
2
3
4
5
6

17 10 07 00

WORD #2
17 10 07 00

WORD #3
17 10 07 00

WORD #4

Engineer

COUNTER ADDR:

WORD ADDR:

MASK ADDR:

FILE TO SEQ LENGTH:

SEQUENCER Load

030

110

600 012

ALLEN�BRADLEY
Programmable Controller
Data Table MAP (128�word)

7
8
9
10
11
12

10152�I

Sequencers

Chapter 12

12-22

To display your rung.

BINARY DATA MONITOR
SEQUENCER INPUT

STEP: 008COUNTER ADDR: 056 SEQUENCER LENGTH: 012

FILE: 510� 567

[CANCEL COMMAND]

LOAD ADDR: 110 113 012 314
DATA: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

STEP WORD 1 WORD 2 WORD 3 WORD 4
001
002
003
004
005
006
007
008
009
010
011
012

00000010
00000000
00000000
10000010
01000000
00000000
10000000
00000000
00000000
00000001
00100000
00000000

10000000
10001000
00100100
00001000
00001000
00000001
00100000
10000000
10000001
00010000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

The instruction should look like this.

We showed you three types of sequencer instructions and how to use the
data monitor display to enter data. The next chapter shows you how to
reduce scan time by selectively jumping over portions of the program.

Chapter Summary

Chapter

13

13-1

Jump Instructions and Subroutines

This chapter describes the instructions you can use to selectively jump over
portions of a program. The instructions are:

 jump
 jump to subroutine
 label
 return

This chapter describes how jump instructions and subroutine programming
direct the path of the program scan through the main program and the
subroutine area.

Jump/Jump to Subroutine/Return Instructions

Purpose: A Jump instruction is an output instruction. It has an
identification number from 00-07. When its rung is true, it instructs the
processor to jump forward in the main program to the Label instruction
having the same identification number. The main program executes from
that point.

010

00

JMP
01

Jump

You can reduce scan time by selectively jumping over a portion of the
program. Do not program in an area where the jump instruction crosses
the boundary between the main program and subroutine area, or
vice-versa.

ATTENTION: Allowances should be made for conditions
which could be created by the use of the Jump instruction.
Jumped program rungs are not scanned by the processor. Input
conditions are not examined and outputs that are controlled by
these rungs remain in their last state. Timers and counters cease
to function. Critical rungs should be re-programmed outside the
jumped section in the program zone.

Chapter Objectives

Jump Instructions and Subroutines

Chapter 13

13-2

Jump to Subroutine

Purpose: The Jump to Subroutine instruction is an output instruction. It
has an octal identification number from 00-07. When its rung is true, it
instructs the processor to jump from the main program to the label
instruction having the same number in the subroutine area. Subroutine
execution begins at that point.

This instruction always causes the processor to cross the boundary from
the main program to the subroutine area.

010

00

JSR

02

Return

Purpose: The Return instruction is an output instruction. It is used only in
the subroutine area to terminate a subroutine or selectable timed interrupt
and return the processor to the main program or, in the case of nested
subroutines, return program execution to the preceding subroutine. It
returns program execution to the instruction immediately following the
Jump to Subroutine instruction that initiated the subroutine. Program
execution continues from that point.

It is programmed as an output instruction without an identification number
in the subroutine area. It is usually programmed unconditional. Every
subroutine must have a return instruction.

RET

Subroutine Area

Keystrokes: You enter a Jump, Jump to Subroutine, or Return instruction
by performing the following steps.

1. Press -(JMP)-, -(SR)-, or [SHIFT] -(RET)-.

Important: Do not perform step 2 for a Return instruction.

2. Enter <octal identification number>.

Jump Instructions and Subroutines
Chapter 13

13-3

Editing the Instruction
You can edit a Jump, Jump to Subroutine or Return instruction to change
an instruction type or its address by performing the following steps.

1. Position the cursor over the Jump, Jump to Subroutine or Return
instruction you are going to edit.

2. Press -(JMP)-, -(JSR)-, or [SHIFT]-(RET)- or any other appropriate
instruction type key.

Important: Do not perform step 3 for a Return instruction.

3. Enter <octal identification number>.

Purpose: The Label instruction is the target for both the Jump and Jump to
Subroutine instructions. Label instructions are assigned octal identification
numbers from 00-07. The label identification number must be the same as
that of the Jump and/or Jump to Subroutine instruction with which it is
used. A Label instruction can be defined only once, meaning that a label
with a given identification number can only appear in one location.
However, a Label instruction can be the target of jumps from more than
one location.

The Label instruction is always logically true. Programmed as the first
condition instruction in the rung. If conditions precede a Label instruction,
they will be ignored by the processor during a jump operation. Do not
program with a program control instruction.

010

00

RET

01

LBL

Important: There are 8 labels available. Each label can only be defined
once (using an octal identifier), but can be the target of multiple Jump or
Jump to Subroutine instructions. Octal identifiers are labeled from 00-07.

Label Instruction

Jump Instructions and Subroutines

Chapter 13

13-4

ATTENTION: Do not place a Label instruction in a ZCL or
MCR zone. When jumping over a start fence, the processor
executes the program from the label to the end fence as if the
start fence had been true, i.e. outputs controlled by the rungs.
The start fence may have been false intending that all outputs
within the zone be controlled by the output override instruction,
i.e. off for MCR or last state for ZCL instructions.
Unpredictable machine operation could occur with possible
damage to equipment and/or injury to personnel.

Keystrokes: You enter a Label instruction by performing the
following steps.

1. Press [SHIFT][LBL].

2. Enter the <octal identification number>.

Removing the Label Instruction

You can remove a Label instruction. You can edit it by performing the
following steps.

1. Position the cursor over the Label instruction you want to remove.

2. Press [REMOVE][SHIFT][LBL].

Editing a Partially Completed or a Completed Rung

If you are editing a completed rung, proceed to step 1. If you are editing a
partially completed rung, enter the next instruction and proceed to step 1.

1. Position the cursor over the Label instruction you are going to edit.

2. Press [SHIFT][LBL] or any other appropriate instruction type key.

3. Enter <octal identification number>.

Purpose: The subroutine area is located in the memory between the main
program and the message store areas (Figure 13.1). This area acts as the
end of program statement for the main program. It allows storage of small
programs that are to be accessed periodically. Subroutines are not scanned
unless you program the processor to jump into this area.

Subroutine Area Instruction

Jump Instructions and Subroutines
Chapter 13

13-5

Figure 13.1
Subroutine Area

Factory Configure Data Table

Additional AC, PR and Bit/Word Storage

File or Bit/Word Storage

Main Program

Subroutine Area

Subroutines

End

Message Storage Area
(if used)

Total
Decimal
Words

128

Varies

Varies

Varies

Varies

3072

Octal
Word
Address

177

Varies

Varies

Varies

Varies

200
Data
Table

User
Program

Message
Storage

2944 5577

10718�I

Jump Instructions and Subroutines

Chapter 13

13-6

You can program a maximum of eight subroutines in the subroutine area.
Each subroutine begins with a label instruction and (when you want to exit
to your main program) ends with a return instruction. The subroutine area
serves as the end of the main program and defines the beginning of the
subroutine program (Figure 13.2).

Figure 13.2
Subroutine Programming Example

114

06

EN

File To File Move

Counter Addr:

Position:

File Length:

File A:

File R:

001

007

400� 406

500� 506
DN

012

00

JSR

01

014

06 11

01201

LBL

012

02

013

012

10

U
OFF 11

116

11

200
U

OFF 17
116

02
116

13

Rate Per Scan 007

200

17

200

15

200

JSR

01

11

116

12

116

13

116

Here general programming facts for the subroutine instruction:

 Uses one word in the data table
 Processor does not scan the instruction until you program a Jump to

Subroutine instruction.
 Up to eight subroutines can be programmed if you do not program any

jump instructions.
 You cannot nest subroutine programs by inserting a Jump to Subroutine

instruction in the Subroutine area.
 It is possible to jump from one subroutine to another using a

Jump instruction.

Jump Instructions and Subroutines
Chapter 13

13-7

Keystrokes: You establish a subroutine area by performing the
following steps.

1. Cursor down to the end of the main program.

2. Press [SHIFT][SBR].

Important: The boundary marker SUBROUTINE AREA appears. A
subroutine area instruction can only be programmed as the last instruction
in the main program. It cannot be inserted between rungs. It requires one
memory word, can be programmed only once, and cannot be removed
except by clearing the entire subroutine area or the entire memory.

We showed you how to reduce scan time by selectively jumping over
portions of the program. The next chapter shows you how to transfer a
block of data in a single scan.

Chapter Summary

Chapter

14

14-1

Block Transfer

This chapter describes three types of block transfer:

 read
 write
 bidirectional

Block transfer is a combination of an instruction and support rungs used to
transfer up to 64 16-bit words of data in one scan from I/O modules
to/from the data table. This transfer method is used by intelligent I/O
modules such as the analog, PID, servo positioning, stepper positioning,
ASCII, thermocouple, or encoder/counter modules.

Block transfer can be performed as a read, write, or bidirectional operation,
depending on the I/O module you are using. An input module uses the
read operation, an output module uses the write operations. During a read
operation, data is read into the data table from the module. During a write
operation, data is written to the output module from the data table.

The processor uses two I/O image table bytes to communicate with block
transfer modules. The byte corresponding to the module’s address in the
output image table (control byte) contains the read or write bit for initiating
the transfer of data. The byte corresponding to the module’s address in the
input image table (status byte) is used to signal the completion of
the transfer.

Important: Do not use word 127 for data storage.

Whether the upper or lower byte of the I/O image table word is used
depends on the position of the module in the module group. When in the
lower slot, the lower byte is used and vice versa (Figure 14.1).

Chapter Objectives

Basic Operation

Block Transfer

Chapter 14

14-2

Figure 14.1
Image Table Byte Relationship vs Module Position

ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

ÉÉÉÉÉÉ
ÉÉÉÉÉÉ

Data Table

Bit Numbers

10 0717 00

Output Image Table

Control Byte

Input Image Table

Status Byte

010

012

017

110

112

117

Output Image
Table Word,
Lower Byte

Input Image
Table Word,
Lower Byte

Block
Transfer
Module

Left Slot Right Slot

The lower byte of the I/O image table words is used when the module is in the left slot
and the upper byte when the module is in the right slot.

10222

The block transfer read or write operation (Figure 14.2) is initiated in the
program scan and completed in the I/O scan as follows:

Block Transfer
Chapter 14

14-3

Figure 14.2
Block Transfer Diagram

Transfer is made in I/O Scan

Output
Scan

Input
Scan

Request is made in Program Scan 10377�I

 Program scan - When the rung goes true, the instruction is enabled. The
number of words to be transferred and the read or write bit that controls
the direction of transfer are set by a bit pattern in the output image
table byte.

 I/O scan - The processor requests a transfer by sending the output image
table byte data to the block transfer module during the scan of the output
image table. The module signals that it is ready to transfer. The
processor then interrupts the I/O scan and scans the timer/counter
accumulated area of the data table, looking for the address of the
module that is ready to transfer. The module address is stored in BCD
at a word address in the same manner as an accumulated value of a
timer is stored. The module address was entered by the programmer
when entering the block instruction parameters. The word address at
which the module address is stored is called the data address of
the instruction.

Once the module address is found, the processor locates the address of the
file to which (or from which) the data is transferred. The file address is
stored in BCD at an address 100 above the address containing the module
address. This is done in the same manner that the processor locates the
preset value of a timer in a word address 100 above the accumulated value
address. The analogy between block transfer and timer/counter data and
addresses is shown in Table 14.A.

Block Transfer

Chapter 14

14-4

Table 14.A
Timer/Counter Transfer Analogy

Address of Accumulated Value Data Address of Instruction

Accumulated Value in BCD Module Address in BCD (R,G,S)

Address of Preset Value 1008 Above Data Address

Preset Value in BCD File Address in BCD

After locating the file address in the timer/counter area of the data table,
the processor then duplicates and transfers the file data consecutively one
word at a time until complete, starting at the selected file address.

At the completion of the transfer, a done bit for the read or write operation
is set in the input image table byte as a signal that a valid transfer
has completed.

The format of a block transfer read and a block transfer write instruction
with default values is shown in Figure 14.3.

Figure 14.3
Block Transfer Format

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

030

100

01

110 DN

010

07

110

07
110�

EN
Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

030

100

01

110 DN

010

06

110

06
110�

Note: Numbers shown are default values. Numbers in shaded areas must be replaced by user�entered values. The number of
default address digits initially displayed (3 or 4) will depend on the size of the data table.

Block Transfer Format

Block Transfer
Chapter 14

14-5

Here is an explanation of each value:

This Value: Stores the:

Data Address First possible address in the timer/counter accumulated value area
of the data table

Module Address RGS for R = rack, G = module, S = slot number

Block Length Number of words to be transferred

(enter 00 for default value or for 64 words)

File Address of the first word of the file

Enable bit �(EN)� Automatically entered from the module address

Set on when the rung containing the instruction is true

Done bit �(DN)� Automatically entered from the module address

Remains on for 1 program scan following successful transfer

Data Address

The data address stores the module address of the block transfer module.
The data address must be assigned the first available address in the
timer/counter accumulated area of the data table. This depends on the
number of I/O racks being used (Table 14.B). When more than one block
transfer module is used, consecutive data addresses must be assigned ahead
of address for timer and counter instructions.

Table 14.B
The First Available Address in
Timer/Counter Area of Data Table

I/O Racks First Available
Address
in Timer/

Counter Area

1 020

2 030

3 040

4 050

5 060

6 070

7 200

The last consecutive word in the accumulated area following the words
reserved for block transfer data addresses should be loaded with zeroes.
When the processor sees this boundary word, it does not search further for
block transfer data. In addition, the processor is prevented from finding
other BCD values that could, by chance, be in the same configuration as
the rack, group and slot numbers found in block transfer data addresses.

Block Transfer

Chapter 14

14-6

The boundary word data bits can be set to zero manually using bit
manipulation. Use [SEARCH] 53 and insert zeros. A Get/Put transfer can
be programmed assigning Get and Put instructions to the address
immediately following the last block transfer data address (Figure 14.4).
The value of the Get instruction is set to 000 when programmed.

Figure 14.4
Defining the Data Address Area

1 00 030

031

032

PUT

032

000

032

000

10663-I

1 01

0 00

Data Table

First word in accumulated area of
data table

Last consecutive data address
contains zeros to separate block
transfer addresses from timer,
counter and storage addresses

G

Module Address

The module address is stored in BCD by r = rack, g = module group and
s = slot number. When a block transfer is performed, the processor
searches the timer/counter accumulated area of the data table for a match
of the module address.

Block Length

The block length is the number of words that the module will transfer. It
depends on the type of module and the number of channels connected to it.
The number of words requested by the instruction must be a valid number
for the module: i.e. from 1 up to the maximum of 64. The maximum
number is dependent on the type of module that is performing block
transfer. The block length can also be set at the default value of the
module, useful when programming bidirectional block transfers. For some
modules, the default value allows the module to decide the number of
words to be transferred. See the documentation for the module for for
additional information.

Block Transfer
Chapter 14

14-7

The block length heading of the instruction accepts any value from 00-63,
whether or not the value is valid for a particular module. Enter 00 for the
default value and/or a block length of 64.

The block length is stored in binary in the byte corresponding to the
module’s address in the output image table.

Equal Block Lengths
When the block lengths are set equal or when the default block length is
specified by the programmer, the following considerations are applicable:

 Read and write instructions could and should be enabled in the same
scan (separate but equal input conditions).

 Module decides which operation will be performed first when both
instructions are enabled in the same scan.

 Alternate operation will be performed in a subsequent scan.

 Transferred data should not be operated upon until the done bit is set.

Unequal Block Lengths
Consult the user’s manual for the block transfer module of interest for
programming guidelines when setting the block lengths to unequal values.

ATTENTION: When the block lengths of bidirectional block
transfer instructions are set to unequal values, the rung
containing the alternate instruction must not be enabled until the
done bit of the first transfer is set. If they are enabled in the
same scan, the number of words transferred may not be the
number intended, invalid data could be operated upon in
subsequent scans, or analog output devices could be controlled
by invalid data. Unexpected and/or hazardous machine
operation could occur. Damage to equipment and/or personal
injury could result.

File Address

The file address is the first word of the file to which (or from which) the
transfer is made. The file address is stored 100 words above the data
address of the instruction. When the file address is entered into the
instruction block, the industrial terminal computes and displays the ending
address based on the block length.

When reserving an area for a block transfer file, select an appropriate
address to ensure that block transfer data does not write over assigned
timer/counter accumulated and preset values. The file address cannot
exceed address 577708.

Block Transfer

Chapter 14

14-8

Enable/Done Bit

The read and write bits are the enable bits for block transfer modules.
Either one (or both for a bidirectional transfer) is set on in the program
scan when the rung containing the block transfer instruction is true.

The done bit is set on in the I/O scan that the words are transferred,
provided that the transfer was initiated and successfully completed. The
done bit remains on for only one scan.

A block transfer is requested in each program scan that the read and/or
write bit remains on. The read and/or write bits are turned off when the
rung containing the instruction goes false.

Run�Time Errors

Misuse and/or inadvertent changes of instruction data can cause run-time
errors when:

 The module address is given a non-existent I/O rack number.
 A read transfer overruns the file into a processor work area or into user

program by an inadvertent change of the block length code.

Purpose: Block transfer reads data from an I/O module into the
processor’s input image table in one I/O scan.

 Programmed as an output instruction.
 Block length depends on the type of module you are using.
 Request for transfer is made in the program scan.
 I/O scan is interrupted for the transfer.
 Done bit remains on for one scan after a valid transfer.
 Instruction requires two words of the data table.

Figure 14.5 shows an example rung containing a block transfer read
instruction and the data table areas used by the instruction.

Block Transfer Read

Block Transfer
Chapter 14

14-9

Figure 14.5
Data Table Locations for Bi�directional Block Transfer

R

1

1 12

Block Transfer Data

012

030

060

067

117

130

012

Input image table byte

17

10225-I

Data Table

Block Length
Code

010

Output image table byte

Data Address contains

Storage location of file

Block Transfer Read

Data Addr: 030
Module Addr:
Block Lengrth:
File:

121
08

060�067

112

17

EN

DN

R

1

0 06

017

027

110

112

contains read enable bit
and block length in
binary code.

module address in BCD.

First File Word

Last File Word

contains done bit.

address contains file
address in BCD.

Output
Image
Table

Timer/
Counter
Accumulated

Input
Image
Table

Timer/
Counter
Preset
Area

Area

R = Bit 17 = Read

113

02

Block Transfer

Chapter 14

14-10

Keystrokes: In this example, you enter a block transfer read instruction.

[BLOCK
XFER]

The screen does not change

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

030

100

01

110 DN

010

07

110

07
110�

1

Note that the words BLOCK TRANSFER READ are flashing.

Insert the following values. The cursor moves automatically through the
instruction. The values are:

 DATA ADDRESS 040
 MODULE ADDRESS 130
 BLOCK LENGTH 05
 FILE 070-074

The instruction should look like this:

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

040

130

05

074 DN

010

07

110

07
070�

Purpose: A block transfer writes data from the processor’s output image
table to an I/O module in one scan.

 Programmed as an output instruction.
 Block length depends on the type of module you are using.
 Request for transfer is made in the program scan.
 I/O scan is interrupted for the transfer.
 Done bit remains on for one scan after a valid transfer.
 Request requires two words of the data table.

Block Transfer Write

Block Transfer
Chapter 14

14-11

Keystrokes: In this example, you enter a block transfer write instruction.

[BLOCK
XFER]

The screen does not change

EN
Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

030

100

01

110 DN

010

06

110

06
110�

0

Note that the words BLOCK TRANSFER WRITE are flashing.

Insert the following values. The cursor moves automatically through
the instruction. The values are:

 DATA ADDRESS 041
 MODULE ADDRESS 130
 BLOCK LENGTH 05
 FILE 060-064

The instruction should look like this:

EN
Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

041

130

05

064 DN

013

06

113

06
060�

Purpose: Bidirectional block transfer is the sequential performance of both
operations. The order of operation is generally determined by the module.

Two rungs of user program are required, one containing the block transfer
read instruction, the other containing the block transfer write instruction.
When both instructions are given the same module address, the pair are
considered as bidirectional block transfer instructions. Figure 14.6 shows
an example rung containing a bidirectional block transfer instruction and
the data table areas used by the instruction.

Bidirectional Block Transfer

Block Transfer

Chapter 14

14-12

Figure 14.6
Data Table Locations for Bidirectional Block Transfer

R

1 1

1 03

Block Transfer Write File

1 1

013

040

041

060

070

113

140

141

013

W

R W

1

1 031

Block Transfer Read File

0 07

0 06

5 words of data table are to be written
to the bidirectional block transfer
module starting from word

5 words of data are to be read from
the module and loaded into the data
table starting at word

Input Image Table Low Byte

07

10229�I

Data Table

Block Length
Code

010

Output Image Table Low Byte

Data Addresses

Storage Locations of File Addresses

R = Bit 7 or 17 = Read
W = Bit 6 or 16 = Write

Block Transfer Read

Data Addr: 040
Module Addr:
Block Length:
File:

130
05

070� 074

113

07

EN

013

06

Block Transfer Write

Data Addr: 041
Module Addr:
Block Length:
File:

130
05

060� 064

113

06

EN

DN

EN

0508

0708

Block Transfer
Chapter 14

14-13

Keystrokes: In this example, you enter a bidirectional block
transfer instruction. First, enter the block transfer read instruction.

[BLOCK
XFER]

The screen does not change

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

030

100

01

110 DN

010

07

110

07
110�

1

Note that the words BLOCK TRANSFER READ are flashing.

Insert the following values. The cursor moves automatically through the
block transfer read instruction. The values are:

 DATA ADDRESS 040
 MODULE ADDRESS 130
 BLOCK LENGTH 05
 FILE 070-074

The instruction should look like this:

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

040

130

05

074 DN

013

07

113

07
070�

Block Transfer

Chapter 14

14-14

Keystrokes: Now enter the block transfer write instruction.

[BLOCK
XFER]

The screen does not change

EN
Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

030

100

01

110 DN

010

06

110

06
110�

0

Note that the words BLOCK TRANSFER WRITE are flashing.

Insert the following values. The cursor moves automatically through the
block transfer write instruction. The values are:

 DATA ADDRESS 041
 MODULE ADDRESS 130
 BLOCK LENGTH 05
 FILE 060-064

The completed bidirectional instruction should look like this:

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

040

130

05

074 DN

013

07

113

07
070�

EN
Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

041

130

05

064 DN

013

06

113

06
060�

Under certain conditions, it may be desirable to transfer part of a file rather
than the entire file. For example, a processor could be programmed to read
the first two or three channels of an analog input module periodically but
read all channels less frequently. To do this, use two or more block
transfer read instructions: one for each desired transfer length starting at
the same first word. The read instructions would have the same module
address, data address and file address but different block lengths. The size
of the file would equal the largest transfer.

Multiple Reads of
Different Block Lengths from
One Module

Block Transfer
Chapter 14

14-15

When two or more block transfer instructions have a common module
address, program carefully to compensate for the following
possible situations:

First - During any program scan, data in the output image table byte can
be changed by each successive block transfer instruction having a common
module address. The enable bit can be turned on or off according to the
true or false condition of the rungs containing these instructions. The on or
off status of the last rung governs whether the transfer occurs.

