
Cat. No. W168-E1-1B

C20P/C28P/C40P/C60P

SYSMAC
Programmable Controllers

P–type Programmable Controllers
OPERATION MANUAL
Revised January 1997

!

!

!

ii

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to the product.

DANGER! Indicates information that, if not heeded, is likely to result in loss of life or serious injury.

WARNING Indicates information that, if not heeded, could possibly result in loss of life or serious injury.

Caution Indicates information that, if not heeded, could result in relatively serious or minor injury,
damage to the product, or faulty operation.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers
to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for any-
thing else.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient operation
of the product.

1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 1989
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permis-
sion of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is
constantly striving to improve its high–quality products, the information contained in this manual is subject to change
without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no
responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the informa-
tion contained in this publication.

iii

About this Manual:

The OMRON P-type Programmable Controllers offer an effective way to automate processing. man-
ufacturing, assembly, packaging, and many other processes can be automated to save time and
money. Distributed control systems can also be designed to allow centralized monitoring and supervi-
sion of several separate controlled systems. Monitoring and supervising can be done through a host
computer, connecting the controlled system to a data bank. It is thus possible to have adjustments in
system operation made automatically to compensate for requirement changes.

The P-type Units can utilize a number of additional Units including dedicated Special I/O Units that
can be used for specific tacks and Link Units that can be used to build more highly integrated sys-
tems.

The P-types are equipped with large programming instruction sets, data areas, and other features to
control processing directly. Programming utilizes ladder-diagram programming methods, which are
described in detail for those unfamiliar with them.

This manual describes the characteristics and abilities of the P-types, programming operations and
instructions, and other aspects of operation and preparation that demand attention. Before attempting
to operate the PC, thoroughly familiarize yourself with the information contained herein. Hardware
information is provided in detail in the Installation Guide. A table of other manuals that can be used in
combination with this manual is provided at the end of Section 1 Background.

Section 1 Precautions provides general precautions for using the Programmable Controller (PC).
The information contained in this section is important for the safe and reliable application of
the PC. You must read this section and understand the information contained before attempt-
ing to set up or operate a PC system.

Section 2 Background explains the background and some of the basic terms used in ladder-diagram
programming. It also provides an overview of the process of programming and operating a PC and
explains basic terminology used with OMRON PCs. Descriptions of peripheral devices used with the
P-types and a table of other manuals available to use with this manual for special PC applications are
also provided.

Section 3 Hardware Considerations explains basic aspects of the overall PC configuration and de-
scribes the indicators that are referred to in other sections of this manual.

Section 4 Memory Areas takes a look at the way memory is divided and allocated and explains the
information provided there to aid in programming. It also explains how I/O is managed in memory and
how bits in memory correspond to specific I/O points.

Section 5 Programming explains the basics of ladder-diagram programming, looking at the ele-
ments that make up the ‘ladder’ part of a ladder-diagram program and explaining how execution of
this program is controlled.

Section 6 Instruction Set then goes on to describe individually all of the instructions used in pro-
gramming.

Section 7 Program Execution T iming explains the scanning process used to execute the program
and tells how to coordinate inputs and outputs so that they occur at the proper times.

Section 8 Program Input, Debugging, and Execution explains how to convert a ladder diagram
into mnemonic code so that it can be input into the CPU through a Programming Console. This sec-
tion also provides the Programming Console procedures used to input and debug the program and to
monitor and control system operation.

Section 9 T roubleshooting provides information on system error indications and other means of re-
ducing system down time. Information in this section is also necessary when debugging a program.

The Appendice s provide tables of standard OMRON products available for the P-types, reference
tables of instructions and Programming Console operations, and other information helpful in PC op-
eration.

v

TABLE OF CONTENTS

PRECAUTIONS ix .
1 Intended Audience x .
2 General Precautions x .
3 Safety Precautions x .
4 Operating Environment Precautions x .
5 Application Precautions xi .

SECTION 1 – Background 1 .
1–1 Introduction 2 .
1–2 Relay Circuits: The Roots of PC Logic 2 .
1–3 PC Terminology 3 .
1–4 OMRON Product Terminology 4 .
1–5 Overview of PC Operation 4 .
1–6 Peripheral Devices 6 .
1–7 Available Manuals 7 .

SECTION 2 – Hardware Considerations 9 .
2–1 Introduction 10 .
2–2 Indicators 10 .
2–3 PC Configuration 10 .

SECTION 3 – Memory Areas 11 .
3–1 Introduction 12 .
3–2 Data Area Structure 12 .
3–3 IR Area 15 .
3–4 SR Area 24 .

3–4–1 Battery Alarm Flag 24 .
3–4–2 Scan Time Error Flag 24 .
3–4–3 High-speed Drum Counter Reset 24 .
3–4–4 Clock Pulse Bits 24 .
3–4–5 Error Flag ER 25 .
3–4–6 Always OFF and Always ON Flags 25 .
3–4–7 First Scan Flag 25 .
3–4–8 Arithmetic Flags 25 .

3–5 DM Area 26 .
3–6 HR Area 26 .
3–7 TC Area 26 .
3–8 TR Area 27 .

