MITSUBISHI

PROGRAMMABLE CONTROLLER
MEST(-4

User's Manual

External charactor display unit type A6FD
※The manual number is given on the bottom left of the back cover.

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-A Series of General Purpose Programmable Controllers. Please read this manual carefully so that the equipment is used to its optimum. A copy of this manual should be forwarded to the end User.

COŃTENTS

1. GENERAL DESCRIPTION $1-1 \sim 1-2$
1.1 How to Use This Manual 1-1
2. SYSTEM CONFIGURATION $2-1 \sim 2-2$
2.1 System Configuration 2-1
2.2 Equipment 2-2
3. SPECIFICATIONS $3-1 \sim 3-4$
3.1 General Specifications 3-1
3.2 Performance Specifications 3-2
3.3 Interface Specifications 3-3
3.4 Power Supply Specifications 3-4
4. HANDLING $4-1 \sim 4-2$
4.1 Handling Instructions 4-1
4.2 Nomenclature 4-2
5. LOADING AND INSTALLATION $5-1 \sim 5-8$
5.1 Installation Environment 5-1
5.2 Mounting 5-2
5.2.1 General precautions 5-2
5.2.2 Mounting 5-3
5.3 Wiring 5-5
5.3.1 Wiring precautions 5-5
5.3.2 Output unit wiring 5-7
6. DISPLAY CONTROL SIGNALS AND TIMING $6-1 \sim 6-4$
6.1 Display Output Timing 6-1
6.2 Display Method 6-4
7. PROGRAMMING $7-1 \sim 7-24$
7.1 Basic Display Programs 7-1
7.2 Programming Application Examples 1 (For A1, A2, A3CPU) 7-6
7.3 Programming Application Example 2 (For A0J2CPU) 7-22
7.4 Display of Numerical Variables 7-24
8. TEST 8-1
8.1 Pre-Test Checks -8-1
8.2 Test and Adjustment -8-1
9. TROUBLESHOOTING 9-1
10. MAINTENANCE AND INSPECTION 10-1
APPENDICES APP-1 ~ APP-3
APPENDIX1 External Views APP-1
APPENDIX 2 Character Code List APP-2
APPENDIX 3 Sink Output Unit and Source Output Unit APP-3
11. GENERAL DESCRIPTION

This User's Manual describes the specifications, handling, programming procedures, etc. of the A6FD external display unit (hereinafter referred to as "A6FD") for use with the MELSEC-A series of Programmable. Controllers.
The examples used in this manual are based on the MELSEC-A Series PCs. Other systems may be compatible providing the A6FD specifications are met.
1.1 How to Use This Manual

This manual is divided as follows:

Chapter 3 Specifications
Performance, electrical and power supply specifications.

Chapter 4 Handling
Nomenclature and handling instructions.
Chapter 5 Loading and Installation
Installation and wiring instructions
Chapter 6 Display control signals and timing.
Explains the control signals required from the output unit to the A6FD.

Chapter 7 Programming
Explains the special instructions used to control the A6FD and gives program examples that do not use the special A6FD control instructions.

Chapter 8 Test
Pre-test and test procedures
Chapter 9 Troubleshooting
Chapter 10 Maintenance and Inspection

Appendices
External dimensions, character set and codes. Notes on connection of the A6FD with general types of output devices.

The following manuals may also be required
A1(E), A2(E); A3(E)CPU User's Manual
A1(E), A2(E), A3(E)CPU Programming Manual
A0J2CPU User's Manual (CPU edition)
A0J2CPU Programming Manual
A6GPP Operating Manual (A series)
Other A series manuals

2 SYSTEM CONFIGURATION

2.1 System Configuration

Fig. 2.1 System Configuration

POINT

1. If using the A6FD in a data link system remote I/O station, refer to Section 6.1"Display Output Timing" (1) and Section 7.2 "Programming Application Example" (4).
2. An extension base unit cannot be connected to the A32B main base unit which does not have an extension connector.