Second - The block length can be changed according to the block lengths
of the enabled instructions. The block length of the last enabled block
transfer instruction having a common module address governs the number
of words transferred.

ATTENTION : When programming multiple writes (or reads)
to the same module, it is possible that a desired transfer does not
take place or the number of words transferred is not the number
intended. Invalid data can be sent to a device (or can be
operated upon in subsequent scans) resulting in unpredictable
and/or hazardous machine operation.

See the module user’s manual for any information unique to that module.

The example in Figure 14.7 shows how multiple reads of different block
lengths from one module can be programmed. When any one of the input
switches is closed, the rung is enabled and the lock length is established.
The last rung enables the block transfer instruction regardless of the
previous changes in status of the enable bit. The Examine Off instructions
prevent more than one of the block transfer instructions from being
energized in the same scan.

Important: The same discussion applies when programming multiple
writes of different block lengths to one module.

Block Transfer

Chapter 14

14-16

Figure 14.7
Programming Multiple Reads from One Module

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

052

141

04

163 DN

014

07

114

07
160�

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

052

141

08

167 DN

014

17

114

17
160�

1 2 3
Inputs

EN
Block Xfer Read

Data Addr:

Module Addr:

Block Length:

File:

052

141

03

162 DN

014

17

114

17
160�

1 2 3
Inputs

11
Input

DN
114

17
2
Input

1 2 3
Inputs

3
Input

You should buffer block transfer data to allow the data to be validated
before it is used. Data that is read from the block transfer module and
transferred to data table locations must be buffered. Data that is written to
the module need not be buffered because block transfer modules perform
this function internally.

Transferred data is buffered to ensure that both the transfer and the data are
valid. As an example, readings from an open-circuited temperature sensor
(invalid data) could have a valid transfer from an analog input module to
the data table. The processor examines data-valid and/or diagnostic bits
contained in the transferred data to determine whether or not the data is
valid. the block transfer done bit is set if the transfer is valid.

The data-valid and/or diagnostic bits differ for each block transfer module.
Some modules set one or both for the entire file of words transferred, while
others set a data-valid diagnostic bit in each word. See the documentation
for the block transfer module to determine the correct usage of the
diagnostic and/or data valid bit(s).

Buffering Data

Block Transfer
Chapter 14

14-17

One technique of buffering data is to store the transferred data in a
temporary buffer file. If the data in the buffer is valid, it is immediately
transferred to another file in the data table where it can be used. If invalid,
it is not transferred but written over in the next transfer.

Another technique uses only one file. The technique prevents invalid data
from being operated upon by preconditioning the rungs that would transfer
data out of a file one word at a time. Diagnostic and/or data-valid bits are
examined in these rungs.

Data can be moved from the buffer word-by-word using get/put transfers,
or the entire file can be moved at once using a File-to-File Move
instruction. The choice depends on the kinds of diagnostic and/or
data-valid bits and the objectives of the user program. Generally, when
one diagnostic bit is contained in each word, a get/put transfer is used.
When one is set for the entire file, a File-to-File Move instruction is used.
In either case, the diagnostic bits are examined as conditions for enabling
the file move or word transfer.

The example in Figure 14.8 shows the memory map and ladder diagram
rungs for buffering 3 words of data that are read from the block transfer
module. The data is read and buffered in the following sequence:

Block Transfer

Chapter 14

14-18

Figure 14.8
Buffering Data

R

1 0 Block Length
Code

1 04

0 05

Block Transfer Data (Buffer)

Block Transfer Data (Valid)

R

1 0

014

030

050

052

114

130

150

152

U

010

00

Rung 2

EN
Block Transfer Read
Data Addr:
Module Addr:
Block Length:
File:

030
140

03
052 DN

PUT

010

07

152

333

Rung 7

010

00

010

02

Rung 1

L

014

07

010

00

Rung 4

PUT

010

02

150

111

Rung 5

PUT

010

02

151

222

Rung 6

114

07

111

11

Rung 3 014

07

050-
114

07

050
G

111

051
G

222

052
G

333

Diagnostic Bit 10228�I

Data in the buffer file
050-052 will be moved
to 150-152 when:

A. Done Bit 114/07
is set (Valid transfer)

B. Diagnostic Bit is TRUE
for each word to be
moved in rungs 5-7
(valid data)

Block Transfer
Chapter 14

14-19

1. When rung 3 goes true, bit 014/07 (the block transfer enable bit) is
turned on and block transfer is requested. This latches on storage bit
010/00 in rung 4.

2. Block transfer is enabled during the program scan. The transfer is
performed during an interruption of the next I/O scan. Data from the
module is loaded into words 050-052. When block transfer is
complete, done bit 114/07 is set in the input image table byte. This
indicates block transfer was successfully performed. The processor
then continues with the I/O scan and program scan.

3. During the program scan, rung 1 is true because bit 010/00 is still
latched on. Bit 114/07 (the block transfer done bit) is on because
block transfer was performed. This turns bit 010/02 on. In rung 2,
bit 10/00 is then unlatched.

4. In rung 5, bit 010/02 is still on and a diagnostic bit is examined to
ensure the data read from the module is valid. Assuming the data is
valid, the diagnostic bit is on and the data is transferred from word
050 to 150. In rungs 6 and 7, the data in words 051 and 052 is
transferred to words 151 and 152 if the diagnostic bit is on.

In this chapter, we showed you how to transfer a block of data in one scan.
The next chapter shows you how to perform subroutines at timed intervals.

Chapter Summary

Chapter

15

15�1

Selectable Timed Interrupt

This chapter describes a method to execute subroutines at timed intervals. This
method is called selectable timed interrupt.

Selectable timed interrupt is a special subroutine that can be programmed into
the subroutine area and designated as a Selectable Timed Interrupt (STI). This
subroutine can then be executed at timed intervals.

General programming facts are:

 First instruction is the first rung of the subroutine area must be a Get
instruction. This identifies it as an STI.

 Get instruction must be used solely for the purpose of designating the time
period of the STI.

 STI subroutine execution time should not exceed approximately 2/3
STI interval.

Keystrokes: To program a selectable timed interrupt subroutine, a Get
instruction must be the first instruction in the first rung after the use program
subroutine area statement (Figure 15.1). This designates that an STI follows.
Then, you can program your subroutine. The transition time from main
program to STI and return is 100µs.

Chapter Objectives

Introduction

Selectable Timed Interrupt
Chapter 15

15�2

Figure 15.1
Memory Organization

Selectable
Timed

Interrupt
Subroutine

Data
Table

User
Program

Other
Program

Subroutine

Subroutine Area

G LBL
010

00

XXYYY

XXX

010

00

RET

The Get instruction serves as a time base (xxx) for the STI. The Get instruction
can have any data table address (yyy) except a processor work area. It must be
used solely to designate the time base of the STI. The available time bases are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, and 50 milliseconds. Your program, through the
use of a Get/Put instruction (see chapter 9) can change the time base of the
selectable timed interrupt. The subroutine must end with an unconditional
return instruction.

The Label instruction is optional and is only used when the main program wants
to call the subroutine based on other conditions rather than selected time
periods. If the subroutine timed interrupt is used as a direct subroutine with a
Label instruction, you can have seven subroutines plus the STI. If the
subroutine is not used as a direct subroutine, you can have eight subroutines
plus the STI.

Service time (Figure 15.2b) is factory set at approximately 2/3 of the timed
interrupt period. Subroutine execution time plus program transition time
(Figure 15.2c) should not exceed the maximum allowable service time (Figure
15.2b). When the program transition time plus subroutine execution time does
not exceed service time, there is sufficient time for the processor to scan
the subroutine.

Operational Overview

Selectable Timed Interrupt
Chapter 15

15�3

Figure 15.2
Time Relationship of Subroutine Execution Time versus Service Time

Time Base

Service Time

0 1 2 3 4 5 6

Subroutine
Execution
Time
Less Than
Service Time

Subroutine
Execution
Time
Greater Than
Service Time

Subroutine
Execution
Time
Greater Than
STI Period

Figure 15.2b

Figure 15.2c

Figure 15.2d

Figure 15.2e

Figure 15.2a

Selectable timed interrupts are executed at every time period once they are
enabled, including the I/O scan. During the program, the program is interrupted
while the STI subroutine is executed. The program returns to the point of
interrupt and continues execution just as if nothing has happened. However,
during an I/O scan, a block transfer may be requested by a module. In this case,
the STI is not executed until the block transfer is completed. In addition, the
STI is disabled during an insert/remove or a mode of operation change.

Should the subroutine execution time plus program transition time exceed
service time (Figure 15.2d), the selectable timed interrupt is no longer accurate.
Two things happen:

 The STI too long bit (02702) is set on. This bit is available for your use and
can be used to initiate annunciators or other status indicators. The bit
functions similar to a latch instruction and must be reset with an
Unlatch instruction.

 The processor completely executes the subroutine. It waits one complete STI
period before executing the subroutine again (Figure 15.2d and 15.2e).

In this chapter, we showed you how to execute subroutines at timed intervals.
The next chapter shows you how to edit instructions in your program.

Chapter Summary

Chapter

16

16-1

Program Editing

This chapter describes how to edit instructions in your program:

 rules for editing instructions
 editing relay-type instructions
 editing other instructions

This section outlines the rules for editing instructions:

 editing
 searching
 clearing memory

Editing

Changes to an existing program can be made through a variety of editing
functions (Table 16.A). Instructions and rungs can be added or deleted;
addresses, data, and bits can be changed.

Table 16.A
Editing Functions 1

Function Key Sequence Mode Description

Inserting a condition
instruction

[INSERT]
(Instruction)
(address)

or
[INSERT][←]
(Instruction)
(Address)

Program Position the cursor on the instruction that will precede the
instruction to be inserted. Then press key sequence. 2

Position the cursor on the instruction that will precede the
instruction to be inserted. Then press key sequence. 2

Removing a condition
instruction

[REMOVE]
(instruction)

Program Position the cursor on the instruction to be removed and press
the key sequence.

Inserting a rung [INSERT]
[RUNG]

Program Position the cursor on any instruction in the preceding rung
and press the key sequence. Enter instructions and complete
the rung.

Removing a rung [REMOVE]
[RUNG]

Program Position the cursor anywhere on the rung to be removed and
press the key sequence.

IMPORTANT: Only addresses corresponding to output
energize latch and unlatch instructions are cleared to zero.

Chapter Objectives

Rules for Editing Instructions

Program Editing
Chapter 16

16-2

Function DescriptionModeKey Sequence

Change data of a word or
block instruction

[INSERT]
(Data)

Program Position the cursor on the word or block instruction whose data
is to be changed. Press the key sequence.

Change the address of a
word or block instruction

[INSERT]
(First Digit)

[←]
(Address)

Program Position the cursor on a word or block instruction with data and
press [INSERT]. Enter the first digit of the first data value of
the instruction. Then use the [←] and [→] key as needed to
cursor up to the word address. Enter the appropriate digits of
the word address.

Online programming [SEARCH]
[5] [2]

Initiates online programming.

Replace an instruction or
Change address of an
instruction without data

[Instruction]
(Address)

Program Position the cursor on the instruction to be replaced or whose
address is to be changed. Press the desired instruction key (or
key sequence) and the required address(es).

Online Data Change [SEARCH]
[5] [1]
(Data)

[RECORD]
[CANCEL COMMAND]

 Run/Program Position the cursor on the word or block instruction whose data
is to be changed. Press the key sequence. You can use the
cursor keys.

Press [RECORD] to enter the new data into memory.
To terminate online data change.

All editing functions [CANCEL COMMAND] Program
Run/Program

Aborts the operation at the current cursor position.

These functions can also be used during online programming.
When bit address exceeds 5 digits, press the [EXPAND ADDR] key before entering address and enter a leading zero if necessary.

1

2

Important: If the memory write protect is active, you can change only
data table values between word addresses 010 and 177.

Inserting an Instruction
Only non-output instructions can be inserted in a rung. There are ways of
doing this:

 First instruction of an existing rung
 First instruction of another rung
 Another location in the rung.

Keystrokes: You insert an instruction using either of the two ways by
performing the following steps.

First Instruction of an Existing Rung

1. Position the cursor of the first instruction of the existing rung.

2. Press [INSERT][←].

3. Insert <instruction>.

4. Insert <address>.

Program Editing
Chapter 16

16-3

First Instruction at the Beginning of Another Rung.

1. Position the cursor on the previous rung’s output instruction.

2. Press [INSERT].

3. Insert <instruction>.

4. Insert <address>.

If the cursor is on the END statement, the instruction is inserted before the
END statement or subroutine area.

Another Location in the Rung

1. Position the cursor on the instruction immediately preceding your
selected location.

2. Press the key sequence [INSERT].

3. Press <instruction>.

4. Press <address>.

The new instruction is inserted after the cursor’s present position.

You can enter bit addresses of 6 or 7 digits provided the data table is
expanded to a 4- or 5-digit word address and you press [EXPAND ADDR]
before you enter the address.

If, at any time, the memory is full, a MEMORY FULL message is
displayed and you cannot enter more instructions.

Removing an Instruction
Only non-output instructions can be removed from a rung. Output
instructions can be removed only be removing the complete rung.

Keystrokes: To remove an instruction, perform the following steps.

1. Place the cursor on the instruction you are going to remove.

2. Press [REMOVE] <instruction>.

Bit values and data of word instructions are not cleared. The input image
table bits are rewritten during the next I/O scan. If you press the wrong
instruction, and INSTRUCTIONS DO NOT MATCH message
is displayed.

Program Editing
Chapter 16

16-4

Inserting a Rung
A rung can be inserted anywhere within a program. The cursor can be
positioned on any instruction of a rung. The new rung is inserted after the
rung which contains the cursor. The rung appears as an unconditional
rung. you must complete the rung. You cannot edit instructions in the new
rung until the rung is complete.

Keystrokes: To insert a rung in a program, perform the following steps.

1. Press [INSERT][RUNG].

2. Insert <output instruction>.

Then:

3. Press [INSERT][←].

4. Insert <instruction>.

5. Insert <address>.

If the cursor is on the END statement, the rung need not be inserted. You
can enter the rung as in initial program entry. if, at any time, the memory
is full, a MEMORY FULL message is displayed you cannot enter
more instructions.

Removing a Rung
Removing a rung is the only way an output instruction can be removed.
you can remove any rung, except the last one containing the
END statement.

Keystrokes: To remove a rung, perform the following steps.

1. Position the cursor anywhere on the rung you want to remove.

2. Press [REMOVE][RUNG].

Only bits corresponding to Output Energize, Latch, or Unlatch instructions
are cleared to zero. All other word and bit addresses are not cleared when
a rung is removed.

Changing Data in a Word or Block Instruction
You can change the data of any word or block instruction, except
Mathematics and Put instructions, in the program mode without removing
and re-entering the instruction.

Program Editing
Chapter 16

16-5

Keystrokes: To change the data of any word or block instruction, perform
the following steps.

1. Position the cursor on the appropriate word instruction.

2. Press [INSERT]<data>.

When the last digit of the data is entered, the function is terminated and the
data is entered into memory. Once you have entered the first digit, the
[→][←] keys can be used. The function can also be terminated and entered
into memory before the last digit is entered if you press
[CANCEL COMMAND].

Changing the Address of a Word or Block Instruction
You can change the address of a word or block instruction with data,
excluding Mathematics and Put instructions, without removing and
re-entering the instruction.

Keystrokes: To change the address of a word or block instruction,
perform the following steps.

1. Position the cursor on the instruction you want to change.

2. Press [INSERT].

The cursor, although not displayed, positions itself on the first data digit.
Enter that digit to display the cursor.

3. Cursor back to the address digits using the [←] key.

4. Change <address> as needed. Use a leading zero if required.

Changing an Instruction or Changing the Address of an Instruction
Without Data
You can change an instruction or the address of an instruction without data.

Keystrokes: To change an instruction or the address of an instruction
without data, perform the following steps.

1. Place the cursor on the instruction you are going to change.

2. Press the instruction key or key sequence of the desired instruction
and the required address(es).

This procedure also can be used when changing the address of an
instruction that does not contain data.

Program Editing
Chapter 16

16-6

Online Data Change
Certain data of a word or block instruction, excluding Mathematics and Put
instructions, can be changed while the processor is in the
run/program mode.

Keystrokes: You can change data while the processor is in the
run/program mode by performing the following steps.

1. Position the cursor on the appropriate instruction.

2. Press [SEARCH] 51.

The key sequence displays the message ON-LINE DATA CHANGE,
ENTER DIGITS FOR: <Required information> near the bottom of the
screen. The new digits are displayed in a command buffer as they are
entered. After the new data is displayed:

3. Press [INSERT] to enter the data into memory.

4. You can terminate this function by pressing
[CANCEL COMMAND].

ATTENTION: When the address of an instruction whose data
is to be changed duplicates the address of other instructions in
the user program, this could cause unwanted machine motion.
This could result in damage to the equipment and/or injury to
personnel. The consequences of the change of each instruction
should be thoroughly explored.

Important: When the memory write protect is activated, online data
change is not be allowed for addresses above 177. If you attempt to
change data above address 177, the industrial terminal displays the error
message MEMORY PROTECT ENABLED.

Searching

You can use the 1770-T3 terminal to search your program for:

 specific instruction and specific word addresses
 first condition or output instruction in a rung
 single rung display
 incomplete rung
 first and last rung and user boundaries
 remote mode select

See Table 16.B for a summary of search functions.

Program Editing
Chapter 16

16-7

Table 16.B
Search Functions

Function Key Sequence Mode Description

Locate first rung of
program

[SEARCH][↑] Any Positions cursor on the first instruction of the program.

Locate last rung of
program area

[SEARCH][↓] Any Positions cursor on the temporary end instruction, subroutine
area boundary, or the end statement depending on the cursor's
location. Press key sequence again to move to the next boundary.

Locate first instruction of
current rung

[SEARCH][←] Remote Prog Positions cursor on first instruction of the current rung.

Move cursor off screen [SEARCH][←] Remote Test
 Run/Program

Moves cursor off screen to left.

Locate output instruction
of current rung

[SEARCH][→] Any Positions cursor on the output instruction of the current rung.

Locate rung without an
output instruction

[SHIFT]
[SEARCH]

Any Locates any rung left incomplete due to an interruption
in programming.

Locate specific
instruction

[SEARCH]
[Instruction key]

(Address)

Any Locates instruction searched for. Press [SEARCH] to locate the
next occurrence of instruction.

Locate specific word
address

[SEARCH]
(address)

Any Locates this address in the program (excluding �| |� and �| / |�
instructions and addresses in files). Press [SEARCH] to locate the
next occurrence of this address. 1

Single rung display [SEARCH]
[DISPLAY]

Any Displays the first rung of a multiple rung display by itself. Press
key sequence again to view multiple rungs.

Print [SEARCH]
[4][3]

Any Prints a single rung.

Print [SEARCH]
[4][4]

Any Prints a ladder diagram dump.

Print [SEARCH]
[4][5]

Remote Prog Prints a total memory dump.

Print [SEARCH]
[5][0]

Any Prints the first 20 lines of data table configuration.

Print [SEARCH]
[5][3]

Any Prints the first 20 lines of bit manipulation.

Print [SEARCH]
[5][4]

Any Prints the first 20 lines of memory layout display.

Program controls
outputs

[SEARCH]
[5][9][0]

Run/Program Places the processor in run/program mode.

Program executes
outputs disabled

[SEARCH]
[5][9][1]

Remote Test Places the processor in remote test mode.

Processor awaits
commands

[SEARCH]
[5][9][2]

Remote
Program

Places the processor in remote program mode.

Enter leading zeros when bit address exceeds 5 digits or word address exceeds 3 digits.1

Program Editing
Chapter 16

16-8

Specific Instructions and Specific Word Addresses
You can locate any instruction in your program by using methods
described in this section. you can search for a block instruction searching
for the counter address or the first entered address in the block.

Keystrokes: You can locate any instruction in your program by
performing the following steps.

1. Press [SEARCH].

2. Insert <instruction>.

3. insert <address>. Enter leading zeros before the address if necessary.

Keystrokes: You can locate any address (excluding those associated with
Examine On and Examine Off instructions and those contained within
files) by performing the following steps.

1. Press [SEARCH] 8.

2. Enter <address>.

The address you enter is the word address for the Output instructions. The
industrial terminal locates all uses of the word addresses associated with
the word address except for -] [- and -]/[-.

Once either key sequence is pressed, this information and an EXECUTING
SEARCH message is displayed near the bottom of the screen. The
industrial terminal begins to search for the address and/or instruction from
the cursor’s position. It looks past the temporary end and subroutine area
boundaries to the END statement. Then it continues searching from the
beginning of the program to the point where the search began.

If found, the rung containing the first occurrence of the address and/or
instruction is displayed as well as the rungs after it. If the SEARCH key is
pressed again, the next occurrence of the address and/or instruction is
displayed. When it cannot be located or all addresses and/or instructions
have been found, a NOT FOUND message is displayed.

If the instruction is found in the subroutine area or past the temporary end
instruction, the area in which it is found is displayed in the lower portion of
the screen.

This function can be terminated at any time by pressing [CANCEL
COMMAND]. All other keys are ignored during the search.

Program Editing
Chapter 16

16-9

First Condition or Output Instruction in a Rung
Keystrokes: When the processor is operating in the remote program
mode, you can access the first condition instruction of a rung from
anywhere in the rung by performing the following steps.

1. Press [SEARCH][←].

When the processor is not in the program mode, the cursor moves off the
screen to the left. To bring it back on the screen:

2. Press [→].

Keystrokes: When the processor is operating in any mode, you can access
the output instruction by performing the following step.

1. Press [SEARCH][→].

Single Rung Display
Upon power-up, a multiple rung display appears on the screen.

Keystrokes: You can select the single rung format by performing the
following steps.

1. Press [SEARCH][DISPLAY].

You can return to the multiple rung display.

2. Press [SEARCH][DISPLAY] again.

Incomplete Rung
You can locate an incomplete rung caused by an interruption in
programming in any processor operating mode.

Keystrokes: You can locate the incomplete rung by performing the
following steps.

1. Press [SHIFT][SEARCH].

First and Last Rung and User Program Bounds
You can locate the program boundaries including the first or last rung from
any point in the program.

Keystrokes: You can locate these boundaries by completing the
following steps.

1. Press [SEARCH][↑] or [SEARCH][↓].

The user program could contain a temporary end instruction boundary
and/or a subroutine area boundary. It always contains an END
statement boundary.

Program Editing
Chapter 16

16-10

When you press [SEARCH][], the cursor goes directly to the first rung
from anywhere in the program.

When you press [SEARCH] [], the display goes to the next boundary in
the direction indicated. By pressing the [SEARCH] [] key sequence
again, a subsequent boundary is displayed until the program end statement
is reached.

Boundaries are displayed at the top of the screen with subsequent program
rungs displayed beneath. No rungs follow the END statement.

Processor Mode Select
You must use an industrial terminal to change the processor mode
of operation.

Keystrokes: To change the processor mode of operation, use the
following keystrokes.

Run/Program Mode Press [SEARCH]590.

Remote Test Mode Press [SEARCH]591.