SECTION 4 – Programming 29 .
4–1 Introduction 30 .
4–2 Instruction Terminology 30 .
4–3 The Ladder Diagram 30 .

4–3–1 Basic Terms 31 .
4–3–2 Ladder Instructions 32 .
4–3–3 Logic Block Instructions 33 .
4–3–4 Branching Instruction Lines 34 .
4–3–5 Jumps 39 .

Table of contents

vi

4–4 Controlling Bit Status 40 .
4–4–1 OUT and OUT NOT 40 .
4–4–2 Differentiate Up and Differentiate Down 41 .
4–4–3 Keep 41 .
4–4–4 Self-maintaining Bits 42 .

4–5 The End Instruction 42 .
4–6 Programming Precautions 43 .
4–7 Program Execution 44 .

SECTION 5 – Instruction Set 45 .
5–1 Introduction 46 .
5–2 Notation 46 .
5–3 Instruction Format 46 .
5–4 Data Areas, Definer Values, and Flags 47 .
5–5 Ladder Diagram Instructions 47 .

5–5–1 Load, Load NOT, AND, AND NOT, OR, and OR NOT 48
5–5–2 AND Load and OR Load 49 .

5–6 Bit Control Instructions 49 .
5–6–1 Output and Output NOT – OUT and OUT NOT 49
5–6–2 Differentiate Up and Down – DIFU(13) and DIFD(14) 50
5–6–3 Keep – KEEP(11) 51 .

5–7 Interlock and Interlock Clear – IL(02) and ILC(03) 53 .
5–8 Jump and Jump End – JMP(04) and JME(05) 55 .
5–9 End – END(01) 56 .
5–10 No Operation – NOP(00) 56 .
5–11 Timer and Counter Instructions 56 .

5–11–1 Timer – TIM 57 .
5–11–2 High-speed Timer – TIMH(15) 61 .
5–11–3 Analog Timer Unit 61 .
5–11–4 Counter – CNT 64 .
5–11–5 Reversible Counter – CNTR(12) 67 .
5–11–6 High-speed Counter – HDM(98) 68 .

5–12 Data Shifting 77 .
5–12–1 Shift Register – SFT(10) 78 .
5–12–2 Word Shift – WSFT(16) 80 .

5–13 Data Movement 81 .
5–13–1 Move – MOV(21) 81 .
5–13–2 Move NOT – MVN(22) 82 .

5–14 Data Compare – CMP(20) 82 .
5–15 Data Conversion 84 .

5–15–1 BCD to Binary – BIN(23) 84 .
5–15–2 Binary to BCD – BCD(24) 85 .
5–15–3 4-to-16 Decoder – MLPX(76) 85 .
5–15–4 16-to-4 Encoder – DMPX(77) 87 .

5–16 BCD Calculations 89 .
5–16–1 BCD Add – ADD(30) 90 .
5–16–2 BCD Subtract – SUB(31) 92 .
5–16–3 Set Carry – STC(40) 93 .
5–16–4 Clear Carry – CLC(41) 93 .

SECTION 6 – Program Execution Timing 95 .
6–1 Introduction 96 .
6–2 Scan Time 96 .
6–3 Calculating Scan Time 98 .

6–3–1 Single PC Unit 98 .
6–3–2 PC with Additional Units 99 .

6–4 Instruction Execution Times 100 .
6–5 I/O Response Time 102 .

Table of contents

vii

SECTION 7 – Program Input, Debugging and Execution 105
7–1 Introduction 106 .
7–2 Converting to Mnemonic Code 106 .

7–2–1 Program Memory Structure 106 .
7–2–2 Ladder Instructions 106 .
7–2–3 Logic Block Instructions 107 .
7–2–4 Coding Other Instructions 116 .

7–3 The Programming Console 121 .
7–3–1 The Keyboard 121 .
7–3–2 PC Modes 123 .

7–4 Preparation for Operation 124 .
7–4–1 Entering the Password 125 .
7–4–2 Clearing Memory 126 .

7–5 Inputting, Modifying, and Checking the Program 128 .
7–5–1 Setting and Reading from Program Memory Address 128
7–5–2 Inputting or Overwriting Programs 129 .
7–5–3 Checking the Program 132 .
7–5–4 Displaying the Scan Time 133 .
7–5–5 Program Searches 134 .
7–5–6 Inserting and Deleting Instructions 136 .

140
140
141
143
144
145
148
151
151

SECTION 8 – Troubleshooting 153 .
8–1 Introduction 154 .
8–2 Reading and Clearing Errors and Messages 154 .
8–3 Error Messages 154 .
8–4 Error Flags 156 .

Appendix 157 .
A – Standard Models 157 .
B – Programming Instructions 165 .
C – Programming Console Operations 171 .
D – Error and Arithmetic Flag Operation 181 .
E – Binary–Hexadecimal–Decimal Table 183 .
F – Word Assignment Recording Sheets 185 .
G – Program Coding Sheet 191 .

Glossary 193 .

Index 207 .

7–6 Program Backup and Restore Operations .

7–8 Monitoring Operation and Modifying Data .