Table 2.1 lists the A series output and I/O units to which the A6FD can be connected. (available at time of printing):

Name	Type	Output Specifications
Output unit (for A1,$2,3 C P U)$	AY40	16-point, $12 / 24 \mathrm{~V}$ DC transistor output unit (for 01 A) (Sink output)
	AY41	32-point, 12/24V DC transistor output unit (for 0.1A) (Sink output)
	AY42	64 -point, $12 / 24 \mathrm{~V}$ DC transistor output unit (for 0.1 A) (Sink output)
	AY50.	16-point, $12 / 24 \mathrm{~V}$ DC transistor output unit (for 05 A) (Sink output)
	AY51	32-point, $12 / 24 \mathrm{~V}$ DC transistor output unit (for 05 A) (Sink output)
	AY80	16-point, $12 / 24 \mathrm{~V}$ DC transistor output unit (for 0.5A with fuse) (Source output)
	AY81	32-point, $12 / 24 \mathrm{~V}$ DC transistor output unit (for 05 A with fuse) (Source output)

Name	Type		Output Specifications
I/O unit (for AOJ2)	A0J2-E24T	24 points	$12 / 24 \mathrm{~V}$ DC transistor output unit (for 0.5A) (Sink output)
	A0J2-E28DT	12 points	
	A0J2-E56DT	24 points	

Table 2.1 Unit List

POINT

1. Relay output units should not be used due to the duty cycles imposed by the special A6FD control instructions
2. Any I/O slot may be used for the control of the A6FD.

3. SPECIFICATIONS

3.1 General Specifications

Table 3.1 shows general specifications of the A6FD.

Table 3.1 General Specifications

REMARKS

One octave marked $*$ indicates a change from the initial frequency to double or half frequency. For example, any of the changes from 10 Hz to 20 Hz , from 20 Hz to 40 Hz , from 40 Hz to 20 Hz , and 20 Hz to 10 Hz are referred to as one octave.
*1JIS•Japanese Industrial Standard.

3.2 Performance Specifications

Table 3.2 shows the A6FD performance specifications.

Item	Specifications
Line voltage	Input voltage. 100 V AC/200V AC (0 12A max)
Applicable line voltage	85 to 264 V AC $(50 / 60 \mathrm{~Hz} \pm 5 \%)$
Applicable unit	AY40, AY41, AY42, AY50, AY51, AOJ2-E24T, A0J2-E28DT, A0J2-E56DT sink output units AY80, AY81 source output units
Interface Rated input voltage Rated input current Applicable voltage Input resistance	8 data lines (D0 to D7), 1 strobe line (STROBE), 1 common line (COM) $12 / 24 \mathrm{~V}$ DC $4 \mathrm{~mA}(12 \mathrm{~V} \mathrm{DC}), 10 \mathrm{~mA}(24 \mathrm{~V} \mathrm{DC})$ 102 to 26.4 V DC(Ripple ratıo within 5%) Approx. $2.4 \mathrm{~K} \Omega$
Internal isolation	Photocoupler
Display type	LED (red) 5×7 dots, dynamic method, 16 digits in 1 line ASCII
Controls fitted	Manual reset switch
External connection	20-point termınal connector M3 (Metric thread) $\times 6$ screws
Applicable wire size	$\begin{gathered} 2 \mathrm{~mm}^{2}(14 \mathrm{AWG}) \text { or less } \\ \text { (Applıcable tightening torque } \cdot 7 \mathrm{~kg} \mathrm{~cm} \\ (0.51 \mathrm{~b} \cdot \mathrm{ft})) \end{gathered}$
Applicable solderless terminal	To fit 3 mm (0 12 inch) dia. terminal screws $\begin{gathered} \text { 125-3, 1.25-YS3A, 2S3, 2-YS3A, } \\ \text { V1 } 25-3, \text { V1.25-YS3A, V2-S3, V2-YS3A } \end{gathered}$
Size mm(inch)	145(5.71) (D) $\times 290(1142)(W) \times 60(236)(H)$
Weight $\mathrm{kg}(\mathrm{lb})$	Approximately $15(3.3)$

Table 3.2 Performance Specifications
The A6FD is not guaranteed against instantaneous power failure.

REMARKS

Before shipment, the A6FD is checked to ensure that it displays data properly, using a shielded cable 200 m (656 18ft) in length and $018 \mathrm{~mm}^{2}$ (24AWG) CSA

3.3 Interface Specifications

The external equipment interface of the A6FD are given below.