Remote Program Mode Press [SEARCH]592.

Clearing Memory

You can clear the data table, user program and messages using various
clear memory functions. When memory write protect is active, the data
table cannot be cleared except between and including addresses 010-177
(Table 16.C).

Program Editing
Chapter 16

16-11

Table 16.C
Clear Memory Functions

Function Key Sequence Mode Description

Data table clear [CLEAR MEMORY]
[7][7]

(Start Address)
(End Address)

[CLEAR MEMORY]

Remote Prog Displays a start address and an end address field.

Start and end word addresses determine boundaries for data
table clearing.

Clears the data table within and including addressed boundaries.

User program clear [CLEAR MEMORY]
[8][8]

Remote Prog Position the cursor at the desired location in the program. Clears
user program from the position of the cursor to the first boundary:
i.e. temporary end, subroutine area or end statement. Does not
clear data table or messages.

Partial memory clear [CLEAR MEMORY]
[9][9]

Remote Prog Clears user program and messages from position of the cursor.
Does not clear data table.

Total memory clear [CLEAR MEMORY]
[9][9]

Remote Prog Position the cursor on the first instruction of the program. Clears
user program and messages. Does not clear data table, unless
the cursor is on the first program instruction.

IMPORTANT: When memory write protect is active, memory cannot be cleared except for data table addresses 010�177 with a
programmed EPROM installed.

Data Table Clear
You can clear all or part of the data table.

Keystrokes: To clear all or part of the data of the data table, perform the
following steps.

1. Press [CLEAR MEMORY] 77.

2. Enter a start and end word address.

3. Press [CLEAR MEMORY].

The data table is cleared between and including these two word addresses.
When memory write protect is active, the data table cannot be cleared
except between and including addresses 010-177.

User Program Clear
You can clear all or part of the user program.

Keystrokes: To clear all or part of the program, perform the
following steps.

1. Press [CLEAR MEMORY] 88.

The user program is cleared from the cursor position to the first boundary:
temporary end instruction, subroutine area or END statement. Neither the
data table nor messages are cleared.

Program Editing
Chapter 16

16-12

Partial Memory Clear
You can clear part of the program and the messages.

Keystrokes: To clear part of the memory, perform the following steps.

1. press [CLEAR MEMORY] 99.

The user program and messages are cleared from the cursor position which
can not be on the first instruction. None of the bits in the data table
are cleared.

Total Memory Clear
You can clear the complete memory.

Keystrokes: To clear the complete memory, perform the following steps.

1. Position the cursor on the first instruction of the program.

2. Press [CLEAR MEMORY] 99.

This resets all the data table bits to zero. Perform a total memory clear
before entering the program.

Special Programming Aids

Special programming aids include:

 help directories
 online data change
 online programming
 online programming procedure
 data initialization key

Program Editing
Chapter 16

16-13

Help Directories
The 1770-T3 help directories list the functions or instructions common to a
single multipurpose key such as the [SEARCH] or [FILE] (Table 16.D).
A master help directory is also available which lists the eight function and
instruction directories for the Mini-PLC-2/05 processor and the key
sequence to access them. You can display the master help directory by
pressing [HELP]. You can press [HELP] any time during a multi-key
sequence. The remaining keys in the sequence can be pressed then without
having to press [CANCEL COMMAND].

Table 16.D
Help Directories

Function Key Sequence Mode Description

Help directory [HELP] Any Displays a list of the keys that are used with the
[HELP] key to obtain further directories.

Control function
directory

[SEARCH]
[HELP]

Any Provides a list of all control functions that use
the [SEARCH] key.

Record function
directory

[RECORD]
[HELP]

Any Provides a list of functions that use the
[RECORD] KEY.

Clear memory
directory

[CLEAR MEMORY]
[HELP]

Remote Prog Provides a list of all functions that use the
[CLEAR MEMORY] key.

Data monitor directory [DISPLAY]
[HELP]

Any Provides the choice of data monitor display
accessed by the [DISPLAY] key.

File instruction
directory

[FILE] [HELP] Any Provides a list of all instructions that use the
[FILE] key.

Sequencer instruction
directory

[SEQ][HELP] Any Provides a list of all instructions that use the
[SEQ] key.

Block transfer directory [BLOCK XFER]
[HELP]

Any Provides a list of all instructions that use the
[BLOCK XFER] key.

All directories [CANCEL COMMAND] Any To terminate.

Important: If a particular function or instruction directory or an item in a
directory is not available with the Mini-PLC-2/05 processor, the industrial
terminal displays a “FUNCTION NOT AVAILABLE WITH THIS
PROCESSOR” message.

Online Data Change
While the processor is in the run/program mode, you can change the lower
12 bits of a word or word instruction. This excludes Mathematics and Put
instructions, or certain data of a block instruction.

Program Editing
Chapter 16

16-14

Keystrokes: You can change the lower 12 bits of a word by performing
the following steps.

1. Position the cursor on the appropriate instruction and press
[SEARCH] 5 1.

The message “ON-LINE DATA CHANGE, ENTER DIGITS FOR:
<Required Information>” is displayed near the bottom of the screen. The
new digits are displayed in a command buffer as they are entered.

2. Press [INSERT] to enter the data into memory.

3. To terminate this function, press [CANCEL COMMAND].

ATTENTION: When the address of an instruction whose data
is to be changed duplicates the address of other instructions in
user program, this could cause unwanted machine operation.
This may result in damage to equipment and/or injury to
personnel. The consequences of the change for each instruction
should be examined beforehand.

Important: When the memory write protect is activated by the EEPROM
back-up memory, you cannot perform an online data change for addresses
above 177. If you attempt this change, the industrial terminal will display
the error message: MEMORY PROTECT ENABLED.

Online Programming
Online programming allows you to change the program during machine
operation (processor is operating in the run/program mode and memory
write protect is not active).

ATTENTION: Assign the task of online programming only to
an experienced programmer who understands the nature of
Allen-Bradley programmable controllers and the machinery
being controlled. Check and re-check proposed online changes
for accuracy. Assess all possible sequences of machine
operation resulting from the change in advance. Be absolutely
certain that the change must be done online and that the change
solves the problem without introducing additional problems.
Notify personnel in the machine area before changing machine
operation online.

To minimize the chances of error, maintain accurate data table assignments
sheets and use the data initialization key described in this section.

Program Editing
Chapter 16

16-15

Online Programming Procedure
You can make the following changes to your program in the online
programming mode:

 insert an instruction
 remove an instruction
 insert a rung
 remove a rung
 change an instruction or instruction address

The online programming mode is accessible from the industrial terminal
by pressing the key sequence [SEARCH] 52. The processor module must
be in the run/program mode. The heading, “ON-LINE PROGRAMMING”
appears in the top right- hand corner of the screen highlighted in
reverse video.

You can not enter the following instructions during online programming:

 temporary end
 MCR
 ZCL
 JMP
 JSR
 block transfer read and write

The procedure for online programming in run/program mode is similar to
the procedure for editing in program mode. However, the following three
keys have a special purpose in online programming:

 [RECORD}
 [CANCEL COMMAND]
 [DATA INIT]

Use the [RECORD] key to enter a change to your program. Once pressed,
the changed program is active.

Use the [CANCEL COMMAND] key to abort any online programming
operation prior to pressing the [RECORD] key. Pressing [CANCEL
COMMAND] restores the ladder diagram display and program logic to its
original state prior to the online programming operation. You can also use
it to terminate the online programming mode.

Program Editing
Chapter 16

16-16

You must enter two types of information when programming the following
instructions:

 Get
 Equal to
 Less than
 Timers
 Counters
 Files
 Sequencers

The two types of information needed are the instruction and
operating parameters.

Important: Operating parameters are used only for file and
sequencer instructions.

The data stored at the instruction address is divided into two sections:

 status bits (bits 14-17)
 BCD values (bits 00-13)

During program execution,these bits are constantly changing to reflect
current states and values of program instructions. Therefore, when
programming on line, you must decide whether to use the current data or
enter new data.

Use [DATA INIT] when adding an instruction containing new data. Do
not use it when adding an instruction that uses the data at a
pre-assigned address.

The [DATA INIT] key performs two functions in the online
programming mode:

 It allows entry of BCD data values (stored at the instruction address).
 It resets status bits.

Use the [DATA INIT] key when programming a data instruction whose
address is not currently being used in the program. If you do not use
[DATA INIT], data at the new address (possibly remaining from previous
programming) may interfere with proper machine operation when you
insert the new instruction into the program.

Data Initialization Key

Program Editing
Chapter 16

16-17

ATTENTION: When the address of a new instruction
duplicates the address of other instructions in the program, the
[DATA INIT] key should not be used without first assessing the
consequences. Pressing the [DATA INIT] key zeros out the
status bits stored at the existing instruction address. This may
cause unwanted machine motion and result in equipment
damage and/or injury to personnel.

To look for a specific instruction, press [SEARCH] <instruction>. To look
for a specific address, press [SEARCH] <address>. This helps you to
determine addresses currently used in your program.

To locate all addresses (excluding those associated with Examine On and
Examine Off instructions and those contained within files) press
[SEARCH][8] <address>. The address entered is the word address for the
Output Energize, Latch and Unlatch instructions, the 1770-T3 terminal
locates all of the bit addresses associated with the word address.

The message “SEARCH FOR” and the entered key sequences are
displayed at the bottom of the screen. The message “EXECUTING
SEARCH” appears temporarily. The industrial terminal begins to search
for the address and/or instruction from the cursor’s position. It looks past
the temporary end and subroutine area boundaries to the END statement.
Then, it continues searching from the beginning of the program to the point
where the search began.

If found, the rung containing the first occurrence of the address and/or
instruction is displayed as well as the rungs after it. If you press
[SEARCH] again, the next occurrence of the address and/or instruction is
displayed. When another occurrence cannot be located or all addresses
and/or instructions have been found, a “NOT FOUND” message appears.

If the instruction is found in the subroutine area or part the temporary end
instruction, the area in which it is found is displayed in the lower right
hand corner of the screen.

Press [CANCEL COMMAND] at any time to terminate this function. All
other keys are ignored during the search.

In summary, use [DATA INIT] to:

 enter a data instruction with an unused address
 enter new data
 clear the status bits of an already used address

We described how to edit instructions in your program. The next chapter
shows how to generate messages.

Chapter Summary

Chapter

17

17-1

Report Generation

This chapter describes how to generate messages containing:

 ASCII characters
 graphic characters
 variable information

You can use the report generation function of the 1770-T3 industrial
terminal to generate messages that contain ASCII and graphic characters,
and variable data table information. The processor must be in the PLC-2
mode. Messages are stored in the processor’s memory after the END of
program statement. These messages may be displayed or printed manually
or automatically.

The 1770-T3 industrial terminal report generation features include:

 up to 70 messages - you can choose the number of messages to
be stored.

 simple programming - only 20 or 3 rungs of programming are required
to display a message by program logic

 selectable communication rates - you can choose from seven
communication rates: 110, 300, 600, 1200, 2400, 4800 or 9600 bits
per second

 selectable parity bit - you can choose odd, even or no parity

Messages are entered into memory from either the 1770-T3 industrial
terminal or a peripheral device connected to channel C of the industrial
terminal. Use one of two optional keytop overlays on the 1770-T3
industrial terminal, depending on whether graphic characters are
desired (Figure 17.1):

Chapter Objectives

Report Generation
Chapter 17

17-2

Figure 17.1
Alphanumeric Keytop Overlays

MODE
SELECT

ESC

CTR

SHIFT SHIFT

'
1

"
2

#
3

$
4

%
5

&
6

,
7

(
8

)
9

-
0

*
:

=
_

LOCK

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M , . /
^] < > ?

[\ +

@
LINE
FEED RETURN

;
RUB
OUT

REPT
LOCK

MODE
SELECT

ESC

CTR

SHIFT SHIFT

'
1

"
2

#
3

$
4

%
5

&
6

,
7

(
8

)
9

-
0

*
:

=
_

LOCK

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M , . /

] > ?

[\ +

@
LINE
FEED RETURN

;
RUB
OUT

REPT
LOCK

<

10160-I

ALPHANUMERIC CAT. NO. 1770 KAA

 1982 ALLEN-BRADLEY

Alphanumeric
Keytop Overlay
(1770-KAA)

 1982 ALLEN-BRADLEY

Alphanumeric/Graphic
Keytop Overlay
(1770-KAB)

ALPHANUMERIC GRAPHICS CAT. NO. 1770 KAB

 Alphanumeric Keytop Overlay (cat. no. 1770-KAA)
 Alphanumeric/Graphics Keytop Overlay (cat. no. 1770-KAB)

The messages are displayed manually or printed on the 1770-T3 industrial
terminal or peripheral device by a key sequence each time a message is
desired. They can also be activated program control by programming
specific data table bits in the ladder diagram program.

Report Generation
Chapter 17

17-3

Manually Initiated Report Generation

If processor operation is changed to the run/program mode, the processor
automatically changes from automatic to manual report generation mode.
Every time you change the mode of operation, the peripheral device
displays a prompt to indicate the current operating mode.

Automatic Report Generation

Messages are printed through program control automatically by
energizing specific message requires bits using Output Latch and Output
Unlatch instructions.

You can access automatic report generation is the processor is in the
remote test, or run/program mode. To do this press [SEARCH] 40 or
[M][R][RETURN]. It can also be activated automatically upon
initialization of the industrial terminal if you move parity switches 4
and 5 to the up position on the industrial terminal’s main logic
board (Figure 17.2).

Figure 17.2
Parity Switch Locations

1 2 3 4 5 6

10664�I

Once automatic report generation is activated, the message request bits are
scanned by the industrial terminal for a false-to-true transition. Each time
one of the request bits goes true, the corresponding message is
printed automatically.

You can terminate automatic report generation by pressing [ESC]. To
return to ladder diagram display, press [ESC] again. Pressing [CANCEL
COMMAND] also terminates automatic report generation. The display
returns to the ladder diagram if automatic report generation was entered by
a command from a peripheral device.

Messages 1�6

Messages 1-6 use bits 10-15 of word 027 as message request bits. All
other messages have a user-defined file of message request bits for control.

Generating Messages

Report Generation
Chapter 17

17-4

The upper byte of word 027 is used to control messages 1-6. Bit 027/10 is
the request bit for message number 1 and so on. Bit 027/16, the busy bit is
set when any of messages 1-6 are requested and remains set until all
requested messages have been printed. Once all messages are printed, bit
027/17 will stay on for 300 milliseconds and is then reset.

Additional Messages

The upper byte of each message control word contains the request bits for
eight messages. There is an easy way to determine the message number
from the bit which requests it. The three right-most digits in the bit
address are coded to the message number. For example, if message
number 312 is of interest, bit 12 of the third message control word requests
message 312 on a false-to-true transition (Figure 17.3).

Figure 17.3
Bit Address�Message Number Relationship

0
1
2
3
4
5
6
7

201 010-017
110-117
210-217
310-317
410-417
510-517
610-617
710-717

202
203
204
205
206
207
210

Control Word Control Word Message
NumbersAddressNumber

10218

The control word addresses are user selected.

Message number 3XX has a message request bit at address 204/XX. Message request bit
204/XX, when enabled, will activate message number 3XX where XX are bit numbers
00�178.

Unlike messages 1-6 which share a common done bit (027-17), the
additional 64 messages each have a separate done bit. After a particular
message is printed, the done bit is set until the user program resets the
request bit. Done bits are located in the lower byte of the message control
words. Figure 17.4 shows this relationship. For example, if 404/15 is the
request bit for a message, the done bit is located at 404/05, one byte below
the request bit.

Report Generation
Chapter 17

17-5

Figure 17.4
Message Request Bit�Done Bit Relationship

10219�I

Message Request Bits Message Done Bits

17 10 07 00
Message
Control
Word

The message print command is valid for message 0. It prints out the
message control word addresses in a form similar to that shown in
Table 17.A. If the location of the message control file is to be changed or
you no longer need message 0, it can be deleted with the message delete
command and re-entered at any time.

Table 17.A
Example Message Control Word�Message Number Relationship

Control
Words

Message
Numbers

200 010�017

201 110�117

202 210�217

203 310�317

204 410�417

205 510�517

206 610�617

207 710�717

IMPORTANT: This table assumes user selected message control words begin at 2008.

ATTENTION: Do not use message control words for any other
purpose. This warning is especially critical for output image
table locations when output or block transfer modules are
placed in corresponding slots. Failure to observe this warning
could result hazardous or unexpected machine operation. This
could result in damage to equipment and/or injury to personnel.

Report Generation
Chapter 17

17-6

Control Codes and Special Commands

When entering a message, there are several keys and special industrial
terminal control codes that you can use to move through the display and
perform a variety of functions (Table 17.B and Table 17.C). For example,
you can access graphic capability with the control code, [CTRL][P][5][G].
In addition, standard ASCII control codes can be used with the industrial
terminal (Table 17.B). These codes, although not displayed, can be
interpreted and acted on by a peripheral device connected to channel C.

Table 17.B
Alphanumeric/Graphic Key Definitions

Key Function

[LINE FEED] Moves the cursor down one line in the same column.

[RETURN] Returns the cursor to the beginning of the next line.

[RUB OUT] Deletes the last character or control code that was entered.

[REPT LOCK] Allows the next character that is pressed to be repeated continuously until
[REPT LOCK] is pressed again.

[SHIFT] Allows the next key pressed to be a shift character.

[SHIFT LOCK] Allows all subsequent keys pressed to be shift characters until [SHIFT] or
[SHIFT LOCK] is pressed.

[CTRL] Used as part of a key sequence to generate a control code.

[ESC] Terminates the present function.

[MODE SELECT] Terminates all functions and returns the mode select display to
the screen.

Blank Yellow Keys Space keys. Move the cursor one position to the right.

Report Generation
Chapter 17

17-7

Table 17.C
Industrial Terminal Control Codes

Control Code
Key Sequence

Function

[CTRL][P]
[Column #][;]
[Line #][A]

Positions the cursor at the specified column and line number
[CTRL][P][A] positions the cursor at the top left corner of the screen.

[CTRL][P][F] Moves the cursor one space to the right.

[CTRL][P][U] Moves the cursor one line up in the same column.

[CTRL][P][5][C] Turns cursor on.

[CTRL][P][4][C] Turns cursor off.

[CTRL][P][5][G] Turns on graphics capability.

[CTRL][P][4][G] Turns off graphics capability.

[CTRL][P][5][P] Turns Channel C outputs on.

[CTRL][P][4][P] Turns Channel C outputs off.

[CTRL][I] Horizontal tab that moves the cursor to the next preset 8th position.

[CTRL][K] Clears the screen from cursor position to end of screen and moves the
cursor to the top left corner of the screen.

Key Sequence Attribute 1

[CTRL][P][0][T] Attribute 0 = Normal Intensity

[CTRL][P][1][T] Attribute 1 = Underline

[CTRL][P][2][T] Attribute 2 = Intensify

[CTRL][P][3][T] Attribute 3 = Blinking

[CTRL][P][4][T] Attribute 4 = Reverse Video

Any three attributes can be used at one time using the following key sequence:
[CTRL][P][Attribute #][;][Attribute #][;][Attribute #][T]

1

Report Generation
Chapter 17

17-8

Table 17.D
ASCII Control Codes

Control
Code 1

Display 2 ASCII
Mnemonic

Name

CTRL 0 3 NU NUL NULL

CTRL A 3 SH SOH START OF HEADER

CTRL B 3 SX STX START OF TEXT

CTRL C 3 EX ETX END OF TEST

CTRL D ET EOT END OF TRANSMISSION

CTRL E EQ ENQ ENQUIRE

CTRL F AK ACK ACKNOWLEDGE

CTRL G BL BEL BELL

CTRL H BS BS BACKSPACE

CTRL I HT HT HORIZONTAL TAB

CTRL J LF LF LINE FEED

CTRL K VT VT VERTICAL TAB

CTRL L FF FF FORM FEED

CTRL M CR CR CARRIAGE RETURN

CTRL N SO SO SHIFT OUT

CTRL O SI SI SHIFT IN

CTRL P DL DLE DATA LINK ESCAPE

CTRL Q D1 DC1 DEVICE CONTROL 1

CTRL R D2 DC2 DEVICE CONTROL 2

CRTL S D3 DC3 DEVICE CONTROL 3

CTRL T D4 DC4 DEVICE CONTROL 4

CTRL U NK NAK NEGATIVE ACKNOWLEDGE

CTRL V SY SYN SYNCHRONOUS IDLE

CTRL W EB ETB END OF TRANSMISSION BLOCK

CTRL X CN CAN CANCEL

CTRL Y EM EM END OF MEDIUM

CTRL Z SB SUB SUBSTITUTE

ESCAPE EC ESC ESCAPE

CTRL, FS FS FILE SEPARATOR

CTRL� GS GS GROUP SEPARATOR

CTRL. RS RS RECORD SEPARATOR

CTRL/ US US UNIT SEPARATOR

DELETE DT DEL DELETE

Some ASCII control codes are generated using non standard keystrokes.
Will be displayed when Control Code Display option is set ON in Alphanumeric mode, only. (Not in Report Generation mode).
Invalid key in Report Generation mode.

1

2

3

Report Generation
Chapter 17

17-9

The 1770-T3 industrial terminal screen size is 80 columns across by 24
lines down. An example message using graphic and alphanumeric
characters is shown in Figure 17.5.

Figure 17.5
Example Graphic/ Alphanumeric Message

Liquid

Heater
Coil

Outlet

Inlet

Temperature
Sensor

Steam Return

Steam Inlet

Tank

PV

SP

10261�I

The control code, [CTRL][P]<Column #>[;]<Line #<[A], should be used
for cursor positioning to conserve memory when possible. For example,
[CTRL][P][3][9][;][9][A] uses 3 words of memory, storing CRTL P in one
byte and remaining characters in one byte each. If the cursor had been at
column 0, and line 0, normal space, and line feed commands were used, it
would have taken 24 words of memory to accomplish the same thing.
Note that the column and line numbers begin at zero rather than one.

The report generation function is entered by pressing
[RECORD][DISPLAY] on the standard 1770-KCB alphanumeric keytop
overlay. There are six report generation commands used to enter control
words and to store, print, report and delete messages and to display an
index of existing messages. Table 17.E summarizes these commands.

Report Generation Commands

Report Generation
Chapter 17

17-10

Table 17.E
Report Generation Commands

Command Key Sequence Description

Enter report generation
function

[RECORD][DISPLAY] or Set baud rate, (Message
Code Keys)

Puts industrial terminal into report
generation function.

Same (entered from a peripheral device).

Message store [M][S][,](Message Number)[RETURN] Stores message in processor memory. Use [ESC]
to end message.

Message print [M][P][,](Message Number) [RETURN] Prints message exactly as entered.

Message report [M][R][,](Message Number) [RETURN] Prints message with current data table values or
bit status.

Message delete [M][D][,](Message Number) [RETURN] Removes message from processor memory.

Message index [M][I][RETURN] Lists messages used and the number of words in
each message.

Automatic report
generation.

[SEARCH][4][0] or [M][R][RETURN] Allows messages to be printed through
program control.

Exit automatic report
generation

[ESC] or [CANCEL COMMAND] 1 Terminates automatic report generation.

Exit report [ESC] or [CANCEL COMMAND] 1 Returns to ladder diagram display.
Terminates Report Generation Function.