7–6–2 Restoring or Comparing Program Memory Data
7–7 Debugging .

7–8–1 Bit/Digit Monitor .

7–8–3 Hexadecimal/BCD Data Modification .

7–6–1 Saving Program Memory Data .

7–8–2 Force Set/Reset .

7–8–4 Changing Timer/Counter SV .

ix

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the PC. You must read
this section and understand the information contained before attempting to set up or operate a PC system.

1 Intended Audience x .
2 General Precautions x .
3 Safety Precautions x .
4 Operating Environment Precautions x .
5 Application Precautions xi .

!

!

!

x

1 Intended Audience
This manual is intended for the following personnel, who must also have knowl-
edge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifications
described in the operation manuals.

Before using the product under conditions which are not described in the manual
or applying the product to nuclear control systems, railroad systems, aviation
systems, vehicles, combustion systems, medical equipment, amusement
machines, safety equipment, and other systems, machines, and equipment that
may have a serious influence on lives and property if used improperly, consult
your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide the
systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating OMRON PCs.
Be sure to read this manual before attempting to use the software and keep this
manual close at hand for reference during operation.

WARNING It is extreme important that a PC and all PC Units be used for the specified
purpose and under the specified conditions, especially in applications that can
directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PC System to the abovementioned
applications.

3 Safety Precautions

WARNING Never attempt to disassemble any Units while power is being supplied. Doing so
may result in serious electrical shock or electrocution.

WARNING Never touch any of the terminals while power is being supplied. Doing so may
result in serious electrical shock or electrocution.

4 Operating Environment Precautions
Do not operate the control system in the following places.

• Where the PC is exposed to direct sunlight.

• Where the ambient temperature is below 0°C or over 55°C.

• Where the PC may be affected by condensation due to radical temperature
changes.

• Where the ambient humidity is below 10% or over 90%.

• Where there is any corrosive or inflammable gas.

• Where there is excessive dust, saline air, or metal powder.

• Where the PC is affected by vibration or shock.

• Where any water, oil, or chemical may splash on the PC.

Operating Environment Precautions 4

!

!

!

!

xi

Caution The operating environment of the PC System can have a large effect on the lon-
gevity and reliability of the system. Improper operating environments can lead to
malfunction, failure, and other unforeseeable problems with the PC System. Be
sure that the operating environment is within the specified conditions at installa-
tion and remains within the specified conditions during the life of the system.

5 Application Precautions
Observe the following precautions when using the PC.

WARNING Failure to abide by the following precautions could lead to serious or possibly
fatal injury. Always heed these precautions.

• Always ground the system to 100 Ω or less when installing the system to pro-
tect against electrical shock.

• Always turn off the power supply to the PC before attempting any of the follow-
ing. Performing any of the following with the power supply turned on may lead
to electrical shock:

• Mounting or removing any Units (e.g., I/O Units, CPU Unit, etc.) or memory
cassettes.

• Assembling any devices or racks.
• Connecting or disconnecting any cables or wiring.

Caution Failure to abide by the following precautions could lead to faulty operation or the
PC or the system or could damage the PC or PC Units. Always heed these pre-
cautions.

• Use the Units only with the power supplies and voltages specified in the opera-
tion manuals. Other power supplies and voltages may damage the Units.

• Take measures to stabilize the power supply to conform to the rated supply if it
is not stable.

• Provide circuit breakers and other safety measures to provide protection
against shorts in external wiring.

• Do not apply voltages exceeding the rated input voltage to Input Units. The
Input Units may be destroyed.

• Do not apply voltages exceeding the maximum switching capacity to Output
Units. The Output Units may be destroyed.

• Always disconnect the LG terminal when performing withstand voltage tests.
• Install all Units according to instructions in the operation manuals. Improper

installation may cause faulty operation.
• Provide proper shielding when installing in the following locations:

• Locations subject to static electricity or other sources of noise.
• Locations subject to strong electromagnetic fields.
• Locations subject to possible exposure to radiation.
• Locations near to power supply lines.

• Be sure to tighten Backplane screws, terminal screws, and cable connector
screws securely.

• Do not attempt to take any Units apart, to repair any Units, or to modify any
Units in any way.

Caution The following precautions are necessary to ensure the general safety of the sys-
tem. Always heed these precautions.

• Provide double safety mechanisms to handle incorrect signals that can be
generated by broken signal lines or momentary power interruptions.

• Provide external interlock circuits, limit circuits, and other safety circuits in
addition to any provided within the PC to ensure safety.

Application Precautions 5

1

SECTION 1
Background

1–1 Introduction 2 .
1–2 Relay Circuits: The Roots of PC Logic 2 .
1–3 PC Terminology 3 .
1–4 OMRON Product Terminology 4 .
1–5 Overview of PC Operation 4 .
1–6 Peripheral Devices 6 .
1–7 Available Manuals 7 .