Table 3.3 External Interface Specifications

Item	Specifications
Applıcable voltage	$100 \mathrm{~V} \mathrm{AC}, 200 \mathrm{~V} \mathrm{AC}, 5$ to 48V DC
Mınımum contact current value	1 mA
Maxımum contact current value	2 A (Resıstor load)

Table 3.4 "Reset" output from A6FD

POINT

1. The same $12 / 24 \mathrm{~V}$ DC power supply should be used for both the A6FD and the transistor output module.
2. The reset switch clears the display and initializes the unit. It also closes the relay contacts across TB13 and TB14.
3. The "NC" terminals are unused by the A6FD (NC for no connection)

REMARKS

For the sink and source output units, refer to Appendix 3

3.4 Power Supply Specifications

The A6FD power supply specifications are given below.

Internal Circuit	Terminal Number	Signal	Specifications
5 V			

Table 3.5 Power Supply Specifications

POINT

1. A 200 msec delay occurs between power-up and the A6FD becoming active.
2. Half the supply voltage appears at the LG terminal (TB20). Do not touch this terminal if the unit is not grounded.

4. HANDLING

4.1 Handling Instructions

Handle the A6FD carefully as described below:
(1) Do not subject the unit to impact loads.
(2) Guard against the entry of conductive debris into the unit. If any should enter, switch off the power and remove it.
(3) Do not touch the printed circuit board.
(4) Tighten screws to the torques given below:

Screw	Torque Range kg cm (lb ft)
Termınal block screws (M3 metrıc thread)	$8(058)$ to $14(1.01)$
Termınal block fıxing screws (M4 metric thread)	$8(0.58)$ to $14(1.01)$
Unit mountıng screws (M4 metric thread)	$5(0.36)$ to $8(058)$

4.2 Nomenclature

Front View

Rear View

Bottom View

5. LOADING AND INSTALLATION

5. LOADING AND INSTALLATION

5.1 Installation Environment

The installation environment should meet the following requirements:
(1) Ambient temperature between 0 and $55^{\circ} \mathrm{C}$.
(2) Ambient humidity between 10 and 90%.
(3) No condensation (e.g. due to sudden temperature changes)
(4) No corrosive and/or combustible gases.
(5) No airborne conductive or organic powders or mists.
(6) Protected from direct exposure to sunlight.
(7) Protected from strong power and magnetic fields.
(8) Protected from vibration and shock.
(9) Away from, sources of heat such as heating elements.

The installation environment should meet the specifications quoted in Section 3.1.

5.2 Mounting

5.2.1 General precautions

When installing the A6FD in a panel etc. note the following:
(1) Install the unit in a well-ventilated place with the operating ambient temperature less than $55^{\circ} \mathrm{C}$.
(2) Avoid installing the unit over large sources of heat (such as a large-capacity resistor, transformer, or heater).
(3) Do not install the unit near sources of vibration or impact loads such as large magnetic contactors and no-fuse breakers.
(4) Ensure any "L" brackets used do not obstruct the air flow for ventilation.
(5) When installing the A6FD on a flat surface, ensure that there is sufficient clearance for the connection of solderless terminals to the terminal block.
(6) The mounting holes in the rear of the face plate are tapped for M4 (Metric thread) screws. Recommended screw length is 5.6 mm (0.22 inch) plus the panel wall thickness.
(7) The mountıng holes in the rear of the face plate are tapped for M4 (Metric thread) screws. Recommended screw length is mounting surface thickness plus 5 mm (0.20 inch).

5.2.2 Mounting

(1) Installing the unit in a panel cut-out.

(2) Cut-out dimensions and hole centres.

Refer to the rear view in Appendix 1.
(3) Installation on a flat surface

Rubber pads should be used to provide clearance between the flat surface and the A6FD for the face plate and solderless terminal connections, as shown below.

(4) Installation using extended brackets. See below.

5.3 Wiring

5.3.1 Wiring precautions

(1) Power supply wiring
(a) When line voltage fluctuations are liable to cause the supply voltage to go outside the specified range, use a constant voltage transformer.
(b) The power supply used should generate minimal noise between lines and between lines and ground. If the noise generated is excessive, an isolation transformer should be used.
(c) Separate PC power supply, I/O equipment and main circuit wiring as shown below:

(d) Use twisted wire for 100 V AC, 200 V AC and 24 V DC wiring and use the shortest wire length possible.
(e) Use the maximum cable size possible (up to $2 \mathrm{~mm}^{2}$ (14AWG)) to minimize voltage drops.
(f) Do not bundle 100 V AC and 24 V DC wires with the main circuit (high voltage or large current) and I/O signal cables. Avoid running these wires near the main circuit and I/O signal cables and, if possible, keep them more than 100 mm (3.94inch) away.
(2) I/O equipment wiring
(a) Use $2 \mathrm{~mm}^{2}$ (14AWG) wire or smaller for I/O wiring.
(b) Run the input wires separately from the output wires.
(c) Keep the $1 / O$ signal wires more that 100 mm (3.94 inch) away from any main cırcuit wiring.
(d) Where I/O signal wires are run in close proximity to other wiring, use shielded cable, preferably grounded at the PC end.
(e) Ground any piping used to route cables.
(f) Separate the 24V DC I/O signal lines from 100 V AC and/or 200V AC wires.
(3) Grounding wiring
(a) Use class 3 grounding (Grounding resistance 100Ω or less). Where possible', ground the PC independently of other equipment.
(b) Use $2 \mathrm{~mm}^{2}$ (14AWG) or larger cable for grounding.
(c) The grounding point should be as near to the PC as possible.
The grounding cable length should be minimal.
(d) The unit will still operate if it is not grounded.
(e) if independent grounding is impractical, use the common grounding method shown below.

(1) Exclusive grounding. Best

(2) Common grounding. Good

5.3.2 Output unit wiring

(1) Connectıon with sink output unit (AY40, AY41, AY42, AY50, AY51, A0J2-E24T, A0J2-E28DT, A0J2-E56DT)
Connection with the AY40 output unit is shown below. The I/O numbers used in this example assume that the AY40 is loaded in slot 0 of the main base unit.

*1: The LG terminal must always be grounded.
(2) Connection with source output unit(AY80, AY81)

Connection with the AY80 output unit is shown below. The I/O numbers used in this example assume that the AY80 is loaded in slot 0 of the main base unit.

A6FD

*1: The LG terminal must always be grounded.

6. DISPLAY CONTROL SIGNALS AND TIMING

The MELSEC-A series range of programmable controllers features two special instructions which may be used to control the A6FD display. These instructions load a series of 16^{*} characters onto the display automatically by controlling the data and strobe lines from the PC operating system. Where other types of message display are required, e.g. a slow scroll, or where a different PC is being used, the sequence program must control the data and strobe lines as explained in this section.

6.1 Display Output Timing

(1) Display control signal timing

The data and strobe signals should be controlled as follows:

1) The character code (ASCII code in binary) is presented to the data inputs. After a minimum of 5 ms , the strobe signal a switches from high to low.
2) The character code is read when the strobe signal switches from high to low, and must be present for a minimum of 5 ms .
3) The strobe signal should be on for a minimum of 5 ms and off for a minimum of 10 ms , however the cycle time should be a minimum of 30 ms . (To allow for software processing in the A6FD)

* When the A3HCPU is used the number of characters is unlimited. In this case consecutive characters are output until code 00 H is read from the source data.

POINT

1. When the A6FD is being used in a remote I / O station (i.e. in the MELSEC-NET datalink network) the PR and PRC instructions cannot be used and the sequence program must control the data and strobe signals.
(2) The PR and PRC instructions generate the following data and strobe signal timıngs.

1) The comment data associated with the source device is displayed via the output module at head address Y0.
2) One character is output every 30 ms , the total processing time is therefore $30 \times 16=480 \mathrm{~ms}$.
Processing of the PR and PRC instructions is independent of the PC scan time and does not effect it.
3) The strobe signal is generated automatically when the PR and PRC instructions are executed. The strobe signal causes the characters on the display to shift one space to the left.
4) The PRC instruction execution flag is switched on to indicate that the character codes are being output. This remains on until all 16 characters have been displayed. It should be used as an interlock in the sequence program to prevent the display instruction from being repeated before all 16 characters have been displayed.

6.2 Display Method

(1) One character consists of 5 by 7 dots on the LED (red).
(2) 16 ASClI characters are displayed from right to left in order. The display may be cleared by pressing the manual reset button. This also initializes the A6FD.

In the example shown on the previous page, when the display command contact closes the comment associated with device FO (ABCDEFGHIJKLMNO) is displayed on the A6FD.