[CANCEL COMMAND] can only be used if the function was entered by a command from a peripheral device.1

Message Control Word File � MS, 0

Bits from eight consecutive user-selected words control the 64 additional
messages (1770-FD series B and all its subsequent revisions).

The eight message control words are determined by establishing a 2 -word
message in data table, called message 0. Store Message 0 by using the
following keystrokes:

[M][S][,] 0 [RETURN]

Report Generation
Chapter 17

17-11

A prompt, MESSAGE CONTROL WORDS (Y DIGITS REQUIRED):
prints. (Y is the number of digits, 3, 4 or 5, of a word address for the
selected data table size.) Enter the beginning word address of the message
control word file. The industrial terminal calculates and displays the
words in the message control word file. You can locate the message
control word file in any unused data table area except processor work areas
and input image table areas. If memory write protect is active, place the
message control word file in the area of data table which can be changed
(010-377). Once you choose the start address, the industrial terminal
displays a table (Table 17.B) which shows the message numbers associates
with each message control word.

Message Store � MS

Accessible only in the run/program mode, use this command to enter
messages in memory. Access the message store command by pressing
[M][S][,]<message number>[RETURN]. Valid message numbers are:

 001-006
 010-017
 110-117
 210-217
 310-317
 410-417
 510-517
 610-617
 710-717

After pressing the key sequence, a READY FOR INPUT message appears.
Any subsequent keys pressed then become part of the message. If you try
to use a message number that already exists, the terminal displays
MESSAGE ALREADY EXISTS.

While entering a message, each key pressed, except [SHIFT][CTRL][ESC]
or [RUB OUT], generates a code that is stored in one byte of memory.
This includes ASCII and graphic characters as well as other keys such as
[LINE FEED], [RETURN] or the [SPACE]. The [RUB OUT] key is not
stored in memory. The [SHIFT] and [CTRL] keys and the next character
in the sequence are stored together in one byte of memory.

You can enter messages which when reported give the current value of a
data table word or byte. The messages can report the on or off status of a
data table bit by using the delimiters shown in Table 17.F.

Report Generation
Chapter 17

17-12

Table 17.F
Address Delimiters

Delimiter Format Explanation Message Report Format

XXX Enter 3�digit word address between delimiters. Displays BCD value at assigned word address.

XXX1
or

XXX0

Enter 3�digit word address and a �1" for upper byte or
a �0" for lower byte between delimiters.

Displays the octal value at assigned
byte address.

XXXXX Enter 5�digit bit address between delimiters. Displays the ON or OFF status of the assigned
bit address.

#XXX# Enter 3,4 or 5�digit word address between delimiters. Displays the BCD value at assigned
word address.

!XXX! Enter 3, 4, or 5�digit word address between delimiters. Displays the 4�digit hex value at address.

&XXX1&
&XXX0&

Enter 3, 4, or 5 digit word address and a �1"for upper
byte or a �0" for lower byte between delimiters.

Displays the octal value at the assigned
byte address.

XXXXX Enter 5, 6, or 7�digit bit address between delimiters. Displays the ON or OFF status of the assigned
bit address.

The desired delimiter is entered before and after the bit, byte, or word
address. The delimiter is used to tell the industrial terminal to print the
current status or value of the bit, byte, or word at the address. You can
enter as many consecutive addresses as needed by sharing the same
delimiter, such as *XXX*XXX*XXX*. The asterisk delimiters are used if
the data table size is less than 512 words (not exceeding address 777).

As an example, to report the on/off condition of a device SR6, during each
cycle of machine operation. Delimiters are used to denote the output
address 013/05, and the cycle counter accumulative value (stored at 030).
The desired message, SR6 is (on or off) in cycle (xxx), is entered into
memory with the following keystrokes:

SR6 [space]IS[space]*01305*[space]IN[space]CYCLE[space]#030#[ESC]

Terminate the message entry with the escape [ESC]key. Until [ESC] is
pressed, all key strokes become part of the message. Pressing [ESC]again
returns to the display to the ladder diagram. Pressing [CANCEL
COMMAND] on the PLC-2 family keytop overlay also terminates
message store, and the display returns to the ladder diagram if a peripheral
device was used to enter report generation mode.

Report Generation
Chapter 17

17-13

Message Print�MP

Accessible in any mode, the message print command is used to print the
contents of a message to verify it. This command is accessed by pressing
[M][P][,]<message number>[RETURN]. Valid message numbers are
listed under MESSAGE STORE.

In the example, the message print command would give the following

MP,

[RETURN]

The screen does not change.

SR6 IS *01305* IN CYCLE #030#

The message print command is self-terminating. You can press [ESC] or
[CANCEL COMMAND] to return to ladder diagram display.

Message Report� MR

Accessible in ay mode, the message report command prints a message with
the current data table value or bit status that corresponds to an address
between the delimiters. This command is accessed by pressing
[M][R][,]<message number>[RETURN].

In the example, the message report command gives the following: (e.g. bit
013/05 is on and counter 030 accumulated value is 5)

MP,

[RETURN]

The screen does not change.

SR6 IS ON IN CYCLE 005

The message report command is self-terminating. When you press [ESC]
or [CANCEL COMMAND], ladder diagram operation resumes.

Report Generation
Chapter 17

17-14

Message Delete� MD

Accessible only in rung/program mode, the message delete command is
used to delete messages from memory. This command is accessed by
pressing [M][D][,] <message number>[RETURN].

The message delete command cannot be terminated before completion. It
self terminates after the message has been cleared from memory and a
MESSAGE DELETED prompt is printed. you can enter [ESC] or
[CANCEL COMMAND] to return to ladder diagram display.

Message Index� MI

Accessible in any mode, the message index command prints a list of the
message numbers used and the amount of memory (in words) used for each
message. In addition, the number of unused memory words available
is listed.

The message index command is accessed by pressing [M][I][RETURN].
This command cannot be terminated before completion. It self-terminates
after the list is completed. To return to ladder diagram display,press [ESC]
or [CANCEL COMMAND].

Using Latch and Unlatch instructions, you can easily program automatic
report generation to handle multiple or simultaneous message requests.
Simultaneous requests are handled by a priority system-the lower the
message number, the higher the priority.

Figure 17.6 shows a sample program that you can use to activate each
message. When the event occurs which requests the message, the request
bit is latched. After the event has occurred and the message is printed (the
done bit comes on), the request bit is unlatched. This technique also
ensures the requested message gets printed once per request.

Figure 17.6
Example Program to Request a Message.

Event

Event

L

Request

Done

L

Request

We showed you how to generate messages that contain ASCII, graphic
characters, or variable data. The next chapter shows how to use several
special programming technique.

Example Programming

Chapter Summary

Chapter

18

18-1

Programming Techniques

This chapter describes several programming techniques you can use for:

 one-shot programming
 automatic re-start
 cascading timers
 temperature conversions
 program control
 bottle filling application

The one-shot programming technique sets a bit for one program scan only.
There are two types of one-shots:

 leading edge
 trailing edge

Leading Edge One�Shot

A leading edge one-shot sets a bit for one scan when its input condition has
made a false-to-true transition. The false-to-true transition represents the
leading edge of the input pulse (Figure 18.1).

Figure 18.1
Leading Edge One Shot

112

04

011

14

253

00
253

00

112

04

253

00

L

011

14

U

011

14

010

00

Chapter Objectives

One�Shot

Programming Techniques

Chapter 18

18-2

When bit 112/04 makes a false-to-true transition, the one-shot bit (bit
253/00) is set on for one scan. The length of time bit 112/04 remains on
does not affect the one-shot bit due to the next two rungs. Bit 011/14 is
latched when bit 112/04 is set or bit 011/14 is unlatched when 112/04 is
reset. During the next scan, either set of conditions prevents bit 253/00
from being set. The one-shot bit is set for another scan only when bit
112/04 makes a true-to-false and then a false-to-true transition.

Trailing Edge One�Shot

A trailing edge one-shot sets a bit for one scan when its input condition has
made a true-to-false transition. The true-to-false transition represents the
trailing edge of the input pulse. Figure 18.2 shows programming for a
trailing edge one-shot.

Figure 18.2
Trailing Edge One�Shot

112

04

L

011

00
112

04

253

00

253

00

U

011

14

010

00

14

253

00

011

When bit 112/04 is set, bit 011/14 is latched. As soon as bit 112/04 makes
a true-to-false transition,the one-shot bit (bit 253/00 is set and bit 011/14 is
unlatched. Bit 153/00 remains on for only one scan. The input bit 112/04
makes a false-to-true transition then a true-to-false transition to set the
one-shot bit for another scan.

You can control start-up automatically when using the EEPROM memory
module. Anytime that an EEPROM to CMOS RAM memory transfer
occurs, bit 02701 in the data table is set by the processor. The program
must reset this bit. This allows the data table to be updated automatically
to the indicated machine position.

Automatic Restart

Programming Techniques
Chapter 18

18-3

The technique shown in Figure 18.3 is used when your program does not
contain any other Master Control Restart instruction. The technique shown
in Figure 18.4 is an alternative if an unused Label instruction (chapter 13)
is available.

Figure 18.3
Automatic Restart Using an MCR Instruction

027

01

MCR

MCR

U

027

OFF 01

USER PROGRAM

Figure 18.4
Automatic Restart Using JMP Instruction

027

01

JMP

U

027

OFF 01

USER PROGRAM

06

06
LBL

The values in the data table at start-up depend on whether or not memory
was retained by the back-up battery. If a battery was used, the data table
contains the values that existed when power was removed. If a battery was
not used, the values programmed into EEPROM transfer into the data table
at power-up.

Start-up conditions for automatic start-up (using one of the suggested
programming techniques) are:

 initial start-up: remove the battery from the system
 in-process start-up after power loss: maintain battery back-up

Programming Techniques

Chapter 18

18-4

Switches on the switch assembly of the I/O chassis determine how and
when EEPROM to CMOS RAM transfer occurs. A transfer takes place
when any change of CMOS RAM memory content occurs while the
battery is being changed. If a transfer occurs (memory was altered), the
data table contains the values programmed into the EEPROM. If transfer
did not occur, memory did not change. The data table contains the values
that existed at the time system power was removed.

Cascading is a programming technique that extends the ranges of timer
and/or counter instructions beyond the maximum values that may be
accumulated. Figure 18.5 illustrates a 24-hour clock program. Again, we
emphasize not to enter these instructions using your on-line
production equipment.

Figure 18.5
24 Hour Clock

030

15

030

1.0

15

030 031
CTU

TON

PR 060
AC 005

PR 060
AC 000

15

031 032
CTU

PR 060
AC 000

15

031 032
CTR

PR 060
AC 000

15

032 032
CTR

PR 024
AC 000

Rung 1

Rung 2

Rung 3

Rung 4

Rung 5

ATTENTION: Do not use the clock program as a real time
clock device. Failure to observe this caution may result in an
inaccurate program.

Cascading Timers

Programming Techniques
Chapter 18

18-5

A synopsis of the operation’s cycle is:

Rung 1: When the conditions are true the timer starts.

Rung 2: When AC=PR (accumulated value equals preset value) of
 the timer, counter 031 increments.

Rung 3: When AC=PR of counter 031, counter 032 increments.

Rung 4: When AC=PR of counter 031, 031/15 resets counter 031’s
accumulated value.

Rung 5: When AC=PR of counter 032, 032/15 resets counter 032’s
accumulated value.

Do not use the following examples to program online production
equipment. These examples are for demonstration purposes only.

Application One

This application illustrates the conversion of temperature from degrees
Celsius to degrees Fahrenheit (Figure 18.6).

Figure 18.6
Converting Temperature Values

100

200 203
X

900009

201
GG

202
X

000

900

203 206
:

005

204
GG

205
:

180. 000

180

205 210
+

032

207
GG

212

212

210 033
TON

190

211
<G

1.0
PR 003
AC 000

15

033 011

15

17

033 034
CTU

PR 999
AC 000

212

210 011
L

212

220
=G

16

14

110 011

16
U

Temperature Conversions

Programming Techniques

Chapter 18

18-6

Connect a thermocouple to an input module which measures Celsius
temperature. A block transfer read transfers the temperature into the
processor’s data table.

Convert the recorded Celsius temperature in the data table to Fahrenheit
values for display (Formula: oF = (9/5oC) + 32). This temperature must
maintain certain range values for your application. You want to:
 monitor the temperature between 87o to 100oC
 count the times the value falls below 190oF
 count the timers the values stay at 212oF

Here is an explanation of each rung:

Rung 1: The Get instruction at address 200 multiplies the
temperature 100oC by 9 and stores 900 in address 203.

Rung 2: The Get instruction at address 203 divides 5 into 900 and
stores the quotient, 180, in address 205.

Rung 3: The Get instruction at address 207 adds 32 to the value
180 which is located at get addresses 205. The sum of 212
is stored at address 210. Thus 100oC = 212oF.

Rung 4: If the displayed temperature is less than 190oF, the timer
initiates timing for three seconds.

Rung 5: If three seconds have elapsed, an output at address 011/15
energizes a heating device that brings the temperature back
into the desired range.

Rung 6: Counter 034 counts the number of times the value falls
below 190oF. Therefore, when rung 4 is true the counter
increments.

Rung 7: When the temperature equals 212oF latching 011/16
enables an alarm.

Rung 8: To shut the alarm off, unlatch 011/16. To do this, an
operator would press a pushbutton connected to
address 011/16.

Application Two

This application is similar to application one, but it only records the
converted temperature reading every five seconds (Figure 18.7).

Programming Techniques
Chapter 18

18-7

Figure 18.7
Recording Temperature Values Every 5 Seconds

030

15

030

1.0

15

030 02
JSR

TON

PR 005
AC 000

06
LBL

100

200 203
X

900009

201
GG

202
X

000

900

203 206
:

005

204
GG

205
:

180. 000

180

205 210
+

032

207
GG

212

RET

Subroutine Area

Here is an explanation of each rung:

Rung 1: When rung 1 is true, the timer (this is an example of a free
running timer) starts timing.

Rung 2: The JSR instruction jumps to the subroutine area label
instruction when the timer’s accumulated value reaches
5 seconds.

Rungs 3–5: Converts Celsius temperature to Fahrenheit temperature
exactly as in application one.

Rung 6: The Return instruction signals the processor to return to
the main program area.

ATTENTION: Make allowances for conditions which could be
created by the use of the Jump to Subroutine instruction.
Subroutine program rungs are not scanned by the processor
unless initiated by the Jump to Subroutine is initiated by the
main program. The processor does not scan the subroutine
program unless initiated by a Jump to Subroutine in the Main
Program. Timers and counters within these rungs cease to
function. You should reprogram critical rungs in the main
program area.

Programming Techniques

Chapter 18

18-8

This application illustrates the program control instructions, master control
reset (MCR) and zone control last state (ZCL) (Figure 18.8).

Figure 18.8
Program Control

110

17
MCR

RET

110

16 15

011

MCR
Master Control Reset

110

17
ZCL

110

16 15

011

Zone Control Last State

Common applications such as varying either packaged size or receipt
ingredient use these instructions. For example, packaging a product in two
different size of packages or converting a food product to a dietary food
product by changing its sugar content.

Before you program these two instructions, think about how you want
outputs to react when you change the process or operation.

Using the MCR instruction, rung logic shows:

 If address 110/17 is false, then bit 011/15 is energized if 110/16 is set.
This is normal operation.

 If address 110/17 is true, then bit 011/15 is reset regardless of the state
of 110/16.

Using the ZCL instruction, rung logic shows:

 If address 110/17 is false, then bit 011/15 is energized if 110/16 is set.
This is normal operation.

 If address 11/17 is true, then bit 011/15 if left in its last state regardless
of the state 110/16. All outputs within a ZCL zone are left in their last
state when the zone is disabled (start fence is false).

Program Control

Programming Techniques
Chapter 18

18-9

This application starts when a bottle is placed on a conveyor, it ends when
the bottle is filled and ready for the next sequence of operations. This
application is totally automated. This application is only for demonstration
purposes. Do not try to program this application using your online
production equipment.

Documenting Your Program

Here is a list of tasks for you to practice good documentation habits.

This task: Is this:

Task 1 Write out the sequence of operation that would explain the
production process.

Task 2 Make two lists: one for input devices and one for output devices.

Task 3 Complete the sequence worksheets which are located in this
chapter. They are NO TAG and NO TAG. Additional worksheet
are available through your local Allen�Bradley distributor or sales
engineer.

Task 4 Write out your processor's program using the
sequencer instructions.

Task 5 Program your processor. Test out the program then place your
worksheets and all related information in a notebook for future
reference.

Task 1: Sequence of Operation

1. Four bottles are placed at the beginning of a moving conveyor.

2. The bottles are at station one ready to be filled.

3. Each bottle actuates a photocell indicating that each bottle is present.

4. One fill tube is inserted into each bottle.

5. The file tubes fill each bottle for three seconds.

6. The file tubes are removed from each bottle.

7. A solenoid moves the bottles to the next station.

Bottle Filling Application

Programming Techniques

Chapter 18

18-10

Task 2: Lists Your Devices

Input Devices
The input devices and their abbreviations are:

Input Device Abbreviation Comment

Photocell
Fill tube extended
FIll TUbe retracted
Automated
Timer

PC
LS1
LS2
Auto
Timer

Bottle in Place
Limit Switch
Limit Switch
Type of Operation
3 Seconds

Output Devices
The output devices and their abbreviations are:

Output Device Abbreviation Comment

Conveyor motor
Conveyor motion forward
Fill tube motor
Fill tube forward
Fill tube filling
Fill tube reverse
Solenoid

CM
CMF
FTM
FTF
FTS
FTR
SOL

Initializing motion

Fluid starts to flow

Moves the bottles off the conveyor

Task 3: Completing Your Worksheets

Figure 18.9 and Figure 18.10 illustrate completed sequencer worksheets.
Notice that the first step of the sequencer output is the last step of your
operation. Table 18.A describes each step. To aid you in understanding
this documentation concept, read table 18.A while looking at each figure.

Programming Techniques
Chapter 18

18-11

Figure 18.9
Completed Sequencer Input Worksheet

Bottle Filling Applications

17 10 07 00

WORD #1

PROJECT NAME

DESIGNER

PROCESSOR

DATA TABLE ADDR

PAGE OF

TO

Mini–PLC–2/05

A
u

to

L
S

1

L
S

2

P
C

MASK
STEP

FROM ADDR

TO ADDR

D
E
V
I
C
E

N
A
M
E

1
2
3
4
5
6

17 10 07 00

WORD #2
17 10 07 00

WORD #3
17 10 07 00

WORD #4

T
im

e
r

Engineer

1 2

COUNTER ADDR:

WORD ADDR:

MASK ADDR:

FILE TO SEQ LENGTH:

SEQUENCER Input

200

110

070

400

Timer 200

071

413 006

ALLEN�BRADLEY
Programmable Controller

SEQUENCER TABLE BIT ASSIGNMENTS

Note: A filled in box means that each device is actuated. 10145�I

Programming Techniques

Chapter 18

18-12

Figure 18.10
Completed Sequencer Output Worksheet

17 10 07 00

WORD #1

PROJECT NAME

DESIGNER

PROCESSOR

DATA TABLE ADDR

PAGE OF

TO

Bottle Filling Applications Mini–PLC–2/05

F
T

S

F
T

F

S
O

L

F
T

R

MASK

STEP

FROM ADDR

TO ADDR

D
E
V
I
C
E

N
A
M
E

1
2
3
4
5
6

17 10 07 00

WORD #2

17 10 07 00

WORD #3

17 10 07 00

WORD #4

T
im

e
r

Engineer

1 2

COUNTER ADDR:

WORD ADDR:

MASK ADDR:

FILE TO SEQ LENGTH:

SEQUENCER Input

200

012

075

600

013

076

613 006

ALLEN�BRADLEY
Programmable Controller

SEQUENCER TABLE BIT ASSIGNMENTS

F
T

M

C
M

T

C
M

Note: A filled in box means that each device is actuated. 10148�I

Programming Techniques
Chapter 18

18-13

Table 18.A
Completed Sequencer Steps

This table outlines sequencer steps.

Sequencer Input Instruction Sequencer Output Instruction

Step 2 � A photocell detects
a bottle.

Step 1 � Automation begins.
NOTE: This process is fully automated,
therefore each block in each
step is filled.

Step 2 � Conveyor motor is started,
and the forward motion begins.

Step 3 � Fill the motor and its forward
motion begins. The conveyor motor is
on, but not moving forward.

Step 3� The fill tube extension
begins closing limit switch 1.

Step 4 � Bit 15 of the timer is set.

Step 5 � The fill tube retracts
closing limit switch 2.

Step 6 � The process is left in
automation waiting for more bottles

Step 4 � The fill tube begins filling the
bottles, bit 17 of the timer is set.

Step 5 � Filling is completed.

Step 6 � A solenoid moves the bottles to
the next operation; the conveyor
moves forward.

Step 1 � The conveyor moves forward

Task 4: Processor Instruction Program

Figure 18.11 is an example of a program rung that represents
your worksheets.

Figure 18.11
Program Rung Example

EN
Sequencer Output

Counter Addr:
Current Step:
Seq Length:

200
001
006

DN

Words Per Step:
File:
Mask:

2
600� 613
075� 076

200

17

200

15

Output Words
1: 012
3: 4:

200
001
006

2
400� 413
070� 071

1: 110
3: 4:

Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words Per Step:
File:
Mask:

Input Words
2. 201 2. 013

Task 5: Programming Your Processor Module

Enter the program written for Task 4.

We showed you several programming techniques. The next chapter
describes special troubleshooting techniques.

Chapter Summary

Chapter

19

19-1

Program Troubleshooting

This chapter describes special troubleshooting technique:

 run time errors
 bit monitor/manipulation
 contract histogram
 force functions
 temporary end instruction
 ERR message for an illegal opcode

What are Run Time Errors?

Run time errors are errors that occur while the processor executes your
program, and are only apparent during this time. These errors result from
improper programming techniques. For example, it is possible to program
a series of instructions in which the processor cannot properly perform the
operation. Or it is possible to program paired instructions, such as a
Jump/Label, with improper syntax.

In remote test mode, if a run-time error occurs, your processor module
halts program operation. The RUN/FAULT indicator illuminates red. In
the run/program mode, you get no indication.

Diagnosing a Run Time Error

The following steps help you diagnose rung time errors:

1. Connect your industrial terminal to the processor.

2. Turn on the industrial terminal and notice the message, RUN-TIME
ERROR. If the industrial terminal is already connected, then your
ladder diagram is replaced by the display showing the run-time
error message.

3. Press 11 to display the instruction that caused the error.

4. Correct the run time error by editing your program

Chapter Objective

Run Time Errors

Program Troubleshooting

Chapter 19

19-2

Table 19.A
Possible Causes of Run Time Errors

Instruction Cause

Jump Jumping from the main program into the subroutine area or vice versa.
Jumping backwards.
Omitting the label instruction corresponding to the jump instruction.
Jumping over a temporary end instruction.

Label Multiple placement of the same label identification number.
Removing a label instruction but leaving its reference, the jump or
jump to subroutine instructions.

Jump to subroutine To begin your main program.
To jump forward in your main program.
Use in the subroutine area.
Omitting a return instruction.
Omitting a corresponding label instruction.
Jumping over a temporary end instruction.