2

1–1 Introduction
A Programmable Controller (PC) is basically a central processing unit (CPU)
containing a program and connected to input and output (I/O) devices (I/O
Devices) . The program controls the PC so that when an input signal from an
input device turns ON, the appropriate response is made. The response nor-
mally involves turning ON an output signal to some sort of output device. The
input devices could be photoelectric sensors, pushbuttons on control panels,
limit switches, or any other device that can produce a signal that can be input
into the PC. The output devices could be solenoids, switches activating indi-
cator lamps, relays turning on motors, or any other devices that can be acti-
vated by signals output from the PC.

For example, a sensor detecting a product passing by turns ON an input to
the PC. The PC responds by turning ON an output that activates a pusher
that pushes the product onto another conveyor for further processing. An-
other sensor, positioned higher than the first, turns ON a different input to
indicate that the product is too tall. The PC responds by turning on another
pusher positioned before the pusher mentioned above to push the too-tall
product into a rejection box.

Although this example involves only two inputs and two outputs, it is typical of
the type of control operation that PCs can achieve. Actually even this exam-
ple is much more complex than it may at first appear because of the timing
that would be required, i.e., “How does the PC know when to activate each
pusher?” Much more complicated operations, however, are also possible.
The problem is how to get the desired control signals from available inputs at
appropriate times.

Desired control sequences are input to the P-type PCs using a form of PC
logic called ladder-diagram programming. This manual is written to explain
ladder-diagram programming and to prepare the reader to program and oper-
ate the P-type PCs.

1–2 Relay Circuits: The Roots of PC Logic
PCs historically originate in relay-based control systems. And although the
integrated circuits and internal logic of the PC have taken the place of the
discrete relays, timers, counters, and other such devices, actual PC opera-
tion proceeds as if those discrete devices were still in place. PC control, how-
ever, also provides computer capabilities and consistency to achieve a great
deal more flexibility and reliability than is possible with relays.

The symbols and other control concepts used to describe PC operation also
come from relay-based control and form the basis of the ladder-diagram pro-
gramming method. Most of the terms used to describe these symbols and
concepts, however, originated as computer terminology.

The terminology used throughout this manual is somewhat different from re-
lay terminology, but the concepts are the same. The following table shows
the relationship between relay terms and the PC terms used for OMRON
PCs.

Relay term PC equivalent

contact input or condition

coil output or work bit

NO relay condition

NC relay inverse condition

Relay vs. PC Terminology

Relay Circuits: The Roots of PC Logic Section 1–2

3

Actually there is not a total equivalence between these terms, because the
term condition is used only to describe ladder diagram programs in general
and is specifically equivalent to one of certain basic instructions. The terms
input and output are not used in programming per se, except in reference to
I/O bits that are assigned to input and output signals coming into and leaving
the PC. Conditions and inverse conditions are explained in 4–3 The Ladder
Diagram.

1–3 PC Terminology
Although also provided in the Glossary at the back of this manual, the follow-
ing terms are crucial to understanding PC operation and are thus explained
here as well.

When we refer to the PC, we are generally talking about the CPU and all of
the Units directly controlled by it through the program. This does not include
the I/O devices connected to PC inputs and outputs.

If you are not familiar with the terms used above to describe a PC, refer to 2
Hardware Considerations for explanations.

A device connected to the PC that sends a signal to the PC is called an input
device ; the signal it sends is called an input signal . A signal enters the PC
through terminals or through pins on a connector on a Unit. The place where
a signal enters the PC is called an input point . This input point is allocated a
location in memory that reflects its status, i.e., either ON or OFF. This mem-
ory location is called an input bit . The CPU in its normal processing cycle
monitors the status of all input points and turns ON and OFF corresponding
input bits accordingly.

There are also output bits in memory that are allocated to output points on
Units through which output signals are sent to output devices , i.e., an out-
put bit is turned ON to send a signal to an output device through an output
point. The CPU periodically turns output points ON and OFF according to the
status of the output bits.

These terms are used when describing different aspects of PC operation.
When programming, one is concerned with what information is held in mem-
ory, and so I/O bits are referred to. When describing the Units that connect
the PC to the controlled system and the places on these Units where signals
enter and leave the PC, I/O points are referred to. When wiring these I/O
points, the physical counterparts of the I/O points, either terminals or connec-
tor pins, are referred to. When describing the signals that enter or leave the
system, reference is made to input signals and output signals, or sometimes
just inputs and outputs.

The Control System includes the PC and all I/O devices it uses to control an
external system. A sensor that provides information to achieve control is an
input device that is clearly part of the Control System. The controlled system
is the external system that is being controlled by the PC program through
these I/O devices. I/O devices can sometimes be considered part of the con-
trolled system, e.g., a motor used to drive a conveyor belt.

PC

Inputs and Outputs

Controlled System and
Control System

PC Terminology Section 1–3

4

1–4 OMRON Product Terminology
OMRON products are divided into several functional groups that have ge-
neric names. Appendix A Standard Models list products by these groups.
The term Unit is used to refer to all OMRON PC products, depending on the
context.

The largest group of OMRON products is I/O Units . I/O Units come in a vari-
ety of point quantities and specifications.

Special I/O Units are dedicated Units that are designed to meet specific
needs. These include Analog Timer Units and Analog I/O Units.