7. PROGRAMMING

7.1 Basic Display Programs

ASCII Print Instructions

(1) PR instruction
(2) PRC instruction (device comment)

POINT

Only devices marked ${ }^{*}$ are available on the A0J2CPU.
(1) PR instruction

Available Device																							苞	$\left.\begin{gathered} \mathbf{x} \\ \mathbf{e} \\ \mathbf{t} \end{gathered} \right\rvert\,$	Carry Flag M9012	Error Flag	
	Bit device					Word (16-bit) device									Constant			Pointer		Level							
	Y	M	L.	B	F	T	C	D	W	R	A		2	V	K		H	P	1	N						M9010	M9011
S						*	*	*	*	O														O			
D	*																					7				O	\bigcirc

Basic Program

Program Operation
When X10 turns on, "ABCDEFGHIJKLMNOP" is converted into ASCII codes and stored into D0 to D7. When X11 turns on, the ASCII code in DO to D7 is output to Y0 to Y9.

When the A0J2CPU, the $\mathrm{A} 1(\mathrm{E}), \mathrm{A} 2(\mathrm{E})$ or $\mathrm{A} 3(\mathrm{E}) \mathrm{CPUs}$ are used, 16 consecutive characters are output by this instruction. When the A3HCPU is used the number of output characters is unlimited, the ASCII string is contınuously output until the code " 00 H " is read from the souce data.

Stores ASCII code "I to P" (8 character from 1 to P) into D4 to D7.

ASCII print command

$P R$	$D O$	$Y 0$	is executed

The 16-character ASCII code stored in D0 to 7 (8 points) are output from the output unit at head address Y 0 .
Outputs used YO to 9 .
Output data
Y0 to Y7: ASCII code output
Y8: \quad Strobe signal
Y9: \quad PR instruction execution flag
For the display output timing, refer to Section 6.1.

The data displayed on the A6FD is shifted from right to left in order until the complete string ABCDEFGHIJKLMNOP is displayed.

POINT

1. The ASCII codes used for the PR instruction may be generated using the ASC instruction (alphanumeric character to ASCII code conversion) or may be stored in the PC device memory after using the List Test function to load the alphanumeric data into the source data registers.
2. Devices to which the PR instruction is applicable are marked \bigcirc.
(2) PRC instruction

	Available Device																						+	$\begin{gathered} \mathbf{x} \\ \mathbf{0} \\ \mathbf{~} \\ \hline \end{gathered}$	Carry Flag M9012	Error Flag	
,	Bit device						Word (16-bit) device									Constant Pointer Level											
	\mathbf{X}	Y	\mathbf{M}	L	B	F	T	c	D	w	R	A0	A	2	V	K		P	1	N						M9010	M9011
S	\bigcirc	\bigcirc	O	\bigcirc	\bigcirc	*	O	O	O	O	O							\bigcirc	O					\bigcirc			
D		*																									

POINT

Only devices marked ${ }^{*}$ are available on the A0J2CPU.

Basic Program

Program Operation
When X10 is turned on, F0 is turned on and, at the same time, the comment of FO(ASCII code) is output to Y 0 to Y 9.

In this case, the FO comment ABCDEFGHIJKLMNO has already been entered as comment data.

Program Operation Timing

The data displayed on the A6FD is shifted from right to left in order until the complete string ABCDEFGHIJKLMNOP is displayed

POINT

1. Before executing the PRC instruction, comments must be entered into the PC memory comment area.
2. Only 128 comments (dedicated to F0 to F127) may be entered on the A1(E)CPU(P21/R21).
Only 95 comments (dedicated to FO to F94) may be entered on the A0J2CPU(P21/R21).
3. F coils must be switched on by the OUT or SET instructions only.

7.2 Programming Application Examples 1 (For A1, A2, A3CPU)

In the following program examples the annunciator devices (F) are used to flag error messages. The annunclator devices may be used to queue error codes (in the form of annunciator device numbers) in special function FIFO data registers.
The following special function data registers have been used: D9124(stores the number of F coils which have been switched on, up to a maximum of 8.) and D9125 to D9132 (A sequence of 8 consecutive special registers arranged as a FIFO table in which the annunciator coil numbers are stored as they are switched on). When the first annunciator coil (F) is switched on, D9124 is incremented by 1 and the F coil number is stored in special data register D9125.
Any subsequent annunciator coil switching on which has not already been entered into the queue will cause D9124 to be incremented by 1 and its coil number will be entered into the first empty register after D9125 (up to D9132).
(1) Display of annunciator comment using manual reset. In this program, the comment for any annunciator coil which has been switched on is output to the display. Pressing the reset button on the A6FD causes the next comment in the queue to be displayed.
The program flow chart is shown below.