Return Processor does not find a return instruction from the subroutine area.
Using a return instruction outside the subroutine area.

Files AC>PR
Duplicating counter's address.
Manipulating the counter's accumulated value by means of external
programming equipment or data highway hardware.

Sequencer File address is out of range.
Preset value equals 0.

Block transfer Giving the module address a non�existent I/O rack number.
Incorrect block length value.

5. Restart your processor.

Bit Monitor Function

Bit monitor allows the status of all 16 bits of any data table word to be
displayed. It can function when the processor is operating in any mode.
By pressing [SEARCH]53<word address>, the status of all 16 bits of the
desired word is displayed. While the cursor is in the word address field,
you can use the [1] and [0] keys to change address digits.

The status of the 16 bits in the next highest or next lowest word address
can be displayed by pressing the [↑] or [↓] keys, respectively. Also, you
can use bit monitor to display the status of force conditions.

Bit Manipulation Function

Bit manipulation allows image table bits to be selectively changed. It is
useful in setting initial conditions in the data of word instructions. Bit
manipulation can function when the processor is operating in the program

Bit Monitor/Manipulation

Program Troubleshooting
Chapter 19

19-3

mode. When in remote test, or run/program, the program can override the
bit status in the next scan.

Use the [←] and [→] keys to cursor over to any bit. With the cursor on the
desired bit, you can change its status by pressing 1,0.

To terminate this function, press [CANCEL COMMAND].

ATTENTION: If it is necessary to change the status of any data
table bit, be sure that the consequences of the change are
thoroughly understood. If not, unpredictable machine operation
could occur directly or indirectly as a result of changing the bit
status. Damage to equipment and/or injury to personnel
could result.

The contact histogram function displays the on or off history of a specific
data table bit. You can monitor this function on the industrial terminal. It
can also be printed by a peripheral printer. If you use a peripheral device,
set the baud for channel C of the industrial terminal.

Data table bits, excluding those in the processor work areas, can be
accessed by the contract histogram command. The on/off status of the bit
and the length of time the bit remained on or off (in hours, minutes and
seconds) is displayed. The seconds are displayed within 0.01 second
(10 ms) resolution.

There are two operating modes for the contact histogram, shown in
Table 19.B:

Contact Histogram

Program Troubleshooting

Chapter 19

19-4

Table 19.B
Contact Histogram Functions

Function Key Sequence Mode Description

Continuous contact
histogram

[SEARCH][6]
(Bit Address)
[DISPLAY]

Any Provides a continuous display of the on/off history of the
addressed bit in hours, minutes and seconds.

Can obtain a hardcopy printout of contact histogram by
connecting a peripheral device to Channel C and selecting
proper baud rate before indicated key sequence.

Paged Contact histogram [SEARCH][7]
(Bit Address)
[DISPLAY]

[DISPLAY]

Any Displays 11 lines on/off history of the addressed bit in hours,
minutes and seconds.

Displays the next 11 lines of contact histogram.

Can obtain a hard copy printout of contact histogram by
connecting peripheral device to Channel C and selecting
proper baud rate.

Either [CANCEL COMMAND] To terminate.

Continuous: Accessed by pressing [SEARCH] 6. The user command
displays the histogram from that instant.

Paged: Accessed by pressing [SEARCH]7. The user command displays
the histogram one page at a time and requires operator action to continue
the histogram once the screen is filled.

After pressing [SEARCH] 6 or [SEARCH] 7, enter the bit address to be
monitored. Bit addresses larger than 5 digits do not require leading zeros
or the EXPAND ADDR key.

After pressing [DISPLAY], the data of the histogram is displayed on every
other line with 5 frames of data per line. Each frame of data contains the
on/off status and the length of time in the format shown in Figure 18.1.

Figure 18.1
Contact Histogram Display

hr.mn.sec.

�OFF or ON 00:00'00.00�

�ON 00:00:00.00�OFF 00:00:00.00�ON 00:00:00.00�

On Time Off Time On Time

If the bit is changing states faster than can be printed or displayed, a buffer
stores these changes. If the buffer becomes full, all monitoring stops and a
BUFFER FULL message is displayed. Subsequent changes in the on/off
status of the device are lost until the histogram function finishes printing

Program Troubleshooting
Chapter 19

19-5

out or displaying the data in the buffer. Then a BUFFER RESET message
is displayed and the histogram function resumes.

The industrial terminal screen can display up to 11 lines of data at one
time. In the continuous mode, the screen automatically displays a new page
of data when the screen is full.

In the paged mode, 11 lines fill the screen and the histogram stops. The
buffer stores the subsequent changes until you press [DISPLAY] again.
One page of data stored in the buffer is displayed.

To terminate the contact histogram, press [CANCEL COMMAND]. Data
table words and program words are counted and displayed.

There are two types of force functions:

 force on
 force off

What are Force Functions?

You can use force functions to selectively force an input bit or output on or
off. Forcing is used only with real I/O. The processor must be operating
in either the remote test or run/program mode.

Force functions determine the on/off status of input and output bits by
overriding the I/O scan. You can force an input bit on or off regardless of
the actual state of the corresponding input device. However, forcing an
output causes the corresponding output device on or off regardless of the
rung logic or the actual status of the output image table bit.

When you attempt forcing, the processor I/O scan slows down to do the
forcing. When forcing is terminated, the processor automatically switches
back to the faster I/O scan mode.

Important: When in remote test mode, the processor holds outputs off
regardless of attempts to force them on, even though the output bit
instructions are intensified.

Force Functions

Program Troubleshooting

Chapter 19

19-6

Using a Force Function

You can apply forcing functions in either of two ways using:

 bit manipulation/monitor display of an I/O word
 ladder diagram display of user program

By pressing [SEARCH] 53 <address>, the bit status and force status of the
16 corresponding input bits or output terminals of the desired word is
displayed. use the [<-] and [->] keys to cursor to the desired bit. Or, in the
ladder diagram display, you can apply forcing by placing the cursor on an
examine or energize instruction. In either case, after you position the
cursor, you can use any one of the following key sequences for placing or
removing a forced condition:

[FORCE ON][INSERT]
[FORCE OFF][INSERT]
[FORCE ON][REMOVE]
[FORCE OFF][REMOVE]

You can remove all force on or all force off functions at once in ladder
diagram display by pressing either of the following key sequences:

[FORCE ON][CLEAR MEMORY]
[FORCE OFF][CLEAR MEMORY]

The on/off status of a forced bit appears beneath the bit instruction in
the rung.

In all operating modes, the terminal displays a “FORCED I/O” message
near the bottom of the screen when the processor forces the bits on or off.
In every mode except the program mode, the terminal displays forced
status “ON” or “OFF” below each forced instruction.

Important: The terminal displays the on/off status of Latch/Unlatch
instructions below the instruction. However, the terminal displays status
only in program mode.

All force functions are cleared when:

 you disconnect the industrial terminal from the processor
 the processor or industrial terminal loses ac power
 you press [MODE SELECT]

ATTENTION: When an energized output is being forced off,
keep personnel away from the machine area. Accidental
removal of force functions may instantly change the state of the
output device. Injury to personnel near the machine could result.

Program Troubleshooting
Chapter 19

19-7

Forced Address Display

The industrial terminal displays a complete lists of bit addresses that are
forced on or off by pressing:

[SEARCH][FORCE ON]
[SEARCH][FORCE OFF]

If all bits forced on or off cannot be displayed at one time, use the
[SHIFT][] and [SHIFT][] keys to display additional forced bits.

Press [CANCEL COMMAND] to terminate this display.

You can use the temporary end instruction to test or debug a program up to
the point where it is inserted. The temporary end instruction acts as a
program boundary because instructions below it in user program are not
scanned or operated upon. Instead, the processor immediately scans the
I/O image table followed by user program from the first instruction to the
temporary end instruction.

When you insert the temporary end instruction, the rungs below it,
although visible and accessible, are not scanned. You can edit their
content, if desired. The displayed section of user program made inactive
by the temporary end instruction contains the message “INACTIVE
AREA” in the lower right-hand corner of the screen.

Inserting a Temporary End Instruction

Keystrokes: You insert the temporary end instruction in either of
two ways:

First Method
1. Cursor to the last rung of the main program to be kept active.

2. Position the cursor on the output instruction.

3. Press [INSERT][T.END]

Second Method
1. Cursor to the first rung of the main program to be made inactive.

2. Position the cursor on the first instruction in the rung.

3. Press [INSERT][] [T.END]

Temporary End Instruction

Program Troubleshooting

Chapter 19

19-8

Removing a Temporary End Instruction

Keystrokes: You remove a temporary end instruction by following steps.

1. Position the cursor on the temporary end instruction you want
to remove.

2. Press [REMOVE][T.END]

Entering a Rung After a Temporary End Instruction

Keystrokes: You can enter a rung after the T.END instruction by
performing the following steps.

1. Place the cursor on the T.END instruction.

2. Press [INSERT][RUNG].

3. Enter the new rung.

The industrial terminal prevents you from using the temporary end
instruction in any of the following ways. These ways result in a rung
timer error.

 Using more than one temporary end instruction at a time.

 Using the instruction in the subroutine area.

 Inserting or removing the instruction during on-line programming.

 Placing the instruction in the path of Jump or Jump to
Subroutine instructions.

An illegal opcode is an instruction code that the processor does not
recognize. It causes the processor to fault and is displayed as an ERR
message in the ladder diagram rung in which it occurs. The 4-digit hex
value of the illegal opcode is displayed above the ERR message by the
1770-T3 industrial terminal.

The illegal OP code ERR message should not be confused with ERR
messages caused when a 1770-T1 or 1770-T2 industrial terminal is
connected to a processor that was using a 1770-T3 industrial terminal.
These industrial terminal ERR messages do not contain the 4-digit
hexadecimal value and will not cause the processor to fault.

If an illegal opcode occurs, compare the rung containing it to the
equivalent rung in a hard copy printout of the program. You must either

ERR Message for an Illegal
Opcode

Program Troubleshooting
Chapter 19

19-9

replace the error with its correct instruction, replace the instruction, or
remove it. The ERR message caused by an illegal opcode cannot be
removed directly. instead, remove and replace the entire rung. You should
identify and correct the cause of the problem in addition to correcting the
ERR message.

We showed you several special troubleshooting techniques you can use
during start-up and processor operation.

Chapter Summary

Appendix

A

A�1

Number Systems

This appendix describes the four numbering systems the Mini-PLC-2/05
processor uses:

 decimal
 octal
 binary
 hexadecimal

These numbering systems differ by their number sets and place values.

Decimal Numbering System

Timers, counters, and math operations word values use the decimal numbering
system. This is a numbering system made up of ten digits: the numbers 0
through 9 (Table A.A). All decimal numbers are composed of these digits. The
value of a decimal number depends on the digits used and the place value of
each digit.

Table A.A
Numbering System Conversion Chart

Hexadecimal Binary Decimal Octal

0 0000 0 000

1 0001 1 001

2 0010 2 002

3 0011 3 003

4 0100 4 004

5 0101 5 005

6 0110 6 006

7 0111 7 007

8 1000 8 010

9 1001 9 011

A 1010 10 012

B 1011 11 013

C 1100 12 014

D 1101 13 015

E 1110 14 016

F 1111 15 017

Objectives

Numbering Systems
Appendix A

A�2

Each place value in a decimal number represents a power of ten starting with
ten raised to the zero power (100=1) (Figure A.1). You can compute the
decimal value of a number by multiplying each digit by its corresponding place
value and adding these numbers together.

Figure A.1
Decimal Numbering System

2 3 9 10238

200
30
9

2 x 102 = 20010

3 x 101 = 3010

9 x 100 = 910 23910

10

Octal Numbering System

Byte word values use the octal numbering system. This is a numbering system
made up eight digits: the numbers 0 through 7 (Table A.A). All octal numbers
are composed of these digits. The value of a octal number depends on the digits
used and the place value of each digit.

Each place value in an octal number represents a power of eight starting with
eight raised to the zero power (80=1) (Figure A.2). You can compute the
decimal value of an octal number by multiplying each octal digit by its
corresponding place value and adding these numbers together.

Figure A.2
Octal Numbering System

3 5 7
10239

192
40
7

3 x 82 = 192

5 x 81 = 40

7 x 80 = 7 23910

8

23910 = 3578

Binary numbering is used in all digital systems to store and manipulate data.
This is a numbering system made up of two numbers: 0 and 1 (Table A.A). All
binary numbers are composed of these digits. Information in memory is stored
as an arrangement of 1 and 0. The value of a binary number depends on the
digits used and the place value of each digit.

Binary Numbering System

Numbering Systems
Appendix A

A�3

Each place value in a binary number represents a power of two starting with
two raised to the zero power (20=1) (Figure A.3). You can compute the decimal
value of a binary number by multiplying each binary digit by its corresponding
place value and adding these numbers together.

Figure A.3
Binary Numbering System

1 1 1 0 1 1 1 1
1

128
64
32
8
4
2
1

1 x 27 = 128

1 x 26 = 64

1 x 25 = 32

0 x 24 = 0

1 x 23 = 8

1 x 22 = 4

1 x 21 = 2

1 x 20 = 1 23910

111011112 = 239102

Binary Coded Decimal

Binary coded decimal (BCD) format expresses a decimal value as an
arrangement of binary digits. Each group of 4 binary digits is used to represent
a decimal number from 0 to 9. All BCD numbers are composed of these digits.
The value of BCD number depends on the digits used and the place value of
these digits.

Each place value in a BCD number represents a power of two starting with two
raised to the zero power (20=1) (Figure A.4).

Numbering Systems
Appendix A

A�4

Figure A.4
Binary Coded Decimal

0 0 1 0 0 0 1 1 1 0 0 1

2 3 9
10241

0 x 23 = 0

0 x 22 = 0

1 x 21 = 2

0 x 20 = 0

0 x 23 = 0

0 x 22 = 0

1 x 21 = 2

1 x 20 = 1

1 x 23 = 8

0 x 22 = 0

0 x 21 = 0

1 x 20 = 1

2

3

910

You can compute the decimal value of a binary number by multiplying each
binary digit by its corresponding place value and adding these numbers together
(Table A.B).

Table A.B
BCD Representation

Place Value
Decimal

Equivalent

23

(8)
22

(4)
21

(2)
20

(1)

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

1 0 0 0 8

1 0 0 1 9

Numbering Systems
Appendix A

A�5

Binary Coded Octal

Binary coded octal (BCO) format expresses an octal value as an arrangement of
binary digits (eight bits or one byte). The 8 bits are broken down into three
groups: 2 bits, 3 bits and 3 bits. Each group of binary digits is used to represent
a decimal number from 0 to 9. All BCO numbers are composed of these digits.

Each place value in a BCD number represents a power of two 1 starting with
two raised to the zero power (20 = 1) (Figure A.5).

Figure A.5
Binary Coded Octal

1 1 1 0 1 1 1 1

10242

21 20 22 21 20 22 21 20

3 5 7 8

You can compute the octal number for each group of bits by multiplying the
binary digit by its corresponding place value and adding these numbers together
(Table A.C).

Table A.C
Octal Representation

Place Value
Octal Equivalent

22

(4)
21

(2)
20

(1)

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Numbering Systems
Appendix A

A�6

Hexadecimal Numbering System

Get and put word values use the hexadecimal numbering system. This is a
numbering system made up of 16 digits: the numbers 0–9 and the letters A–F
(Table A.C). The letters A–F represent the decimal numbers 10–15,
respectively. Four binary digits represent each hexadecimal character, you can
convert between hexadecimal to a binary by writing out the patterns for each
hexadecimal character or group of four binary digits (Figure A.6).

Figure A.6
Hexadecimal to Decimal Conversion

0 1 A 7

10243

256
160

7

0 x 163 = 0

1 x 162 = 256

10 x 161 = 160

7 x 160 = 7 42310 = 01A716

Each place value in a hexadecimal character represents a power of 16 starting
with 16 raised to the zero power (160=1) (Figure A.6). You can compute a
decimal number for each group of hexadecimal characters by multiplying the
decimal digit equivalent of each hexadecimal character by its corresponding
place value and adding these numbers together.

Appendix

B

B�1

Glossary

You’ll find that each term in this glossary is concisely defined. These
definitions will provide you with a basis for understanding Allen-Bradley PCs.
In cases where a term may have more than one meaning, we give only those
definitions directly related to our products.

When reading this glossary, you’ll notice that common electrical terms and
symbols are not defined. We assume you have a working knowledge of
basic electricity.

This appendix contains defines terms and abbreviations that because of their
complexity or recent introduction are not widely understood. These terms are:

AC Input Module
An I/O module that converts various AC signals originating at user devices to
the appropriate logic level signal for use within the processor.

AC Output Module
An I/O module that converts the logic level signal of the processor to a usable
output signal to control a user AC device.

Adapter Module
A module that provides communication between an I/O chassis and the
processor. It transmits I/O chassis input information to and receives output
information from the processor.

Address
1) An alphanumeric value that uniquely identifies where data is stored. 2) An
alphanumeric value used to identify a specific I/O rack, module group,
and terminal.

Algorithm
A set of procedures used for solving a problem in a finite number of steps.

Analog
An expression of values which can vary continuously between specified limits.

Analog Input Module
A module that converts an analog input signal to a number that can be
manipulated by the processor.

Introduction

Glossary
Appendix B

B�2

Analog Output Module
A module that outputs a signal proportional to a number transferred to the
module from the processor.

Application
1) A machine or process monitored and controlled by a programmable
controller. 2) The use of computer-based or processor-based routines for
specific purposes.

Arithmetic Capability
The ability to do addition, subtraction, multiplication, division, and other
advanced math functions with the programmable controller.

ASCII
American Standards Code for Information Interchange. It is a seven-bit code
with an optional parity bit used to represent alphanumerics, punctuation marks,
and control code characters.

Asynchronous Scanning
A scanning technique performed by the CPU where two scanners (I/O and user
program) operate independently of each other.

Backplane
A printed circuit board, located in the back of a chassis, that contains a data bus,
power bus, and connectors for modules to be inserted in the chassis.

Backup
A device or system that is kept available to replace something that may fail in
operation. Also see Hot Backup.

Battery Backup
A battery or set of batteries that provide power to processor memory only in
case of a system power outage.

Battery Low
A condition that exists when the backup battery voltage drops low enough to
require battery replacement. Generally, an indicator or status bit signals
this condition.

Baud
A unit of signaling speed equal to the number of discrete conditions or signal
events per second.

BCD
See Binary Coded Decimal.

Binary
A numbering system using only the digits 0 and 1. Also called base 2.

Glossary
Appendix B

B�3

Binary Coded Decimal (BCD)
A numbering system used to express individual decimal digits (0 through 9) in
four-bit binary notation.

Binary Word
A related group of ones and zeros that has meaning assigned by position, or by
numerical value in the binary system of numbers.

Bit
Binary digit. The smallest unit of information in the binary numbering system.
Represented by the digits 0 and 1. The smallest division of a programmable
controller word.

Bit Manipulation
The process of controlling data table bits (on or off) through user instructions or
keyboard entry.

Bit Rate
See Baud.

Bit Storage
A user-defined data table area in which bits can be set or reset without directly
affecting or controlling output devices. However, any storage bit can be
monitored as necessary in the user program.

Block
A group of words transmitted as a unit.

Block Length
The total number of words transferred at one time.

Block Transfer
A programming technique used to transfer up to 64 words of data to, or from, an
intelligent I/O module.

Branch
A parallel logic path with a rung.

Buffer
1) In software terms, a register or group or registers used for temporary storage
of data, to compensate for transmission rate differences between the transmitter
and receiving device. 2) In hardware terms, an isolating circuit used to avoid
the reaction of one circuit with another.

Build
A programming concept that takes a user keyboard command (source code) and
converts it into hexadecimal format to generate an object code for
program execution.

Glossary
Appendix B

B�4

Bus
1) One or more conductors considered as a single entity that interconnect
various parts of a system. Example: a data bus or address bus. 2) An electrical
channel used to send or receive data.

Byte
Equals eight consecutive bits.

Cascading
A programming technique that extends the ranges of timer and/or counter
instructions beyond the maximum values that may be accumulated in a
single instruction.

Central Processing Unit (CPU)
The circuits in a programmable controller that control the interpretation and
execution of the user program stored in programmable controller memory.

Character
One symbol of a set of symbols which normally include alpha codes, numeric
codes, punctuation marks, and other symbols which may be read, stored,
or written.

Chassis
A hardware assembly used to house devices such as I/O modules, adapter
modules, processor modules, and power supplies.

Checksum
A character placed at the end of a data block which corresponds to the binary
sum of all characters in that block. A technique used for error detection.

Clear
To return memory to a non-programmed state; erased.

Clock
1) A pulse generator which synchronizes the timing of various logic circuits.
2) Circuitry used to measure time.

CMOS
Complementary Metal Oxide Semiconductor circuitry. See MOS.

Command
A function initiated by a user action

Communication Rate
See Baud.

Contact Histogram
A feature which allows a display (or printout) of the on and off times for any
selected data table bit.

Glossary
Appendix B

B�5

Control
1) A unit, such as a programmable controller or relay panel, which operates an
industrial application. 2) To cause a machine or process to function in a
predetermined manner. 3) To energize or de-energize a processor output, or to
set a data table bit to on or reset it to off, by means of the user program.

Control Panel
1) A panel which may contain instruments or pushbutton switches. 2) In the
Advisor system, a device which allows an operator to access and control plant
operations through manipulation of the processor data table.

CPU
See Central Processing Unit

CTR Terminal
A terminal containing a cathode ray tube that displays user programs
and information.

Cursor
1) The intensified or blinking element in the user program or file display. 2) A
means for indicating on a CRT screen where data entry or editing occurs.

Cursored Rung
The rung containing a cursor.

Data
A general term for any type of information.

Data Address
A location in memory where data can be stored.

Data Files
Groups of data values stored in the data table. These files are manipulated by
the user program as required by the application.

Data Table
The part of processor memory that contains I/O values and files where data is
monitored, manipulated, and changed for control purposes.

Data Terminal
1) A device used only to send or receive data. 2) A peripheral device which can
load, monitor, or dump processor memory data, including the data table or data
files. This also includes CRT devices and line printers.

Data Transmission Rate
See Baud.

Debugging
The process of detecting locating, and correcting errors in hardware or software.

Glossary
Appendix B

B�6

Decimal
Pertains to the base-10 numbering system.

Delimiter
A character that, when placed before and/or after a string of data, causes the
data to be interrupted in a predetermined manner.

Diagnostics
Pertains to the detection and isolation of an error or malfunction.

Digital
Information presented in a discrete number of codes.

Display
The image which appears on a CRT screen or on other image
projection systems.

Display Number
The number used to identify a display to be selected from the list in the
display menu.

Display Menu
The list of displays from which the user selects specific information
for viewing.

Documentation
An orderly collection of recorded hardware and software data such as tables,
listings, and diagrams to provide reference information for processor
application operation and maintenance.

Dump
To generate a copy of all or part of the processor memory contents through a
data terminal.

EEPROM
Electrically Erasable PROM. A type of PROM that is programmed and erased
by electrical pulses.

Edit
To deliberately modify a program.

Element
A display of a program instruction.

Enable
The ability to respond to program instructions.