Link Units are used to create Link Systems that link more than one PC or
link a single PC to remote I/O points. Link Units include I/O Link Units that
are used to connect P-type PCs to Remote I/O Systems controlled by a larg-
er PC (e.g. C1000H) and Host Link Units.

Other product groups include Programming Devices , Peripheral Devices ,
and DIN Rail Products .

1–5 Overview of PC Operation
The following are the basic steps involved in programming and operating a
P-type PC. Assuming you have already purchased one or more of these
PCs, you must have a reasonable idea of the required information for steps
one and two, which are discussed briefly below. This manual is written to ex-
plain steps three through six, eight, and nine. The section(s) of this manual
that provide relevant information are listed with each of these steps.

1. Determine what the controlled system must do, in what order, and at
what times.

2. Determine what Units will be required. Refer to the Installation Guide. If
a Link System is required, refer to the required System Manual(s).

3. On paper, assign all input and output devices to I/O points on Units and
determine which I/O bits will be allocated to each. If the PC includes
Special I/O Units or Link Systems, refer to the individual Operation
Manuals or System Manuals for details on I/O bit allocation. (Section 3
Memory Areas)

4. Using relay ladder symbols, write a program that represents the se-
quence of required operations and their inter-relationships. Be sure to
also program appropriate responses for all possible emergency situ-
ations. (Section 4 Programming, Section 5 Instruction Set, Section 6
Program Execution Timing)

5. Input the program and all required operating parameters into the PC.
(Section 7 Program Input, Debugging, and Execution)

6. Debug the program, first to eliminate any syntax errors and then to elim-
inate execution errors. (Section 7 Program Input, Debugging, and Exe-
cution and Section 8 Troubleshooting)

7. Wire the PC to the controlled system. This step can actually be started
as soon as step 3 has been completed. Refer to the Installation Guide
and to Operation Manuals and System Manuals for details on individual
Units.

8. Test the program in an actual control situation and fine tune it if required.
(Section 7 Program Input, Debugging, and Execution and Section 8
Troubleshooting)

9. Record two copies of the finished program on masters and store them
safely in different locations. (Section 7 Program Input, Debugging, and
Execution)

1, 2, 3...

Overview of PC Operation Section 1–5

5

Designing the Control System is the first step in automating any process. A
PC can be programmed and operated only after the overall Control System is
fully understood. Designing the Control System requires a thorough under-
standing of the system that is to be controlled. The first step in designing a
Control System is thus determining the requirements of the controlled sys-
tem.

The first thing that must be assessed is the number of input and output points
that the controlled system will require. This is done by identifying each device
that is to send an input signal to the PC or which is to receive an output sig-
nal from the PC. Keep in mind that the number of I/O points available de-
pends on the configuration of the PC. Refer to 3–3 IR Area for details on I/O
capacity and assigning I/O bits to I/O points.

Next, determine the sequence in which control operations are to occur and
the relative timing of the operations. Identify the physical relationships be-
tween the I/O devices as well as the kinds of responses that should occur
between them.

For instance, a photoelectric switch might be functionally tied to a motor by
way of a counter within the PC. When the PC receives an input from a start
switch, it could start the motor. The PC could then stop the motor when the
counter has received five input signals from the photoelectric switch.

Each of the related tasks must be similarly determined, throughout the entire
control operation.

The actual Units that will be mounted must be determined according to the
requirements of the I/O devices. This will include actual hardware specifica-
tions, such as voltage and current levels, as well as functional considera-
tions, such as those that require Special I/O Units or Link Systems. In many
cases, Special I/O Units or Link Systems can greatly reduce the program-
ming burden. Details on these Units and Link Systems are available in indi-
vidual Operation Manuals and System Manuals.

Once the entire Control System has been designed, the task of program-
ming, debugging, and operation as described in the remaining sections of
this manual can begin.

Control System Design

Input/Output Requirements

Sequence, Timing, and
Relationships

Unit Requirements

Overview of PC Operation Section 1–5

6

1–6 Peripheral Devices
The following peripheral devices can be used in programming, either to input/
debug/monitor the PC program or to interface the PC to external devices to
output the program or memory area data. Model numbers for all devices
listed below are provided in Appendix A Standard Models. OMRON product
names have been placed in bold when introduced in the following descrip-
tions.

A Programming Console is the simplest form of programming device for OM-
RON PCs. Although a Programming Console Adapter is sometimes re-
quired, all Programming Consoles are connected directly to the CPU without
requiring a separate interface. The Programming Console also functions as
an interface to output programs to a standard cassette tape recorder.

Various types of Programming Console are available, including both
CPU-mounting and Hand-held models. Programming Console operations are
described later in this manual.

A Peripheral Interface Unit is required to interface the GPC to the PC.

The GPC also functions as an interface to output programs directly to a stan-
dard cassette tape recorder. A PROM Writer , Floppy Disk Interface Unit , or
Printer Interface Unit can be directly mounted to the GPC to output pro-
grams directly to an EPROM chip, floppy disk drive, or printing device.

LSS is designed to run on IBM AT/XT compatibles to enable nearly all of the
operations available on the GPC. It also offers extensive documentation ca-
pabilities.

A Host Link Unit is required to interface a computer running LSS to the PC.