Program Explanation

*1: $>=$ D9124 K 1 Continuity when the number of detected F coil "on" occurences is one or more.
*2: PLF M2 The reset switch is wired to input X0. When the reset button is released, (i.e. X0 goes from on to off) a pulse is output on M2. This prevents the PRC instruction from being executed while the A6FD is being reset.
*3: $\quad>=\mathrm{D} 9124 \mid \mathrm{V} \ldots .$. . Allows 1 to be added to index register V if the value in D9124 is greater than that in V.
*4: MOV D9124 Z Moves the contents of data register D9124, indexed by V, (i.e. $D(9124+V)$) to index register Z.
 ment on the A6FD wired to outputs Y80 \sim Y8F. The F coil number is specified as F0 indexed by Z (i.e. $F(0+Z$).
Checks that all F coil "on" occurences have been processed. If they have, the index register V is reset to 0 , and the program will repeat its operation.

Program operation

The following explanation assumes that two F coils have been detected (i.e. the value in D9124 is 2).

POINT

1. Press the manual reset switch to clear the A6FD display.
2. Only 8 F coil occurences can be stored in the FIFO table (D9125 to D9132).
Removing an entry from the FIFO table causes all subsequent entires to move up one place.
When the A3(E)CPU or A3HCPU is used, 1 is subtracted from the contents of D9124 each time the INDICATOR RESET button is pressed. (The INDICATOR RESET button is located on the front of the CPU and is used to reset the CPU's ASCII display).
3. Provide interlocks in the PC program to prevent data output to the A6FD before its 200 msec start-up time has elapsed.
(2) Display of annunciator comment using PC timer

The comment for any annunciator coil which has been switched on is output to the display. Successive F coil entries in the FIFO table are displayed by the internal clock pulse (M9033).
The program flow chart is shown below:

Program Concept

Instruction Explanation

*1: $\quad>=\mid$ D9124 \mid K1 Continuity when the number of detected F coil "on" occurences is one or more.
*2: M9033 Special function contacts. Close every 1 second.
*3: $\gg=\mathrm{D} 9124 \mathrm{~V} \ldots . .$. . Allows 1 to be added to index register V if the value in D9124 is greater than that in V.
*4: $\mathrm{MOV}^{\mathrm{M}}{\mathrm{D} 9124^{v}}^{\mathrm{M}} \mathrm{Z}$..... Moves the contents of data register D9124, indexed by V, (i.e. D(9124 + V)) to index register Z.

*5: | PRC | FO^{2} | Y 80 |
| :--- | :--- | :--- |
| \ldots. Displays the appropriate F coil com- | | | ment on the A6FD wired to outputs Y80 \sim Y8F. The F coil number is specified as F0 indexed by Z. (i.e. $F(0+Z)$).

*6:

| $<=$ | D9124 | V |
| :--- | :--- | :--- | Checks that all F coil "on" occurences have been processed. if they have, the index register V is reset to 0 and the program will repeat its operation.

Program operation

The following explanation assumes that two F coils have been detected (i.e. the value in D9124 is 2).

POINT

1. Comments must be written and stored in the PC before the PRC instruction can be used.
2. The CJ instruction may be used to jump to the message generating part of the program as described below:

(3) Alternate display of F coil number and comment. This program example outputs a numerical variable (i.e. the F coil number) and a comment alternately.

Program Concept

First F coil number is read and transferred to Z.

Appropriate F coll number is converted from binary to ASCII equivilant.

Check for next F coll in the queue by pressing the A6FD reset button.

(SP) indicates character code for space.