Glossary
Appendix B

B�7

Encoder
1) A rotary device which transmits position information.

2) A device which transmits a fixed number of pulses for each revolution.

ERR
See Error Message.

Error Message (ERR)
The response to an opcode the industrial terminal cannot interpret.

Execution
The performance of a specific operation that is accomplished through
processing one instruction, a series of instructions, or a complete program.

Execution Time
The total time required for the execution of one specific operation.

False
Any malfunction which interferes with normal application operation.

Fault Zone
An area in the program which alters the operation portion of the application if a
rack fault occurs. Each fault zone is delimited by fence codes.

Fence Codes
Special program instructions which control and delimit specific program areas
such as fault zones.

File
1) One or more data table words used to store related data. See File
Organization. 2) A collection of related records treated as a unit. The records
are organized or ordered on the basis of some common factor called a key.
Records may be fixed or vary in length and can be stored in different devices
and storage media.

File Address
The data table address of a file that determines to where, or from where, data
will be transferred or moved.

File Creation
Establishing or writing records for a file into some storage device to provide
later access by the processor or operator.

File Maintenance
1) Adding, deleting, or changing the contents of records in a file.
2) Reorganizing the structure of a file to improve access to records or to change
the storage space required.

Glossary
Appendix B

B�8

File Management
1) A term that defines the functions of creation, insertion, deletion, or updating
of stored files and records in files. 2) The operations that are performed
on files.

File Name
A means of identifying a file on a disk.

File Organization
 method of ordering data records stored as a file, while also providing a way to
access stored records.

Flag Bit
A processor memory bit, controlled through firmware or a user program, used
to signify a certain condition. Example: battery low.

Floating Point
A data manipulation format used to locate the point by expressing the power of
the base, and which involves the use of two sets of digits. For example, for a
floating decimal notation, the base is 10, so the number 8,700,000 would be
expressed as 8.7(1)^.

Force Off Function
A feature which allows the user to reset an input image table bit or de- energize
an output, independent of the processor program.

Force On Function
A feature which allows the user to set an image table bit or energize an output,
independent of the processor program.

Hardware
The mechanical, electrical, and electronic devices that make up a programmable
controller and its application.

Header
A portion of a protocol data unit that contains protocol control information and
precedes user data, if present.

Hexadecimal Numbering System
A base 16 numbering system that uses the symbols 0,1,2,3,4,5,6,7,8,9, and
A,B,C,D,E,F.

High = True
A signal type where the higher of two voltages indicates a logic state of on (1).
See Low = True.

Hot Backup
A standby processor in a programmable controller system. It consists of a
primary and backup processor. If the primary processor fails, the backup
processor takes over processor operations.

Glossary
Appendix B

B�9

Image Table
An area in processor memory dedicated to I/O data. Ones and zeros (1 and 0)
represent on and off conditions, respectively. During every I/O scan, each input
controls a bit in the input image table; each output is controlled by a bit in the
output image table.

Input
Information transmitted from a peripheral device to the input module, and then
to the data table.

Input Devices
Devices such as limit switches, pressure switches, push buttons, analog and/or
digital devices, that supply data to a programmable controller.

Instruction
A command that causes a programmable controller to perform one specific
operation. The user enters a combination of instructions into memory to form a
unique application program.

Integer
Any positive or negative whole number or zero.

Intelligent I/O Module
Microprocessor-based modules that perform processing or sophisticated
closed-loop, application functions.

Intelligent Terminal
A terminal that has some internal processing capability for manipulating data.

Interface
The boundary (shared) between two systems.

I/O
Input/Output.

I/O Channel
A data transmission link between a processor scanner module and an I/O
adapter module.

I/O Chassis
See chassis.

I/O Module
A device that interfaces between the user devices and the processor.

I/O Rack
See rack.

I/O Scan Time
The time required for the processor to monitor inputs and control outputs.

Glossary
Appendix B

B�10

I/O Terminal
A terminal on the I/O module. One I/O terminal has a corresponding bit
address in the data table.

Isolated I/O Module
A module which has each input or output electrically isolated from every other
input or output on that module.

K
10=lK=1024. used to denote size of memory and can be expressed in bits,
bytes, or words. Example: 2K = 2048.

k
Kilo, A prefix used with units of measurement to designate quantities a 100
times as great.

Keying
keying bands installed on backplane connectors to ensure that only one type of
module can be inserted into a keyed connector.

Ladder Diagram
An industry standard for representing control systems.

Ladder Diagram Programming
A method of writing a user program in a format similar to a relay
ladder diagram.

Language
A set of symbols and rules used for representing a communicating information.

Latching Relay
A relay that maintains a given position by mechanical or electrical means until
released mechanically or electrically.

Leading Edge One-Shot
A programming technique that sets a bit for one scan when its input condition
has made a false-to-true transition. The false-to-true transition represents the
leading edge of the input pulse.

Least Significant Bit (LSB)
The bit that represents the smallest value in a nibble, byte, or word.

Least Significant Digit (LSD)
the bit that represents the smallest value in a byte or word.

LED
Light-Emitting Diode.

LED Display
An illuminated visual readout composed of alphanumeric character segments.

Glossary
Appendix B

B�11

Limit Switch
An electrical switch actuated by some part and/or motion of a machine
or equipment.

Line
1) A component part of a system used to link various subsystems located
remotely from the processor. 2) The source of power for operation. Example:
120V AC line.

Load
1) The power used by a machine or apparatus. 2) To place data into an internal
register under program control. 3) To place a program from an external storage
device into central memory under operator control.

Local I/O Processor
A processor where I/O distance is physically limited and must be located near
the processor. However, it may still be mounted in a separate enclosure. See
Remote I/O Processor.

Location
A storage position in memory. Uniquely specified in Allen-Bradley processors
by a 5-, 6-, 7-, 8-, or 9-digit address.

Logic
A systematic means of solving complex problems through the repeated use of
the AND, OR, NOT functions (they can be either true or false). Often
represented by ladder diagrams.

Logic Diagram
A diagram which represents the logic elements and their interconnections.

Logic Level
The voltage magnitude associated with signal pulses representing ones and
zeros (1 and 0) in binary computation.

Loop
A sequence of instructions which is executed repeatedly until a terminating
condition is satisfied.

Low = True
A signal type where the lower of two voltages indicates a logic state of on (1).
See High = True.

Lower Nibble
The four least significant bits of a byte.

LSB
See Least Significant Bit.

Glossary
Appendix B

B�12

LSD
See Least Significant Digit.

Malfunction
Any incorrect function within electronic, electrical, or mechanical hardware.
See Fault.

Manipulation
The process of controlling and monitoring data table bits, bytes, or words by
means of the user program to vary application functions.

Masking
A means of selectively screening out data. It allows unused bits in a specific
instruction to be used independently.

Master
A device used to control secondary devices.

Master Control Relay (MCR)
A mandatory hardwired relay that can be de-energized by any series-connected
emergency stop switch. Whenever the master control relay is de-energized, its
contacts open to de-energize all application I/O devices.

Master Control Reset (MCR)
See MCR Zones

Master File
A file of data containing the history or current status of a factor or entity of
interest to an organization. A master file must be updated periodically to
maintain its usefulness.

MCR Zones
User program areas where all non-retentive outputs can be turned off
simultaneously. Each MCR zone must be delimited and controlled by MCR
fence codes (MCR instructions).

Memory
A group of circuit elements that can store data.

Memory Map
A diagram showing a system’s memory addresses and what programs and data
are assigned to each section of memory.

MOS
Metal Oxide Semiconductor. A semiconductor device in which an electric field
controls the conductance of a channel under a metal electrode called a gate.

Mode
A selected method of operation. Example: run/program, remote test, or
remote program.

Glossary
Appendix B

B�13

Module
An interchangeable, plug-in item containing electronic components.

Module Addressing
A method of identifying the I/O modules installed in a chassis.

Module Group
Adjacent I/o modules which relate 16-I/O terminals to a single 16-bit image
table word.

Module Slot
A location for installing an I/O module.

Monitor
1) A CRT display. 2) To observe an operation.

Monitoring Controller
Used in an application where the process is continually checked to alert the
operator of possible application malfunctions.

Most Significant Bit (MSB)
The bit representing the greatest value of a nibble, byte, or word.

Most Significant Digit (MSD)
The digit representing the greatest value of a byte or word.

Motor Controller
A device or group of devices that serve to govern, in a predetermined manner,
the electrical power delivered to a motor.

Motor Starter
See Motor Controller.

MSB
See Most Significant Bit.

MSD
See Most Significant Digit.

Multiple-Rung Display
A feature that allows a number of rungs of program logic to be displayed
simultaneously on the industrial terminal.

Noise
Unwanted disturbances imposed upon a signal that tend to obscure its
data content.

Noise Immunity
The ability to function in the presence of noise.

Glossary
Appendix B

B�14

Noise Spike
A noise disturbance of relatively short duration.

Non-Retentive Output
An output which is continuously controlled by a program rung. Whenever the
rung changes state (true or false), the output turns on or off. Contrasted with a
retentive output which remains in its last state (on or off) depending on which of
its two rungs, latch or unlatch, was last true.

Nonvolatile Memory
A memory that is designed to retain its data while its power supply is turned off.

Octal Numbering System
A numbering system that uses only the digits 0 through 7. Also called base 8.

OffLine
Equipment or devices that are not connected to, or do not directly communicate
with, the central processing unit.

OnLine
Equipment or devices which communicate with the device it is connected to.

OnLine Data Change
Allows the user to change various data table values using a peripheral device
while the application is operating normally.

OnLine Editing
Allows the user to modify a program using a peripheral device while the
application is operating normally.

OnLine Operation
Operations where the programmable controller is directly controlling a machine
or process.

One-Shot
A programming technique which sets a storage bit or output for only one
program scan. See Leading Edge One-Shot and Trailing Edge One-Shot.

Operating System
A software system that controls the operation of a processor system by
providing for input/output, allocation of memory space, or translation
of programs.

Output
Information transferred from processor image table words through output
modules to control output devices.

Output Devices
Devices such as solenoids and motor starters that receive data from the
programmable controller.

Glossary
Appendix B

B�15

Parallel Operation
A type of information transfer where all bits, bytes, or words are
handled simultaneously.

Parallel Output
Simultaneous availability of two or more bits, channels, or digits.

Parallel Transmission
The simultaneous transmission of bits which constitute a character.

Peripheral Equipment
Units which communicate with the programmable controller, but are not part of
the programmable controller. Example: a programming device or computer.

PR
See Preset Value.

Preset Value (PR)
The number of time intervals or events to be counted.

Primary Processor
A PC that controls all the I/O, but has a backup processor to take over system
operation in case it fails.

Process
1) Continuous and regular production executed in a definite uninterrupted
manner. 2) One or more entities threaded together to perform a requested
service.

Processor
The decision making data and storage sections of a programmable controller.

Program
A set of instructions used to control a machine or process.

Program Scan Time
The time required for the processor to execute the instructions in the program.
The program scan time may vary depending on the instructions and each
instruction’s status during the scan.

Program Storage
The portion of memory reserved for saving programs, routines, and subroutines.

Programmable Controller
A solid-state control system which has a user-programmable memory for
storage of instructions to implement specific functions such as I/O control,
logic, timing, counting, report generation, Data Highway communication,
arithmetic, data and file manipulation. A programmable controller consists of a
central processor, input/output interface, and memory. A programmable
controller is designed as an industrial control system.

Glossary
Appendix B

B�16

PROM
Programmable Read Only memory. A type of ROM that requires an electrical
operation to store data. In use, bits, or words are read on demand but
not changed.

Rack
An I/O addressing unit that corresponds to 8 input image table words and 8
output image table words.

Rack Fault
1) A red diagnostic indicator that lights to signal a loss of communication
between the processor and any remote I/O chassis. 2) The condition which is
based on the loss of communication.

RAM
Random Access Memory. The type of memory in which data access is
independent of the data most recently accessed.

Red
1) To acquire data from a storage device. 2) The transfer of data between
devices such as a peripheral device and a computer.

Read/Write Memory
A memory where data can be stored (write mode) or accessed (read mode). The
write mode replaces previously stored data with current data; the read mode
does not alter stored data.

Record
1) A group of data that is stored together and/or used together in processing.
2) A collection of related data treated as a unit. See File.

Register
A memory word or area used for temporary storage of data used with
mathematical, logical, or transferal functions.

Relay Logic
A representation of the program or other logic in a form normally used
for relays.

Remote I/O processor
A processor system where some of all of the I/O racks are remotely mounted
from the processor. The location of remote I/O racks from the processor may
vary depending on the application and the processor used. Also see Local
I/O Processor.

Remote Mode Selection
A feature which allows the user to select or change processor modes of
operation with a peripheral device from a remote location.

Glossary
Appendix B

B�17

Remote Programming
A method of performing programming by connecting the programming device
to the network rather than to the processor.

Report Generation
The printing or displaying of user-formatted application data by means of a data
terminal. Report generation can be initiated by means of either a user program
or a data terminal keyboard.

Routine
A sequence of instructions which monitors and controls a specific
application function.

Rung
A group of instructions that controls an output or storage bit, or performs other
controls functions such as file moves, arithmetic and/or sequencer instructions.
This is represented as one section of a logic ladder diagram.

SBR
See Subroutine Area.

Scan Time
See Program Scan Time and I/O Scan Time

Screen
The viewing surface of a CRT where data is displayed.

Scrolling
The vertical movement of data on a CRT display caused by the dropping of one
line of displayed data for each new line added.

Search Function
Allows the user to quickly display any instruction in the programmable
controller program.

Self-Diagnostic
The hardware and firmware within a controller that monitors its own operation
and indicates any fault which it can detect.

Serial Operation
A type of information transfer where the bits are handled sequentially.
Contrasted with Parallel Operation.

Signal
The event or electrical quantity that conveys information from one point
to another.

Signaling Rate
A measure of signaling speed equal to the number of discrete conditions or
signal events per second. See Baud.

Glossary
Appendix B

B�18

State
The logic 0 or 1 condition in processor memory or at a circuit input or output.

Station
Any programmable controller, computer, or data terminal connected to, and
communicating by means of, a data highway.

Storage
See Memory.

Storage Bit
A bit in a data table word which can be set or reset, but is not associated with a
physical I/O terminal point.

Subroutine
A program segment in the ladder diagram that performs a specific task and is
available for use.

Subroutine Area (SBR)
A portion of memory where subroutines are stored.

Syntax
Rules governing the structure of a language.

System
A set of one or more programmable controllers, I/O devices and modules,
computers, the associated software, peripherals, terminals, and communication
networks, that together, provide a means of performing information processing
for controlling machines or processes.

Tasks
A set of instructions, data, and control information capable of being executed by
a CPU to accomplish a specific purpose.

Terminal Address
A 5-, 6-, 7-, 8-, or 9-digit number which identifies a single I/O terminal. It is
also related directly to a specific image table bit address.

Trailing Edge One-Shot
A programming technique that sets a bit for scan when its input condition has
made a true-to-false transition. The true-to-false transition represents the
trailing edge of the input pulse.

True
As related to processor instructions, an enabled logic state.

Underflow Bit
A bit that is set to indicate the result of an operation which is less than the
minimum value that can be contained in a register.

Glossary
Appendix B

B�19

Upload/Download
Commonly refers to the reading/writing of programs and data tables from or
into processor memory. The commands to do these processes come from some
supervisory device.

Upper Nibble
The four most significant bits of a byte.

Variable
A factor which can be altered, measured, or controlled.

Variable Data
Numerical information which can be changed during application operation. It
includes timer and counter accumulated values, thumbwheel settings, and
arithmetic results.

Volatile Memory
A memory that loses its information if the power is removed.

Watchdog Timer

A timer that monitors logic circuits controlling the processor. If the watchdog
timer is not reset in its programmed time period, it will cause the processor
to fault.

Word
A grouping or a number of bits in a sequence that is treated as a unit.

Word Length
A number of bits in a word. In a processor, these are generally only data bits.
One processor word equals 16 data bits.

Word Storage
An unused data table word which may be used to store data without directly
controlling an output. Any storage word may be monitored as often as
necessary by the user program.

Work Area
A portion of the data table reserved for specific processor functions.

Write
1) The process of loading information into memory. 2) Block Transfer; a
transfer of data from the processor data table to an intelligent I/O module.

ZCL Instructions
A user-programmed fence for ZCL zones.

ZCL Zones
Assigned program areas which may control the same outputs through separate
rungs, at different times. Each ZCL zone is bound and controlled by ZCL

Glossary
Appendix B

B�20

instructions. If all ZCL zones are disabled, the outputs would remain in their
most recent controlled state.

Zone Control Last State (ZCL)
See ZCL Zones.

Appendix

C

C�1

Quick Reference

Data Table Configuration C-22.
Data Table Size C-22.
Data Table Organization, Factory Configured Data Table C-33.
Approximate Execution Time Per Scan C-44.
Relay Type Instructions C-66.
Program Control Instructions C-77.
Timer Instructions C-88.
Counter Instructions C-99.
Data Manipulation Instructions C-100.
Arithmetic Instructions C-111.
File Instructions C-122.
Sequencer Instructions C-133.
Jump/Subroutine Instructions C-144.
Block Transfer Instructions C-155.
Editing Functions C-166.
Search Functions C-177.
Clear Memory Functions C-188.
Help Directories C-199.
Report Generation Commands C-200.
Address Delimiters C-211.
Alpha/Graphic Key Definitions C-222.
Industrial Terminal Control Codes C-233.
Contact Histogram Functions C-244.
Troubleshooting Aids C-255.

Quick Reference
Appendix C

C�2

Table C.A
Data Table Configuration

Function Key Sequence Mode Description

Data table configuration [SEARCH]
[5][0]

[Numbers]

Program If the number of 128-word sections is 1 or 2, enter this
number, and the number of timers/counters. If the
number of 128-word sections is 3 or greater, enter only
this number. The industrial terminal will calculate and
display the data table size in decimal.

Processor memory layout [SEARCH]
[5][4]

Any Displays the number of words in the data table area,
user program area, message area and unused
memory.

Either [CANCEL COMMAND] To terminate.

Table C.B
Data Table Size

Enter Data Table Size

01 128

02 256

03 384

04 512

05 640

06 768

07 896

08 1024

09 1152

10 1280

11 1408

12 1536

13 1664

14 1792

15 1920

16 2048

17 2176

18 2304

19 2432

20 2560

21 2688

22 2816

23 2944

Quick Reference
Appendix C

C�3

Table C.C
Data Table Organization, Factory Configured Data Table

Processor Work Area
No. 1

Output
Image Table

Bit/Word Storage

Reserved

Timer/Counter
Accumulated Values (AC)

(or Bit/Word Storage)

Processor Work Area
No. 2

Input
Image Table

Bit/Word Storage

Timer/Counter
Preset Values (PR)

(or Bit/Word Storage)

Expanded Data Table
and/or User Program

Total
Decimal
Words

8

16

24

64

72

88

128

2944

80

Decimal
Words

Per
Area

8

8

8

40

8

8

40

2816

8

Word
Address

Bit
Address

000

007

010

017

020

026

027

030

077

100

107
110

117

120

127

130

177
200

End of Memory

00

17

00

17

00

17

00

17

00

17
00

17

00

17

00

17
00

May not be used for accumulated values.

Not available for bit/word storage. Bits in this word are used by the processor.

Unused timer/counter memory words can reduce data table size and increase user program area.

May not be used for preset values.
Do not use word 127 for block transfer data storage.

1

2

3

4

5

1

2

3

4

Factory-
Configured
Data
Table

5

3072 128 User Program

5577 17

Maximum
Size of
Data Table

6

Can be decreased to 48 words.6 10663�I

Quick Reference
Appendix C

C�4

Table C.D
Approximate Execution Time Per Scan
 (in average microseconds)

Instruction
Name

Symbol Instruction
True

Instruction
False

Examine on, Examine off -| |-.-| / |- 14 11

Output energize -()- 16 16

Output latch -(L)- 17 13

Output unlatch -(U)- 17 13

Get -[G]- 28 -

Put -(PUT)- 26 14

Equal -(=)- 23 11

Less than -(<)- 25 13

Get byte -|B|- 16 -

Limit test -|L|- 24 11

Counter reset -(CTR)- 20 14

Retentive timer reset -(RTR)- 20 14

Timer on�delay -(TON)- 75 47

Retentive timer on�delay -(RTO)- 78 48

Timer off�delay -(TOF)- 82 60

Up counter -(CTU)- 70 55

Down counter -(CTD)- 75 60

3 Digit Math

Add -(+)- 48 15

Subtract -(-)- 80 19

Multiply -(x)-(x)- 615 60

Divide -(÷)-(÷)- 875 60

Expanded Math

Add EAF 01 350-500

Subtract EAF 02 350-500

Multiply EAF 03 450-2250

Divide EAF 04 400-3100

Square root EAF 05 1850

BCD to binary EAF 13 150-350

Binary to BCD EAF 14 250

Add to any of the above when
its address is 4008 or greater

27 27

Quick Reference
Appendix C

C�5

Instruction
Name

Instruction
False

Instruction
True

Symbol

Master control -(MCR)- 16 16

Zone control last state 1 -(ZCL)- 22 (no skip) 20+ (13 per word
skipped)

Branch start 16 16

Branch end 18 18

End, temporary end T.END 27 27

Subroutine Area SBR 27 27

Immediate input update -[I]- 45 (with forcing on 55) -

Immediate output update -[IOT]- 70 (with forcing on 80) 17

Label LBL 34 -

Return -(RET)- 30 15

Jump to subroutine -(JSR)- 100 15

Jump -(JMP)- 55 15

Block transfer read BLOCK
X-FER 1

80 75

Block transfer write BLOCK
X-FER 0

80 75

Sequencer load SEQ 2 390 (80/extra word) 105

Sequencer input SEQ 1 420 (90/extra word) 55

Sequencer output SEQ 0 470 (90/extra word) 110

File�to�word move FILE 12 250 45

Word�to�file move FILE 11 250 45

File�to�file move FILE 10440 (+10/word
transferred)

200

When a rung which contains a ZCL instruction is false, the execution time of each instruction between the
start fence and end fence is 17 microseconds per word.

1

Quick Reference
Appendix C

C�6

Table C.E
Relay Type Instructions

NOTE: You can assign input and output addresses, XXXXX, to any location in the data table, excluding the processor work
areas. The word address is displayed above the instruction and the bit number below it To enter a bit address larger than 5
digits, press [EXPAND ADDR] after the instruction key and then enter the bit address. Use a leading zero if necessary.

Key Symbol Instruction Name 1770-T3 Display Rung Conditions

-| |- Examine On XXX
 -| |-

 XX

When the addressed memory bit is on, the instruction is true.

-| / |- Examine Off XXX
 -| / |-
 XX

When the addressed memory bit is off, the instruction is true.

-()- Energize XXX
 -()-
 XX

When the rung is true, the addressed memory bit is set.
If the bit controls an output device, that output device
will be on.

1

-(L)- Output Latch XXX
 -(L)-

 ON XX or OFF

When the rung is true, the addressed memory bit is latched on
and remains on until it is unlatched. The output latch
instruction is initially off when entered, as indicated below the
instruction. It can be preset on by pressing a after entering the
bit address. An on will then be indicated below the instruction
in program mode. An unlatch instruction will always override a
latch instruction, even if the latch rung is true.