The FIT is an OMRON computer with specially designed software that allows
you to perform all of the operations that are available with the GPC or LSS.
Programs can also be output directly to an EPROM chip, floppy disk drive, or
printing device without any additional interface units. The FIT has an EPROM
writer and a 3.5” floppy disk drive built in.

A Peripheral Interface Unit or Host Link Unit is required to interface the
FIT to the PC. Using an Optical Host Link Unit also enables the use of optical
fiber cable to connect the FIT to the PC. Wired Host Link Units are available
when desired. (Although FIT does not have optical connectors, conversion to
optical fiber cable is possible by using Converting Link Adapters.)

Other than its applications described above, the PROM Writer can be
mounted to the PC’s CPU to write programs to EPROM chips.

Other than its applications described above, the Floppy Disk Interface Unit
can be mounted to the PC’s CPU to interface a floppy disk drive and write
programs onto floppy disks.

Other than its applications described above, the Printer Interface Unit can be
mounted to the PC’s CPU to interface a printer or X–Y plotter to print out pro-
grams in either mnemonic or ladder-diagram form.

Programming Console

Graphic Programming
Console: GPC

Ladder Support Software:
LSS

Factory Intelligent Terminal:
FIT

PROM Writer

Floppy Disk Interface Unit

Printer Interface Unit

Peripheral Devices Section 1–6

7

1–7 Available Manuals
The following table lists other manuals that may be required to program and/
or operate the P-type PCs. Operation Manuals and/or Operation Guides are
also provided with individual Units and are required for wiring and other
specifications.

Name Cat. no. Contents

Installation Guide W167 Hardware specifications

GPC Operation Manual W84 Programming procedures for the GPC (Graphics Program-
ming Console)

FIT Operation Manual W150 Programming procedures for using the FIT (Factory Intelligent
Terminal

LSS Operation Manual W113 Programming procedures for using LSS (Ladder Support Soft-
ware)

Printer Interface Unit Operation Guide W107 Procedures for interfacing a PC to a printer

PROM Writer Operation Guide W155 Procedures for writing programs to EPROM chips

Floppy Disk Interface Unit Operation Guide W119 Procedures for interfacing a PC to a floppy disk drive

Optical Remote I/O System Manual W136 Information on building an Optical Remote I/O System to en-
able remote I/O capability

Host Link System Manual W143 Information on building a Host Link System to manage PCs
from a ‘host’ computer

K-type Analog I/O Units Operation Guide W122 Hardware and software information on using Analog I/O Units
with the P-type PCs.

Available Manuals Section 1–7

9

SECTION 2
Hardware Considerations

2–1 Introduction 10 .
2–2 Indicators 10 .
2–3 PC Configuration 10 .

10

2–1 Introduction
This section provides information on hardware aspects of P-type PCs that
are relevant to programming and software operation. These include indica-
tors on the CPU and basic PC configuration. This information is covered in
detail in the Installation Guide.

2–2 Indicators
CPU indicators provide visual information on the general operation of the
PC. Using the flags and other error indicators provided in the memory data
areas, although not a substitute for proper error programming, provides
ready confirmation of proper operation.

CPU indicators are located on the front right hand side of the PC adjacent to
the I/O expansion slot and are described in the following table.

Indicator Function

POWER Lights when power is supplied to the CPU.

RUN Lights when the CPU is operating normally.

ERR Lights when an error is discovered in system error diagnosis op-
erations. When this indicator lights, the RUN indicator will go off,
CPU operation will be stopped, and all outputs from the PC will
be turned OFF.

ALARM Lights when an error is discovered in system error diagnosis op-
erations. PC operation will continue.

2–3 PC Configuration
The Units from which P-type PCs can be built are shown below.

Unit type Name Words
occupied

Inputs
provided

Outputs
provided

CPU C20P 2 12 points 8 points

C28P 2 16 points 12 points

C40P 4 24 points 16 points

C60P 4 32 points 24 points

Expansion I/O Unit C4K 2 4 input points or 4 output points

C20P 2 12 points 8 points

C28P 2 16 points 12 points

C40P 4 24 points 16 points

C60P 4 32 points 24 points

Special I/O Units Analog Timer Unit 2 4 timer inputs

C4K Analog Input Unit 2 4 analog inputs

C1K Analog Input Unit 2 1 analog input

Analog Output Unit 2 1 analog output

I/O Link Unit 2 16 input and 16 output bits

Each PC is connected in series starting with a CPU and, if required, continu-
ing on with Expansion I/O or Special I/O Units. All other Units are connected
in series following the CPU and can be in any order desired except for the
I/O Link Unit, which must always come last. Up to five Units, including the
CPU can be connected as long as the total number of words occupied does
not exceed ten. Refer to Section 3–3 IR Area for configuration examples.

CPU Indicators

PC Configuration Section 2–3

11

SECTION 3
Memory Areas

3–1 Introduction 12 .
3–2 Data Area Structure 12 .
3–3 IR Area 15 .
3–4 SR Area 24 .