Instruction Explanation

*1: MOV ${ }^{\text {H }}{ }^{4046}$ D10 Transfers the character codes for space (H 20) and " F " H 46 to data register D10.
*2: DIS $^{\rho}$ D20 D20 K3 Takes the three BCD coded digits in D20 and places the least significant in D20 the middle digit in D21 and the most significant in D22. The annunciator coil number digits have therefore been placed in three consecutive registers. (Example: For coil F123 the digits will be stored as follows, 3 in D20, 2 in D21 and 1 in D22.)
 (Example: D21 contains the data 0002. This step of the program will change that to 0200 .)
*4: + $^{\mathrm{p}} \mathrm{D} 22 \mathrm{D} 21$............ Adds D22 and D21 and stores the result in D21. (Example: Contents of D21 is 0200 , contents of D22 is 0001 . This step of the program stores 0201 in D21.)
*5: WOR ${ }^{\text {T }}$ H030 D21 Logical addition of H30 to each digit in D21 to convert from BCD to ASCII (Example: Contents of D21 is now H3231; i.e. ASCII code for 2 and 1)
*6: WOR H2030 D20 Logical addition of H2030 to digits in D20 (Example: Contents of D20 is now H2033, i.e. ASCII code for space and 3.)
 byte of the five word registers D13 to D17.

Outputs the 16 character codes from D10 to D17 to outputs Y60 to Y67 in A6FD compatible format.

Character codes sourse

*9: | PRC | FO^{2} | Y 60 |
| :--- | :--- | :--- | appropriate F coil to outputs $Y 60$ to Y67 in A6FD compatible format.

* 10: T0, T1 flicker circuit Calls the PR and PRC instructions alternately.

POINT

1. When the PR instruction is executed data is transmitted starting from the lower byte of the source data head address.
Similarly, the lower byte of the subsequent string of registers is transmitted before the upper byte.
2. Interlocks must be provided to prevent the PR and PRC instructions from being called simultaneously.
3. Alternating output is provided by T 1 (5 -second clock). Interlocks are provided using the INC(P) and MOV(P) instructions so that the PR instruction is executed once during the OFF period of T1 and the PRC instruction executed once during the ON period.
(4) A6FD control without using the PR and PRC instructions (Also for use in remote I/O station)
The 16 characters for display on the A6FD are stored in eight consecutive data registers and then moved onto a series of internal relays (M). These are moved to the appropriate outputs in batches of 8 bits (one character) and a strobe signal given.

(1) The 16 character codes are output one by one using the MOV instruction. Note that the strobe signal must be given after the character code has been moved to the outputs. Care must be taken to co-ordinate this with the link scan time when the A6FD is being used at a remote station.

Program Example

Instruction Explanation

*1: ASC $\operatorname{ABCDEFGH} \mid$ D0 ... The ASC instruction coverts alphanumeric characters into ASCII code and stores it into four consecutive devices beginning with the one specified.

Character codes shown in hexadecımal.
*3: Timers T0, T1, T2 T0 and T1 time movement of the ASCII bit patterns to the outputs.
T2 provides the strobe signal.

TO coll
T1 coll
T2 coil
TO contact
T1 contact (N/C contact)

T2 contact

*4: | BSFL P | M130 | K17... Shifts 17 bits starting at M130 one bit to |
| :--- | :--- | :--- | the left each time TO switches on. Used as a 1-character code sending flag.

*5: $\mathrm{MOV}^{\mathrm{P}}$ K2M0 K2Y60.... Outputs one character code of K2M0 (" 41 H " in lower 8 bits of D0) to K2Y60. (Hexadecimal)
Moves one character code from K2M0 to outputs $\mathrm{Y} 60 \sim \mathrm{Y} 67$.

For example, the display output timing for M131 is shown below.

POINT

1. The PR and PRC instruction cannot be used to output data from a remote I/O station (owing to the link scan and refresh times). The data output and strobe signals must therefore be controlled from the sequence program.
2. The ASC instruction allows alphanumeric character to be converted into character codes. When other characters are to be displayed, use the MOV instruction to transfer the hex. code to the source device.
3. Transmit the code for blank space $(\mathbf{H 2 O})$ to character areas which are to remain blank. 16 character codes must therefore always be transmitted even if the message is only 8 characters long for example.
4. Only use character codes listed in Appendix 2.

7.3 Programming Application Example 2 (For A0J2CPU)

A6FD control programs are different for the A0J2CPU. The following example displays failure numbers generated when inputs are switched on.

*: Pressing the A6FD manual reset button loads the next F coil number into D9090.

Program Example

7.4 Display of Numerical Variables

Numerical values may be output using the method described in Section 7.2 (i.e splitting the number into digits and adding. H 30 to each digit to change it to ASCII).
Where this is impractical the SW0GHP-UTLP-FN1 micro computer software package may be used to change numerical data to the equivilant ASCII string.