1

-(U)- Output Unlatch XXX
 -(U)-

 ON XX or OFF

When the rung is true, the addressed bit is unlatched.
If the bit controls an output device, that device is de�energized.
On or off will appear below the instruction indicating the status
of the bit in Program mode only.

1

Branch Start This instruction begins a parallel logic path and is entered at
the beginning of each parallel path.

Branch End This instruction ends two or more parallel logic paths and is
used with branch start instructions.

These instructions should not be assigned input image table addresses because input image table words
are reset each I/O scan.

1

Quick Reference
Appendix C

C�7

Table C.F
Program Control Instructions

NOTE: The MCR and ZCL boundary instructions have no word address.

The word addresses, XXX, of the immediate input and output instructions are limited to the input and output image
tables respectively.

Displayed word addresses will be 3 or 4 digits long, depending on data table size. When entering the word address, use a
leading zero if necessary.

Key Symbol Instruction Name 1770-T3 Display Explanation and Rung Conditions

-(MCR)- Master Control Reset -(MCR)- Two MCR instructions are required to control a group of
outputs. The first MCR instruction is programmed with input
conditions to begin the zone. The second MCR instruction is
programmed unconditionally to end the zone.

When the MCR rung is true, each rung condition controls their
output instruction.

When the first MCR rung is false, all non-retentive bits in the
zone are reset.

WARNING: Do not overlap MCR zones, or nest with ZCL
zones. Do not jump to a label in MCR zones.

-(ZCL)- Zone Control Last
State

-(ZCL)- Two ZCL instructions are required to control a group of
outputs. The first ZCL instruction is programmed with input
conditions to begin the zone. The second ZCL instruction is
programmed unconditionally to end the zone.

When the ZCL rung is true, all output instructions within the
zone act according to the logic conditions preceding them.

When the first ZCL rung is false, outputs in the zone will
remain in their last state.

WARNING: Do not overlap ZCL zones, or nest with MCR
zones. Do not jump to a label in ZCL zones.

-[I]- Immediate Input XXX
-[I]-

Processor interrupts program scan to update input image table
with data from the corresponding module group. It is updated
before the normal I/O scan and executed each program scan.

-(IOT)- Immediate Output XXX
-(IOT)-

When rung is true, the processor interrupts program scan to
update a module group with data from its corresponding output
image table word address. It is updated before the normal I/O
scan and executed each program scan when the rung is true.
Can be programmed unconditionally.

Quick Reference
Appendix C

C�8

Table C.G
Timer Instructions

NOTE: The timer word address, XXX, is assigned to the timer accumulated areas of the data table. To determine which addresses are
valid accumulated areas, the most significant digit in the word address must be an even number.

The time base, TB, is user�selectable and can be 1.0, 0.1, or 0.01 second. Preset values, YYY, and accumulated values, ZZZ, can vary
from 000 to 999.

Bit 15 is the timed bit. Bit 17 is the enable bit.

The word address displayed will be 3 or 4 digits long depending on the data table size. When entering the word address, use a leading
zero if necessary.

Key Symbol Instruction Name 1770-T3 Display Rung Conditions Status Bits

-(TON)- Timer On Delay XXX
-(TON)-

TB
PR YYY
AC ZZZ

When the rung is true, the timer
begins to increment the
accumulated value at a rate
specified by the time base.

When the rung is false, the timer
reset the accumulated value
to 000.

When the rung is true:
bit 15-set when AC=PR
bit 17-set

When the rung is false:
bits 15 and 17-reset

-(TOF)- Timer Off Delay XXX
-(TOF)-

TB
PR YYY
AC ZZZ

When the rung is true, the timer
resets the accumulated value
at 000.

When the rung is false, the timer
begins to increment the
accumulated value.

When the rung is true:
bit 15-set bit 17-set.

When the rung is false:
bit 15-resets when AC=PR
bit 17-reset

-(RTO)- Retentive Timer -(RTO)-
TB

PR YYY
AC ZZZ

When the rung is true, the timer
begins to increment the
accumulated value. When false,
the accumulated value is retained.

When the rung is true:
bit 15-set when AC=PR
bit 17-set

When the rung is false:
bit 15-no action is taken
bit 17-reset

-(RTR)- Retentive Timer Reset XXX
-(RTR)-
PR YYY
AC ZZZ

XXX - Word address of the
retentive timer it is resetting.

The preset and accumulated
values are automatically entered by
the industrial terminal.

When the rung is true, the
accumulated value and status bits
are reset.

When the rung is true:
bit 15 and 17-reset

When the rung is false: no action is
taken

Quick Reference
Appendix C

C�9

Table C.H
Counter Instructions

NOTE: The counter word address, XXX, is assigned to the counter accumulated area of the data table. To determine which addresses are
valid accumulated areas, the most significant digit in the word address must be an even number.

Bit 14 is the overflow/underflow bit.
Bit 15 is the count complete bit.
Bit 16 is the enable bit for the CTD instruction.
Bit 17 is the enable bit for the CTU instruction.

The word address displayed will be 3 or 4 digits long depending on the data table size. When entering the word address, use a leading
zero if necessary.

Key Symbol Instruction Name 1770-T3 Display Rung Conditions Status Bits

-(CTU)- Up Counter XXX
-(CTU)-
PR YYY
AC ZZZ

Each time the rung goes true, the
accumulated value is incremented
one count. The counter will
continue counting after the preset
value is reached.

The accumulated value can be
reset by the CTR instruction.

When the rung is true:
bit 14-set if AC>999
bit 15-set when AC>PR PR
bit 17-set

When the rung is false:
bits 14-15-retained if it was set
bit 17-reset

-(CTR)- Counter Reset XXX
-(CTR)-
PR YYY
AC ZZZ

XXX-Word address of the CTU is
resetting.

The preset and accumulated
values are automatically entered by
the industrial terminal.

When the rung is true, the CTU or
CTD accumulated value and
status bits are reset to 000.

When the rung is true:
bits 14-17-reset

When the rung is false: No action
is taken

-(CTD)- Down Counter XXX
-(CTD)-
PR YYY
AC ZZZ

Each time the rung goes true, the
accumulated value is decreased by
one count.

When the rung is true:
bit 14-set when AC<000
bit 15-set when AC<PR
bit 16-set

When the rung is false:
bits 14-15- retained if it was set
bit 16-reset

Quick Reference
Appendix C

C�10

Table C.I
Data Manipulation Instructions

NOTE: Data manipulation instructions operate on BCD values and/or 16 bit data in the data table. The word address, XXX, is
displayed above the instruction; the BCD value or data operated upon, YYY, is displayed beneath it. The data is stored in the
lower 12 bits of the word address and can be any value from 000 to 999 BCD, except as noted.

Word address displayed will be either 3 or 4 digits depending upon the data table size. When entering the word address, use a
leading zero if necessary.

Key Symbol Instruction Name 1770-T3 Display Rung Conditions

-[G]- Get XXX
-[G]-
YYY

The get instruction is used with other data manipulation or
arithmetic instructions.

When the rung is true, all 16 bits of the get instruction are
duplicated and the operation of the instruction following it is
performed.

-(PUT)- Put XXX
-(PUT)-

YYY

The put instruction should be preceded by the get instruction.
When the rung is true, all 16 bits at the get instruction address
are transferred to the put instruction address.

-[<]- Less Than XXX
-[<]-
YYY

The less than instruction should be preceded by a get
instruction.

3-digit BCD values at the get and less than word addresses
are compared. If the logic is true, the rung is enabled.

-[=]- Equal To XXX
-[=]-
YYY

The equal to instruction should be preceded by a get
instruction.

3-digit BCD values at the get and equal to word addresses are
compared. if equal, the rung is enabled.

-[B]- Get Byte XXXD
-[B]-
YYY

D-Designates the upper or lower byte of the word.
1=upper byte, 0=lower byte.

YYY-Octal value from 000 to 377 stored in the upper or lower
byte of the word address.

The get byte instruction should be followed by a limit test
instruction.

A duplicate of the designated byte is made and compared with
the upper and lower limits of the limit test instruction.

-[L]- Limit Test XXX AAA
-[L]-

 BBB

AAA-Upper limit of limit test, an octal value from 000 to 377.
BBB-Lower limit of limit test, an octal value from 000 to 377.

The limit test instruction should be preceded by a get byte
instruction. Compares the value at the get byte instruction with
the values at the limit test instruction. If found to be between
or equal to the limits, the rung is enabled.

Quick Reference
Appendix C

C�11

Table C.J
Arithmetic Instructions

NOTE: Arithmetic instructions operate on BCD values in the data table. The word address XXX is displayed above the
instruction; the BCD value YYY which is the result of the arithmetic operation, is displayed beneath it. The BCD value is stored
in the lower 12 bits of the word address and can be any value from 000 to 999.

Displayed word addresses will be 3 or 4 digits depending on the data table size. When entering the word address, use a leading
zero if necessary.

Key Symbol Instruction Name 1770-T3 Display Rung Conditions

-(+)- Add XXX
-(+)-
YYY

The add instruction is an output instruction. It is always
preceded by two get instructions which store the BCD values to
be added.

When the sum exceeds 999, bit 14 is set. A 1 is displayed in
front of the result YYY.

-(-)- Subtract XXX
-(-)-
YYY

The subtract instruction is an output instruction. It is always
preceded by two get instructions. The value in the second get
address is subtracted from the value in the first.

When the difference is negative, bit 16 is set and a minus sign
is displayed in front of the result YYY.

-(X)- Multiply XXX XXX
-(X)-(X)-
YYY YYY

The multiply instruction is an output instruction. It is always
preceded by two get instructions which store the values to
be multiplied.

Two word addresses are required to store the 6 digit product.

-(÷)- Divide XXX XXX
-(÷)-(÷)-

YYY YYY

The divide instruction is an output instruction. It is always
preceded by two get instructions. The value of the first is
divided by the value of the second.

Two word addresses are required to store the 6 digit quotient.
its decimal point is placed automatically by the
industrial terminal.

Quick Reference
Appendix C

C�12

Table C.K
File Instructions

Key Sequence 1770-T3 Display Instruction Notes

FILE
10 EN

File to File Move

Counter Addr:

Position:

File Length:

File A:

File R:

001

001

110� 110

110� 110

DN

030

Rate per Scan 001

030

17

030

15

Output Instruction.

Modes: Complete, Distributed and Incremental.

Counter is internally incremented by the instruction.

Requires 5 words of user program.

FILE
11

Word to File Move

Counter Addr:

Position:

File Length:

Word Addr:

File R:

001

001

010

110� 110

DN
030

030

15

Output instruction.

Counter must be externally indexed by user program.

Data is transferred every scan that rung is true.

Requires 4 words of user program.

FILE
12

File to Word Move

Counter Addr:

Position:

File Length:

File A:

Word Addr:

001

001

110� 110

010

DN
030

030

15

Same as word-to-file.

NOTE: Numbers shown are default values. Numbers in shaded areas must be replaced by user-entered values. The number of

default address digits initially displayed (3 or 4) will depend on the size of the data table.

To access the Data Monitor Display, enter all instruction parameters. Press key sequence:
[DISPLAY][0] for the binary monitor mode;
[DISPLAY][1] for the hexadecimal monitor mode.

This Value: Stores the:

Counter Address Address of the instruction's file position in the accumulated value
area of the data table

Position Current word being operated upon (accumulated value of the
counter)

File Length Number of words in the file (preset value of the counter)

File A Starting address of the source file

File R Starting address of the destination file

Word Address Address of the source word or destination word outside of the file

Rate Per Scan Number of data words moved per scan

Quick Reference
Appendix C

C�13

Table C.L
Sequencer Instructions

Key Sequence 1779-T3 Display Instruction Notes

SEQ 0

EN
Sequencer Output

Counter Addr:
Current Step:

Seq Length:

Words per Step:
File:

001

001

1
110� 110

DN

030

Mask: 010� 010

030

17

030

15

Output Words
1:
3:

010 2:
4:

Output instruction.

Increments, then transfers data.

Same data transferred each scan that the rung is true.

Counter is indexed by the instruction.

Unused output bits can be masked.

Requires 5-8 words of your program.

SEQ 1 Sequencer Input
Counter Addr:
Current Step:
Seq Length:
Words per Step:
File:

000
001

1
110� 110

030

Mask: 010� 010
Input Words
1:
3:

010 2:
4:

Input instruction.

Compares input data with current step for equality.

Counter must be externally indexed by your program.

Unused input bits can be masked.

Requires 5-8 words of your program.

SEQ 2

EN
Sequencer Load

Counter Addr:
Current Step:
Seq Length:
Words per Step:
File:

000
001

1
110� 110

DN

030
030

17

030

15

1:
3:

010 2:
4:

Output Words

Output instruction.

Increments, then loads data.

Counter is indexed by the instruction.

Does not mask.

Requires 4-7 words of your program.

NOTE: Numbers shown are default values. Numbers in shaded areas must be replaced by your entered values. The number of default
address digits initially displayed (3 or 4) will depend on the size of the data table.

To access the Data Monitor Display, enter all instruction parameters. Press key sequence:
[DISPLAY][0] for the binary monitor mode;
[DISPLAY][1] for the hexadecimal monitor mode.

This Value: Stores the: This Value: Stores the:

Counter Address Address of the instruction in the
accumulated value area of the data table

Mask Starting address of the mask file

Position Position in the sequencer table
(accumulated value of counter)

Word Address Address of the source word or destination
word outside of the file

Seq Length Number of steps (preset value of the
counter)

Output Words Words controlled by the instruction

Words per Step Width of the sequencer table Load Words Words fetched by the instruction

File Starting address of the source file Input Words Words monitored by the instruction

Quick Reference
Appendix C

C�14

Table C.M
Jump/Subroutine Instructions

Key Symbol Instruction Name 1770-T3 Display Explanation and Rung Conditions

SBR
T.END

Subroutine Area SUBROUTINE
AREA

Establishes the boundary between main program and
subroutine area. Subroutine area is not scanned unless
directed to do so by a JSR instruction.

-(LBL)- Label XX
-(LBL)-

This condition instruction is the target destination for JUMP
and JSR instructions.

XX-two digit octal identification number, 00-07

-(JMP)- Jump XX
-(JMP)-

When rung is true, processor jumps forward to the referenced
label in main program.

XX-two digit octal identification number. Same as LBL with
which it is used.

-(JSR)- Jump To Subroutine XX
-(JSR)-

When the rung is true, processor jumps to referenced label in
subroutine area.

XX-two digit octal identification number. Same as LBL with
witch it is used.

-(RET)- Return -(RET)- No identification number. Can be used unconditionally .
Returns the processor to the instruction immediately following
the JSR in the main program that initiated the jump
to subroutine.

Quick Reference
Appendix C

C�15

Table C.N
Block Transfer Instructions

Key Sequence 1770-T3 Display Instruction Notes

BLOCK XFER
0 EN

Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

100

001

110� 110 DN

030

010

06

110

06

Output instruction.

Block length depends on kind of module.

Entire file transferred in one scan.

Done bit remains on for one scan after valid transfer.

BLOCK XFER
1 EN

Block Xfer Write

Data Addr:

Module Addr:

Block Length:

File:

100

001

110� 110 DN

030

010

06

110

06

Data read from I/O module must be buffered.

Uses two words of user program for each instruction

BLOCK XFER
0

BLOCK XFER
1

Enter both instruction blocks for bidirectional
block transfer.

Set block lengths equal or to default value for module.

Same module address used for read and write instruction.

Enable read and write instructions in same scan.

Order of operation determined by the module.

See the module user's manual.

NOTE: Numbers shown are default values. Numbers in shaded areas must be replaced by user-entered values. The number of
default address digits initially displayed (3 or 4) will depend on the size of the data table.

To access the Data Monitor Display, enter all instruction parameters. Press key sequence:
[DISPLAY][0] for the binary monitor mode;
[DISPLAY][1] for the hexadecimal monitor mode.

This Value: Stores the:

Data Address First possible address in the timer/counter accumulated value area
of the data table

Module Address RGS for R = rack, G = module, S = slot number

Block Length Number of words to be transferred

(enter 00 for default value or for 64 words)

File Address of the first word of the file

Enable bit �(EN)� Automatically entered from the module address

Set on when the rung containing the instruction is true

Done bit �(DN)� Automatically entered from the module address

Remains on for 1 program scan following successful transfer

Quick Reference
Appendix C

C�16

Table C.O
Editing Functions 1

Function Key Sequence Mode Description

Inserting a condition
instruction

[INSERT]
(Instruction)
(Address)

or
[INSERT][]
(Instruction)
(Address)

Program Position the cursor on the instruction that will precede the
instruction to be inserted. Then press key sequence.

Position the cursor on the instruction that will follow the
instruction to be inserted. Then press key sequence.

Removing a condition
instruction

[REMOVE]
(instruction)

Program Position the cursor on the instruction to be removed and press
the key sequence.

Inserting a rung [INSERT]
[RUNG]

Program Position the cursor on any instruction in the preceding rung
and press the key sequence. Enter instructions and complete
the rung.

Removing a rung [REMOVE]
RUNG]

Program Position the cursor anywhere on the rung to be removed and
press the key sequence.

IMPORTANT: Only addresses corresponding to output
energize, latch and unlatch instructions are cleared to zero.

Change data of a word or
block instruction

[INSERT]
(Data)

Program Position the cursor on the word or block instruction whose data
is to be changed. Press the key sequence.

Change the address of a
word or block instruction

[INSERT]
(first Digit)

[←]
(Address)

Program Position the cursor on a word or block instruction with data and
press [INSERT]. Enter the first digit of the first data value of the
instruction. Then use the [] and []key as needed to cursor up
to the word address. Enter the appropriate digits of the
word address.

Online programming [SEARCH]
[5][2]

Initiates online programming.

Replace an instruction or
Change address of an
instruction without data

[Instruction]
(Address)

Program Position the cursor on the instruction to be replace or whose
address is to be changed. Press the desired instruction key (or
key sequence) and the required address(es).

Online Data Change [SEARCH]
[5][1]
(Data)

[RECORD]

[CANCEL
COMMAND]

Run/Progra
m

Position the cursor on the word or block instruction whose data
is to be changed. Press sequence. Cursor keys can be used.

Press [RECORD] to enter the new data into memory.

To terminate online data change.

All editing functions [CANCEL
COMMAND]

Program

Run/Progra
m

Aborts the operation at the current cursor position.

These functions can also be used during online programming.

When bit address exceeds 5 digits, press the [EXPAND ADDR] key before entering address and enter a leading
zero if necessary.

1

Quick Reference
Appendix C

C�17

Table C.P
Search Functions

Function Key Sequence Mode Description

Locate first rung program [SEARCH][↑] Any Positions cursor on the first instruction of the program.

Locate last rung program area [SEARCH][↓] Any Positions cursor on the temporary end instruction, subroutine
area boundary, or the end statement depending on the
cursor's location. Press key sequence again to move to the
next boundary.

Locate first instruction of
current rung.

[SEARCH] [←] Remote Prog Position cursor on first instruction of the current rung.

Move cursor off screen [SEARCH][←] Remote Test
Run/Program

Moves cursor off screen to left.

Locate output instruction of
current rung

[SEARCH][→] Any Position cursor on the output instruction of the current rung.

Locate rung without an
output instruction

[SHIFT]
[SEARCH]

Any Locates any rung left incomplete due to an interruption
in programming.

Locate specific instruction [SEARCH]
[Instruction key]

(Address)

Any Locates instruction searched for. Press [SEARCH] to locate
the next occurrence of instruction.

Locate specific word address [SEARCH]
(address)

Any Locates this address in the program (excluding �| |� and �| / |�
instructions and addresses in files). Press [SEARCH] to locate th
next occurrence of this address. 1

Single rung display [SEARCH]
[DISPLAY]

Any Displays the first rung of a multiple rung display by itself. Press
key sequence again to view multiple rungs.

Print [SEARCH]
[4] [3]

Any Prints single rung.

Print [SEARCH]
[4] [4]

Any Prints ladder diagram dump.

Print [SEARCH]
[4] [5]

Remote Prog Prints total memory dump.

Print [SEARCH]
[5] [0]

Any Prints first 20 lines of data table configuration.

Print [SEARCH]
[5] [3]

Any Prints first 20 lines of bit manipulation.

Print [SEARCH]
[5] [4]

Any Prints first 20 lines of memory layout display.

Program controls outputs [SEARCH]
[5][9][0]

 Run/Program Places the processor in run/program mode.

Program executes
outputs disabled

[SEARCH]
[5][9][1]

 Remote Test Places the processor in remote test mode.

Processor awaits commands [SEARCH]
[5][9][2]

 Remote
Program

Places the processor in remote program mode.

Enter leading zeros when bit address exceeds 5 digits or word address exceeds 3 digits.1

Quick Reference
Appendix C

C�18

Table C.Q
Clear Memory Functions

Function Key Sequence Mode Description

Data table clear [CLEAR MEMORY]
[7][7]

(Start Address)
(End Address)

[CLEAR MEMORY]

Program Displays a start address and an end address field.

Start and end word addresses determine boundaries for data
table clearing.

Clears the data table within and including
addressed boundaries.

User program clear [CLEAR MEMORY]
[8][8]

Program Position the cursor at the desired location in the program.
Clears user program from the position of the cursor to the first
boundary: i.e. temporary end, subroutine area, or end
statement. Does not clear data table or messages.

Partial memory clear [CLEAR MEMORY]
[8][8]

Program Clears user program and messages from position of the cursor.
Does not clear data table.

Total memory clear [CLEAR MEMORY]
[9][9]

Program Position the cursor on the first instruction of the program.
Clears user program and messages. Does not clear data
table, unless the cursor is on the first program instruction.

NOTE: When memory write protect is active, memory cannot be cleared except for data table addresses 010-177 with a
programmed EPROM installed.

Quick Reference
Appendix C

C�19

Table C.R
Help Directories

Function Key Sequence Mode Description

Help directory [HELP] Any Displays a list of the keys that are used with the [HELP] key to
obtain further directories.

Control function directory [SEARCH]
[HELP]

Any Provides a list of all control functions that us the
[SEARCH] key.

Record function directory [RECORD]
[HELP]

Any Provides a list of functions that use the [RECORD] key.

Clear memory directory [CLEAR MEMORY]
[HELP]

Program Provides a list of all functions that use the [CLEAR
MEMORY] key.

Data monitor directory [DISPLAY]
[HELP]

Any Provides the choice of data monitor display accessed by the
[DISPLAY] key.

File instruction directory [FILE][HELP] Any Provides a list of all instructions that use the [FILE] key.

Sequencer directory [SEQ][HELP] Any Provides a list of all instructions that use the instruction
[SEQ] key.

Block transfer directory [BLOCK XFER] Any Provides a list of all instructions that use the
[BLOCK XFER] key.

All directories [CANCEL COMMAND] Any To terminate.

Quick Reference
Appendix C

C�20

Table C.S
Report Generation Commands

Command Key Sequence Description

Enter report generation function [RECORD[[DISPLAY] or Set baud rate,
(Message Code Keys)

Puts industrial terminal into report generation function.

Same (entered from a peripheral device).

Message store [M][S][,](Message Number)
[RETURN]

Stores message in processor memory.

Use [ESC] to end message.