3–4–1 Battery Alarm Flag 24 .
3–4–2 Scan Time Error Flag 24 .
3–4–3 High-speed Drum Counter Reset 24 .
3–4–4 Clock Pulse Bits 24 .
3–4–5 Error Flag ER 25 .
3–4–6 Always OFF and Always ON Flags 25 .
3–4–7 First Scan Flag 25 .
3–4–8 Arithmetic Flags 25 .

3–5 DM Area 26 .
3–6 HR Area 26 .
3–7 TC Area 26 .
3–8 TR Area 27 .

12

3–1 Introduction
Various types of data are required to achieve effective and correct control. To
facilitate managing this data, the PC is provided with various memory areas
for data, each of which performs a different function. The areas generally ac-
cessible by the user for use in programming are classified as data areas .
The other memory area is the Program Memory, where the user’s program is
actually stored.

This section describes these areas individually and provides information that
will be necessary to use them. The name, acronym, range, and function of
each area are summarized in the following table. All but the last one of these
are data areas. All memory areas are normally referred to by their acronyms.

Area

Internal Relay
area

Special Relay
area

Data Memory
area

Holding Relay
area

Timer/Counter
area

Temporary Relay
area

Program Memory

Acronym

IR

SR

DM

HR

TC

TR

UM

Range

Words: 00 to 18 (right half)
Bits: 0000 to 1807

Words: 18 (left half) and 19
Bits: 1808 to 1907

DM 00 to DM 63
(words only)

Words: HR 0 to HR 9
Bits: HR 000 to HR 915

TC 00 to TC 47 (TC numbers are
used to access other information)

TR 00 to TR 07 (bits only)

UM: 1,194 words.

Function

Used to manage I/O points, control other bits,
timers, and counters, to temporarily store data.

Contains system clocks, flags, control bits, and
status information.

Used for internal data storage and manipulation.

Used to store data and to retain the data values
when the power to the PC is turned off.

Used to define timers and counters and to ac-
cess Completion Flags, PV, and SV for them.

Used to temporarily store execution conditions.

Contains the program executed by the CPU.

When some bits and words in certain data areas are not used for their in-
tended purpose, they can be used in programming as required to control
other bits. Words and bits available for use in this fashion are called work bits
and work words. Most, but not all, unused bits can be used as work bits.
Those that can be are specified by area in the remainder of this section. Ac-
tual application of work bits and work words is described in Section 4 Pro-
gramming.

Some data areas contain flags and/or control bits. Flags are bits that are
automatically turned ON and OFF to indicate status of one form or another.
Although some flags can be turned ON and OFF by the user, most flags can
be read only; they cannot be controlled directly.

Control bits are bits turned ON and OFF by the user to control specific as-
pects of operation. Any bit given a name using the word bit rather than the
word flag is a control bit, e.g., Restart Bits are control bits.

3–2 Data Area Structure
When designating a data area, the acronym for the area is always required
for any but the IR and SR areas. Although the acronyms for the IR and SR
areas are often given for clarity, they are not required and not input when
programming. Any data area designation without an acronym is assumed to
be in either the IR and SR area. Because IR and SR addresses run consecu-
tively, the word or bit addresses are sufficient to differentiate these two areas.

Work Bits and Words

Flags and Control Bits

Data Area Structure Section 3–2

13

An actual data location within any data area but the TC area is designated by
its address. The address designates the bit and/or word within the area
where the desired data is located. The TR area consists of individual bits
used to store execution conditions at branching points in ladder diagrams.
The use of TR bits is described in Section 4 Programming. The TC area con-
sists of TC numbers, each of which is used for a specific timer or counter de-
fined in the program. Refer to 3–7 TC Area for more details on TC numbers
and to 5–11 Timer and Counter Instructions for information on actual applica-
tion.

The rest of the data areas (i.e., the IR, SR, HR and DM areas) consist of
words, each of which consists of 16 bits numbered 00 through 15 from right
to left. IR words 00 and 01 are shown below with bit numbers. Here, the con-
tent of each word is shown as all zeros. Bit 00 is called the rightmost bit; bit
15, the leftmost bit.

Bit number

IR word 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IR word 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

The term least significant is often used for rightmost; the term most signifi-
cant, for leftmost. These terms have not been used in this manual because a
single word is often split into two or more parts, with each part used for differ-
ent parameters or operands, sometimes even with bits in another word.
When this is done, the rightmost bits in a word may actually be the most sig-
nificant bits, i.e., the leftmost bits, of a value with other bits, i.e., the least sig-
nificant bits, contained in another word.

The DM area is accessible by word only; you cannot designate an individual
bit within a DM word. Data in the IR, SR and HR areas is accessible either by
bit or by word, depending on the instruction in which the data is being used.

To designate one of these areas by word, all that is necessary is the acronym
(if required) and the one or two-digit word address. To designate an area by
bit, the word address is combined with the bit number as a single three- or
four-digit address. The examples in the following table should make this
clear. The two rightmost digits of a bit designation must indicate a bit be-
tween 00 and 15.

The same TC number can be used to designate either a word containing the
present value (PV) of the timer or counter or a bit that functions as the Com-
pletion Flag for the timer or counter. This is explained in more detail in 3–7
TC Area.