8. TEST

8.1 Pre-Test Checks

Check the following before powering up the A6FD:

1. Installation environment and conditions;
2. Output unit type driving the A6FD;
3. Output unit correctly loaded in base unit;
4. Wiring and connections;
5. Wire guages used;
6. Power and control line fuses; and
7. Supply voltage.

8.2 Test and Adjustment

9. TROUBLESHOOTING

10. MAINTENANCE AND INSPECTION

There are no components in the A6FD which require regular service or replacement.
The following periodic checks should be made.

Item		Check for	Corrective action
1		Looseness, play	Tighten screws
		Dust and debris	Remove dust and debris
2		Loose terminal screws	Tighten screws
		Clearance between solderless termınals	Ensure that there is adequate clearance between solderless terminals.
		Loose termınal block	Tıghten terminal block screws.
3	Line voltage		Line voltage should be between 85 and 264 V AC.
4		Ambient temperature	Must be between 0° and $55^{\circ} \mathrm{C}$
		Ambient humidity	Must be between 10\% and 95\% RH
		Ambience	Must be within the specifications given in section 31

Fig. 10.1 Check List

APPENDIX 1 External Views

Front View

Rear View

Bottom View

APPENDIX 2 Character Code List

Upper 4 bits Lower 4 bits	0010. 00110100	0110	01
xxxx0000			-
xxxx0001	:		
xxxx0010			
xxxx0011			
xxxx0100			
xxxx0101			
xxxx0110			
xxxx0111			A,
xxxx1000			
xxxx1001			
xxxx1010			
xxxx1011	-		
xxxx1100			
xxxx1101			
xxxx1110			
$x \times x \times 1111$		"	

(SP) indicates space.

APPENDIX 3 Sink Output and Source Output Units

Sink Output Unit or Current Output Type

When the output unit output signal is on, current flows from the external equipment, via resistor R, into the output unit.
At this tıme, the voltage V across the output terminal and its common is Low.
When the output signal is off, the voltage is high and there is no current flow.

Source Output Unit or Voltage Output Type

Output unit

When the output unit output signal is on, the output voltage V becomes high and current flows from the output unit to the external equipment.
At this time, the voltage V across the output terminal and its common is high
When the output signal is off, the voltage is low

Index

Page

Character code Control
Data signal
Digital output modules
Dımensions
Display
Dot matrix
Electrical specifications
Environmental specifications
Grounding
Handling
Inspection
Installation
Interface (internal)
I/O requirement
LG termınal
Maintenance
Mounting
Nomenclature
Output modules
Power supply
PR instruction
PRC instruction
Pre-test checks
Remote I/O station
Reset push button
Reset relay
Sink output
Source output
Specifications
Strobe signal
Supply voltage
Terminal details
Test and adjustment
Troubleshooting
Voltage, supply
Wiring

6-1, 7-21, APP-2
6-1, 6-2, 6-3
6-1
2-2, 5-7, 5-8, APP-3
5-3, APP-1
6-4
6-4
3-3
3-1, 5-1
3-4, 5-5, 5-6
4-1
10-1
5-2, 5-3, 5-5
3-3
2-2, 3-2, 3-3
3-4
10-1
5-2, 5-3
4-2
2-2, 5-7, 5-8, APP-3
3-2, 3-4
6-2, 6-3, 7-1
$6-2,6-3,7-1,7-4$
8-1
6-2, 7-21
3-3
3-3
APP-3
APP-3
3-1, 3-2
6-1
3-2, 3-4
3-3
8-1
8-2
3-2, 3-4
5-5, 5-7

IMPORTANT

The components on the printed circuit boards will be damaged by static electricity, so avoid handling them directly. If it is necessary to handle them take the following precautions.
(1) Ground human body and work bench.
(2) Do not touch the conductive areas of the printed circuit board and its electrical parts with any non-grounded tools etc.

Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment

All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishı Electric will accept no responsibility for actual use of the product based on these illustrative examples.

Owing to the very great variety in possible applications of this equipment, you must satisfy yourself as to its suitability for your specific application.

[^0]
[^0]: When exported from Japan, this manual does not require application to the Ministry of International Trade and Industry for service transaction permission.