Message print [M][P][,](Message Number)
[RETURN]

Prints message exactly as entered.

Message report [M][R][,](Message Number)
[RETURN]

Prints message with current data values or bit status.

Message delete [M][D][,](Message Number)
[RETURN]

Removes message from processor memory.

Message index [M][I][RETURN] Lists messages used and the number of words in
each message.

Automatic report generation [SEARCH][4][0] or [M][R][RETURN] Allows messages to be printed through program control.

Same (entered from a peripheral device).

Exit automatic report generation [ESC] or [CANCEL COMMAND] 1 Terminates automatic report generation.

Exit report [ESC] or [CANCEL COMMAND] 1 Returns to ladder diagram display.
Terminates Report Generation Function.

[CANCEL COMMAND] can only be used if the function was entered by a command from a peripheral device.1

Quick Reference
Appendix C

C�21

Table C.T
Address Delimiters

Delimiter Format Explanation Message Report Format

XXX Enter 3-digit word address
between delimiters.

Displays BCD value at assigned
word address.

XXX1
or

XXX0

Enter 3-digit word address and a
�1" for upper byte or a �0" for
lower byte between delimiters.

Displays the octal value at
assigned byte address.

XXXXX Enter 5-digit bit address between
delimiters.

Displays the ON or OFF status of
the assigned bit address.

#XXX# Enter 3,4 or 5-digit word address
between delimiters.

Displays the 4-digit hex value
at address.

&XXX1&
&XXX0&

Enter 3,4 or 5-digit word address
and a �1" for upper byte or a �0"
for lower byte between delimiters.

Displays the octal value at the
assigned byte address.

XXXXX Enter 5,6 or 7-digit bit address
between delimiters.

Displays the ON or OFF status of
the assigned bit address.

Quick Reference
Appendix C

C�22

Table C.U
Alphanumeric/Graphic Key Definitions

Key Function

[LINE FEED] Moves the cursor down one line in the same column.

[RETURN] Returns the cursor to the beginning of the next line.

[RUB OUT] Deletes the last character or control code that was entered.

[REPT LOCK] Allows the next character that is pressed to be repeated
continuously until [REPT LOCK] is pressed again.

[SHIFT] Allows the next key pressed to be a shift character.

[SHIFT LOCK] Allows all subsequent keys pressed to be shift characters until
[SHIFT] or [SHIFT LOCK] is pressed.

[CTRL] Used as part of a key sequence to generate a control code.

[ESC] Terminates the present function.

[MODE SELECT] Terminates all functions and returns the mode select display to
the screen.

Blank Yellow Keys Space keys. Move the cursor one position to the right.

Quick Reference
Appendix C

C�23

Table C.V
Industrial Terminal Control Codes

Control Code
Key Sequence Function

[CTRL][P]
[Column#][;]
[Line#][A]

Positions the cursor at the specified column and line number.
[CTRL][P][A] will position the cursor at the top left corner of the screen.

[CTRL][P][F] Moves the cursor one space to the right.

[CTRL][P][U] Moves the cursor one line up in the same column.

[CTRL][P][5][C] Turns cursor on.

[CTRL][P][4][C] Turns cursor off.

[CTRL][P][5][G] Turns on graphics capability.

[CTRL][P][4][G] Turns off graphics capability.

[CTRL][P][5][P] Turns Channel C outputs on.

[CTRL][P][4][P] Turns Channel C output off.

[CTRL][1] Horizontal tab that moves the cursor to the next preset 8th position.

[CTRL][K] Clears the screen from cursor position to end of screen and moves the cursor
to the top left corner of the screen.

Key Sequence Attribute 1

[CTRL][P][0][T] Attribute 0 = Normal Intensity

[CTRL][P][1][T] Attribute 1 = Underline

[CTRL][P][2][T] Attribute 2 = Intensify

[CTRL][P][3][T] Attribute 3 = Blinking

[CTRL][P][4][T] Attribute 4 = Reverse Video

Any three attributes can be used at one time using the following key sequence:
[CTRL][P][Attribute #][;][Attribute #][;][Attribute #][T]

1

Quick Reference
Appendix C

C�24

Table C.W
Contract Histogram Functions

Function Key Sequence Mode Description

Continuous
contact histogram

[SEARCH][6]
(Bit Address)
[DISPLAY]

Any Provides a continuous display of the on/off history of the
addressed bit in hours, minutes and seconds.

Can obtain a hardcopy printout of contact histogram by
connecting a peripheral device to Channel C and selecting
proper baud rate before indicated key sequence.

Paged Contact [SEARCH][7]
(Bit Address)
[DISPLAY]
[DISPLAY]

Any Displays 11 lines on/off history of the addressed bit in hours,
minutes and seconds.

Displays the next 11 lines of contact histogram.

Can obtain a hard copy printout of contact histogram by
connecting peripheral device to Channel C and selecting
proper baud rate.

Either [CANCEL COMMAND] To terminate.

Quick Reference
Appendix C

C�25

Table C.X
Troubleshooting Aids

Function Key Sequence Mode Description

Bit monitor [SEARCH]
[5][3]

[Address]
[↑]or[↓]

Any Displays the on/off status of all 16 bits at specified word
address and corresponding force conditions if they exist.

Displays the status of 16 new bits at the next lowest or highest
word address, respectively.

Bit manipulation [SEARCH]
[5][3]

[←] or [→]
[1] or [0]

See FORCING below

Test or
Run/Program

Displays the on/off status of all 16 bits at specified word
address and corresponding force conditions if they exist.

Moves cursor to the bit to be changed.

Enter a 1 to set bit on or a 0 to reset a bit.

Forcing or removing forces from input bits or output devices.

Either of above [CANCEL COMMAND] To terminate.

Force On [FORCE ON]
[INSERT]

Test or
Run/Program

Position the cursor on the image table bit to be forced on and
press the key sequence. The input bit or output device is
forced on.

Removing a Force On [FORCE ON]
[REMOVE]

Test or
Run/Program

Position the cursor on the image table bit whose force on is to
be removed and press the key sequence.

Removing all Force On [FORCE ON]
[CLEAR MEMORY]

Test or
Run/Program

Position cursor anywhere in program and press key sequence.

Force Off [FORCE OFF]
[INSERT]

Test or
Run/Program

Position the cursor on the image table bits to be whose force
off is to be removed and press the key sequence.

Removing all Force Off [FORCE OFF]
[CLEAR MEMORY]

Test or
Run/Program

Position the cursor anywhere in program and press
key sequence.

Forced address display [SEARCH]
[FORCE ON]

or
[SEARCH]

[FORCE OFF]

Any Displays a list of the bit addresses that are forced on and
forced off. The [SHIFT][] and [SHIFT][] keys can be used to
display additional forces.

[CANCEL COMMAND] To terminate.

Inserting a temporary
end instruction

[INSERT]
[←][T.END]

or
[INSERT]
[T.END]

Program Position the cursor on the instruction that willfollow the
temporary end instruction. The remaining rungs, although
displayed and accessible, are not scanned.

Position the cursor on the instruction that will precede the
temporary end instruction. The remaining rungs, although
displayed and accessible, are not scanned.

Remove a temporary
end instruction

[REMOVE]
[T.END]

Program Position cursor on temporary end instruction and press
key sequence.

NOTE: When in test mode, the processor will hold outputs off regardless of attempts to force them on.

Numbers

1770-T3, 1�2, 3�3, 3�6, 17�9, C�23

1772-LS, 3�2

1772-LSP, 3�4

1784-T50, 3�3, 3�6

3-digit math, 10�1

A

accumulated values, 4�7, 8�1

addition, 10�2, 10�11

additional messages, 17�4

address delimiters, 17�12, C�21

addresses, 6�2

ASCII control codes, 17�8

automatic restart, 18�2

B

battery backup, 3�6

BCD, A�3

BCD to binary, 10�18

BCO, A�5

before you begin, 1�1

bidirectional block transfer, 14�11

binary coded decimal, BCD. See BCD

binary coded octal. See BCO

binary numbering, A�2

binary to BCD, 10�20

bit, 4�1

bit controlling instructions, 6�4

bit examining instructions, 6�3

bit manipulation, 19�2

bit monitor, 19�2

block length, 14�6

block transfer
basic operation, 14�1
bidirectional block transfer, 14�11
block transfer read, 14�8
block transfer write, 14�10
buffering data, 14�16
data address, 14�5
enable/done bits, 14�8

equal block lengths, 14�7
file address, 14�7
format, 14�4
I/O scan, 14�3
length, 14�6
module address, 14�6
multiple reads, 14�14
program scan, 14�3
quick reference, C�15
run-time errors, 14�8
unequal block lengths, 14�7

bottle filling application, 18�9

branching, 6�6
expanded math instructions, 10�9
nesting, 6�8
start/end, 6�7

buffering data, 14�16

byte, 4�1

C

cascading timers, 18�4

central processing unit. See CPU

changing an address, 16�5

changing an instruction, 16�5

changing data, 16�4, 16�6

clearing memory, 16�10, C�18

CMOS RAM, 1�2, 3�12

compare instruction
equal to, 9�3
equal to or greater than, 9�9
equal to or less than, 9�7
get byte, 9�10
get byte/out, 9�11
greater than, 9�9
less than, 9�4
limit test, 9�5

complete mode, 11�3

conditioning instruction, 10�7

contact histogram, 19�3, C�24

control code, message, 17�6

control codes, C�23

control sequence, 2�8

controls
programmable, 2�2
traditional, 2�1

Index

 IndexI–2

conventions, 1�2

counter instruction
counter reset, 8�7
down counter, 8�7
quick reference, C�9
up counter, 8�6

counter reset, 8�7

CPU, 2�3

D

data address, 10�5, 14�5

data initialization key, 16�16

data manipulation instruction, quick
reference, C�10

data manipulation instructions, 9�1
compare, 9�3
transfer, 9�1
transfer and compare, 9�7

data monitor display, 11�5

data table, 2�4, 4�3
accumulated values and internal storage,

 4�7
areas, 4�7
configuration, quick reference, C�2
expanding, 4�5
factory configuration, quick reference,

C�3
preset values, 4�7
processor work area, 4�7
size, quick reference, C�2

data table clear, 16�11

data transfer file instruction, 11�1

decimal numbering, A�1

decimal values, 1�2

diagnosing run time errors, 19�1

distributed complete mode, 11�3

division, 10�3, 10�12

down counter, 8�7

E

EAF, 1�2, 10�4

editing
BCD to binary, 10�20
binary to BCD, 10�21
counter reset, 8�8
down counter, 8�8
equal to, 9�4
equal to or greater than, 9�10
equal to or less than, 9�8

examine on/examine off, 6�4
expanded math instruction, 10�15
file to file move, 11�14
functions, 16�1
get, 9�3
get byte, 9�11
get byte/put, 9�13
greater than, 9�9
immediate input/output update, 7�6
instruction, rules, 16�1
jump instruction, 13�3
label, 13�4
less than, 9�5
limit test, 9�7
MCR/ZCL, 7�3
output energize, 6�5
output latch/unlatch, 6�6
put, 9�3
quick reference, C�16
retentive timer on/reset, 8�5
square root, 10�18
three-digit math instruction, 10�4
timer on/timer off, 8�3
up counter, 8�8

editing functions, C�16

EEPROM, 1�2, 3�12

equal to, 9�3

equal to or greater than, 9�9

equal to or less than, 9�7

ERR message, 19�8

error handling, 10�10

examine off, 6�3

examine on, 6�3

execute auxiliary function. See EAF

execution time, program, 15�2

executive auxiliary function. See EAF

expanded math, 10�4
addition, 10�11
BCD to binary, 10�18
binary to BCD, 10�20
branch, 10�9
conditioning, 10�7
data address, 10�5
division, 10�12
error handling, 10�10
function number, 10�10
multiplication, 10�12
operations, 10�11
result address, 10�8
square root, 10�15
subtraction, 10�11

expanding, data table, 4�5, 11�8

 Index I–3

externally indexed, 11�2

F

file address, block transfer, 14�7

file instruction
data monitor display, 11�5
externally indexed, 11�2
file to file move, 11�9
file to word move, 11�16
internally indexed, 11�2
modes of operation, 11�3
quick reference, C�12
sequencer, comparison with, 12�1
types, 11�1
word to file move, 11�16

file to file move, 11�9

file to word move, 11�16

forcing, 19�5

function numbers, 10�10

fuse, 3�5

G

generating messages, 17�3

get, 9�1

get byte, 9�10

get byte/put, 9�11

greater than, 9�9

H

hardware, relates to image tables, 4�1

help directories, 16�13, C�19

hexadecimal numbering, A�6

hexadecimal values, 1�2

I

I/O image tables, 2�4

I/O scan, 2�9, 5�1, 14�3

illegal opcode, 19�8

immediate input/output update, 7�4

incomplete rung, 16�9

incremental mode, 11�4

indicator, processor status, 3�3, 3�4

industrial terminal, 1�2, 3�6, C�23

industrial terminal keyboard, 3�11

input
conditioning, 2�7
indication, 2�6
isolation, 2�7
termination, 2�6

input image table, 2�4

inserting
branch start/end, 6�8
instruction, 16�2
rung, 16�4

installing the T3, 3�7

instruction
addition, 10�2, 10�11
BCD to binary, 10�18
binary to BCD, 10�20
bit controlling, 6�4
bit examining, 6�3
block transfer, 14�1
branch start/end, 6�7
branching, 6�6
compare, 9�3
conditioning, 10�7
counter, 8�1, 8�5
counter reset, 8�7
data manipulation, 9�1
data transfer file, 11�1
division, 10�3, 10�12
down counter, 8�7
EAF, 10�4
editing rules, 16�1
equal to, 9�3
equal to or greater than, 9�9
equal to or less than, 9�7
execution time, C�4
expanded math, 10�4
file, 11�1
file to file move, 11�9
file to word move, 11�16
get, 9�1
get byte, 9�10
get byte/put, 9�11
greater than, 9�9
immediate input/output update, 7�4
inserting, 16�2
jump, 13�1
jump to subroutine, 13�2
label, 13�3
less than, 9�4
limit test, 9�5
master control reset, 7�1
math, 10�1
multiplication, 10�3, 10�12
output latch/unlatch, 6�5
output override, 7�1
program control, 7�1

 IndexI–4

programming, 6�3
put, 9�2
relay, 6�1
retentive timer on, 8�4
retentive timer reset, 8�4
return, 13�2
sequencer, 12�1
sequencer input, 12�5
sequencer load, 12�19
sequencer output, 12�13
square root, 10�15
subroutine, 13�4
subtraction, 10�2, 10�11
temporary end, 19�7
three-digit math, 10�1
timer, 8�1
timer on/timer off, 8�2
transfer, 9�1
up counter, 8�6
word to file move, 11�16
zone control last state, 7�1

instruction execution times, 5�4

instructions, 2�6

interface socket, 3�3

internal storage, 4�7

internally indexed, 11�2

INTFC, 3�3, 3�7

J

jump, 13�1

jump instruction
jump, 13�1
jump to subroutine, 13�2
label, 13�3
quick reference, C�14
return, 13�2

jump to subroutine, 13�2

K

key definitions, 3�8, C�22

keyboard, 3�11

keystroke directions, 1�3

keytop overlay, 3�8, 17�2

L

label, 13�3

leading edge one shot, 18�1

less than, 9�4

limit test, 9�5

limitations, sequencer instructions, 12�3

M

machine control, 2�1

main program, 4�8

mask, 12�2

master control reset. See MCR

math instruction
addition, 10�2
division, 10�3
expanded math, 10�4
multiplication, 10�3
quick reference, C�11
subtraction, 10�2
three-digit, 10�1

MCR, 7�1

memory, 2�4
areas, 4�3
data table, 4�3
message storage area, 4�9
organization, 4�1
user program, 4�8

memory store switch, 3�3

message control code, 17�6

message control word, 17�5, 17�10

message delete, 17�14

message index, 17�14

message print, 17�13

message report, 17�13

message storage area, 4�9

message store, 17�11

messages 1-6, 17�3

modes of operation, 3�11
complete, 11�3
distributed complete, 11�3
file instruction, 11�3
incremental, 11�4

module address, block transfer, 14�6

module group, 6�3

multiple block transfer reads, 14�14

multiplication, 10�3, 10�12

N

nesting branches, 6�8

number systems, A�1

 Index I–5

O

octal numbering, A�2

octal values, 1�2

one shot, 18�1

online data change, 16�6, 16�13

online programming, 16�14

opcode, illegal, 19�8

operation, block transfer, 14�1

operations, expanded math, 10�11

output
conditioning, 2�7
indication, 2�7
isolation, 2�8
termination, 2�7

output energize, 6�4

output image table, 2�4

output latch/unlatch, 6�5

output override instruction, 7�1

P

P/S ACTIVE, 3�4

P/S PARALLEL, 3�4

paralleling cable, 3�12

partial memory clear, 16�12

POWER (switch), 3�5

power supply, 2�3, 2�8

power switch, 3�4

preset values, 4�7, 8�1

PROC RUN/FAULT, 3�3

processor, 1�2

processor mode select, 16�10

processor status indicator, 3�3, 3�4

processor work area, 4�7

program
execution time, 15�2
instructions, 6�3
language, 2�5
logic, 6�1
main, 4�8
scan, 14�3
storage, 2�5
subroutine area, 4�8
troubleshooting, 19�1
user, 4�8

program control, example, 18�8

program control instruction
immediate input/output update, 7�4

master control reset, 7�1
quick reference, C�7
zone control last state, 7�1

program scan, 2�11, 5�1

programmable controller
CPU, 2�3
data table, 2�4
I/O image tables, 2�4
input, 2�6
instructions, 2�6
memory, 2�4
output, 2�7
power supply, 2�8
program language, 2�5
program storage, 2�5
sections, 2�2

programmable controls, 2�2

programming, STI, 15�1

programming aids, 16�12

programming techniques
automatic restart, 18�2
bottle filling application, 18�9
cascading timers, 18�4
one shot, 18�1
program control, 18�8
temperature conversions, 18�5

put, 9�2

R

relay-type instruction
branch start/end, 6�7
examine on/examine off, 6�3
output energize, 6�4
output latch/unlatch, 6�5
quick reference, C�6

remote program, 3�11

remote test, 3�11

removing
branch start/end, 6�8
equal to, 9�4
examine on/examine off, 6�4
get, 9�2
immediate input/output update, 7�6
instruction, 16�3
label, 13�4
less than, 9�5
output energize, 6�5
put, 9�2
rung, 16�4
temporary end, 19�8

report generation
additional messages, 17�4

 IndexI–6

address delimiters, 17�12
commands, 17�9, 17�10
generating messages, 17�3
message control word, 17�10
message delete, 17�14
message index, 17�14
message print, 17�13
message report, 17�13
message store, 17�11
messages 1-6, 17�3
programming example, 17�14
quick reference, C�20

reset, 6�2

result address, 10�8

retentive timer on, 8�4

retentive timer reset, 8�4

return, 13�2

run time errors
block transfer, 14�8
diagnosing, 19�1

run/program mode, 3�11

S

scan
average time, 5�3
function, 5�1
sequence, 5�2
theory, 5�1

scan sequence, 2�9

search functions, 16�7, C�17

searching, 16�6

sections, 2�2

selectable timed interrupt. See STI

sequencer input, 12�5

sequencer instruction
comparison with file instruction, 12�1
limitations, 12�3
mask, 12�2
quick reference, C�13
sequencer input, 12�5
sequencer load, 12�19
sequencer output, 12�13
table, 12�1

sequencer load, 12�19

sequencer output, 12�13

sequencer table, 12�1

set, 6�2

single rung display, 16�9

square root, 10�15

start�up conditions, 18�3

STI
overview, 15�2
programming, 15�1

subroutine, 13�1, 13�4, 15�1

subroutine area, 4�8

subroutine instruction, quick reference,
C�14

subtraction, 10�2, 10�11

switch
assembly, 3�5
memory store, 3�3
power, 3�4
settings, 3�5

T

temperature conversions, 18�5

temporary end, 19�7

terminal strip, 3�5

three-digit math, 10�1

timer instruction
cascading, 18�4
quick reference, C�8
retentive timer on, 8�4
retentive timer reset, 8�4
timer on/timer off delay, 8�2

timer on/timer off, 8�2

timer/counter storage, 2�4

total memory clear, 16�12

traditional controls, 2�1

trailing edge one shot, 18�2

transfer instruction
equal to or greater than, 9�9
equal to or less than, 9�7
get, 9�1
get byte, 9�10
get byte/put, 9�11
greater than, 9�9
put, 9�2

troubleshooting
bit manipulation, 19�2
bit monitor, 19�2
contact histogram, 19�3
ERR message, 19�8
forcing, 19�5
quick reference, C�25
run time errors, 19�1

 Index I–7

temporary end instruction, 19�7

U

up counter, 8�6

user program, 4�8

user program clear, 16�11

V

vocabulary, 1�2

W

word, 4�1

word to file move, 11�16

Z

ZCL, 7�1

zone control last state. See ZCL

Publication 1772�6.8.6 - May 1994
Supersedes Publication 1772-6.8.6 October 1984

Allen�Bradley, a Rockwell Automation Business, has been helping its customers improve pro�
ductivity and quality for more than 90 years. We design, manufacture and support a broad range
of automation products worldwide. They include logic processors, power and motion control
devices, operator interfaces, sensors and a variety of software. Rockwell is one of the worlds
leading technology companies.

Worldwide representation.

Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic •
Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia •

Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru •
Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia�CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain •
Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen�Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382�2000 Fax: (1) 414 382�4444

Publication 1772�6.8.6 - May 1994
Supersedes Publication 1772-6.8.6 October 1984

PN 955118-05
Copyright 1994 Allen�Bradley Company, Inc. Printed in USA

	1772-6.8.6, 1772 Mini PLC-2/05 Processor, Programming and Operations Manual
	1772-6.8.6, Front Cover
	1772-6.8.6, Inside Cover
	1772-6.8.6, Summary of Changes
	1772-6.8.6, Section Dividers
	1772-6.8.6, Table of Contents
	1772-6.8.6, 1 - Before You Begin
	1772-6.8.6, 2 - An Introduction to Programmable Controllers
	1772-6.8.6, 3 - Hardware
	1772-6.8.6, 4 - Memory Organization
	1772-6.8.6, 5 - Scan Theory
	1772-6.8.6, 6 - Relay-type Instructions
	1772-6.8.6, 7 - Program Control Instructions
	1772-6.8.6, 8 - Timers and Counters
	1772-6.8.6, 9 - Data Manipulation Instructions
	1772-6.8.6, 10 - Math Instructions
	1772-6.8.6, 11 - Data Transfer File Instructions
	1772-6.8.6, 12 - Sequencers
	1772-6.8.6, 13 - Jump Instructions and Subroutine
	1772-6.8.6, 14 - Block Transfer
	1772-6.8.6, 15 - Selectable Timed Interrupt
	1772-6.8.6, 16 - Program Editing
	1772-6.8.6, 17 - Report Generation
	1772-6.8.6, 18 - Programming Techniques
	1772-6.8.6, 19 - Program Troubleshooting
	1772-6.8.6, A - Number Systems
	1772-6.8.6, B - Glossary
	1772-6.8.6, C - Quick Reference
	1772-6.8.6, Index
	1772-6.8.6, Back Cover