Area Word designation Bit designation

IR 00 0015 (leftmost bit in word 00)

SR 19 1900 (rightmost bit in word 19)

DM DM 10 Not possible

TC TC 46 (designates PV) TC 46 (designates Completion Flag)

Note

Data Area Structure Section 3–2

14

Word data input as decimal values is stored in binary-coded decimal (BCD)
code; word data input as hexadecimal is stored in binary form. Because each
word contains 16 bits, each four bits of a word represents one digit: either a
hexadecimal digit equivalent numerically to the binary bits or decimal. One
word of data thus contains four digits, which are numbered from right to left.
These digit numbers and the corresponding

 bit numbers for one word are shown below.

Bit number

Contents 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digit number 3 2 1 0

When referring to the entire word, the digit numbered 0 is called the right-
most digit; the one numbered 3, the leftmost digit.

A piece of data in memory does not necessarily require exactly one word. If a
piece of data is in 3-digit BCD, for example, only 12 bits will be required to
express it (see decimal point example below). These would most likely be in
the same word and occupy either the rightmost or leftmost three digits. Data
requiring more than four digits must be split between words: sometimes be-
tween two whole words and sometimes between one word and part of an-
other word.

When inputting data into data areas, it must be input in the proper form for
the intended purpose. This is no problem when designating individual bits,
which are merely turned ON (equivalent to a binary value of 1) or OFF (a bi-
nary value of 0). When inputting word data, however, it is important to input it
either as decimal or as hexadecimal, depending on what is called for by the
instruction it is to be used for. Section 5 Instruction Set specifies when a par-
ticular form of data is required for an instruction.

Binary and hexadecimal can be easily converted back and forth because
each four bits of a binary number is numerically equivalent to one digit of a
hexadecimal number. The binary number 0101111101011111 is converted to
hexadecimal by considering each set of four bits in order from the right. Bi-
nary 1111 is hexadecimal F; binary 0101 is hexadecimal 5. The hexadecimal
equivalent would thus be 5F5F, or 24,415 in decimal (163 x 5 + 162 x 15 + 16
x 5 + 15).

Decimal and BCD can also be easily converted back and forth. In this case,
each BCD digit (i.e., each four BCD bits) is numerically equivalent of the cor-
responding decimal digit. The BCD bits 0101011101010111 are converted to
decimal by considering each four bits from the right. Binary 0101 is decimal
5; binary 0111 is decimal 7. The decimal equivalent would thus be 5,757.
Note that this is not the same numeric value as the hexadecimal equivalent
of 0101011101010111, which would be 5,757 hexadecimal, or 22,359 in deci-
mal (163 x 5 + 162 x 7 + 16 x 5 + 7).

Because the numeric equivalent of each four BCD binary bits must be
equivalent to a decimal value, any four bit combination numerically greater
then 9 cannot be used, e.g., 1011 is not allowed because it is numerically
equivalent to 11, which cannot be expressed as a single digit in decimal nota-
tion. The binary bits 1011 are of course allowed in hexadecimal and they are
equivalent to the hexadecimal digit C.

Data Structure

Converting Different Forms
of Data

Data Area Structure Section 3–2

15

There are instructions provided to convert data in either direction between
BCD and hexadecimal. Refer to 5–15 Data Conversion for details. Tables of
binary equivalents to hexadecimal and BCD digits are provided in the appen-
dices for reference.

 Decimal points are also not stored directly in memory, although some of the
parameters contained in data areas have assumed decimal points. For ex-
ample, if a value is said to be in 3-decimal hexadecimal to the tenths of an
second and it occupies the rightmost three digits in a specified word (i.e., bits
00 through 11), the rightmost digit (bits 00 through 03) would contain tenths
of a second and the other two digits would contain the number of whole sec-
onds. If the value was 15.4 decimal, the corresponding BCD bits in memory
would be as shown below.

Bit number

Contents 0 0 0 1 0 1 0 1 0 1 0 0

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

Digits Not used here. 1 5 4

3–3 IR Area
The IR area is used both to control I/O points and as work bits to manipulate
and store data internally. It is accessible both by bit and by word. Those
words that can be used to control I/O points are called I/O words. Bits in I/O
words are called I/O bits.

The number of I/O words varies between the P-type PCs. As shown, the IR
area is comprised of three main sections. These are input words, output
words and work words (work bits). Work bits are used in programming to ma-
nipulate data and control other bits. IR area work bits are reset when power
is interrupted or PC operation is stopped.

Word type I/O words I/O bits

Input IR 00
through IR
04

IR 0000 through IR 0415

Output IR 05
through IR
09

IR 0500 through IR 0915

Work IR 10
through IR
18

IR 1000 through IR 1807

 I/O bits are assigned to input or output points as described in Word Alloca-
tions.

If a Unit brings inputs into the PC, the bit assigned to it is an input bit; if the
Unit sends an output from the PC, the bit is an output bit. To turn on an out-
put, the output bit assigned to it must be turned ON. When an input turns on,
the input bit assigned to it also turns ON. These facts can be used in the pro-
gram to access input status and control output status through I/O bits.

I/O bits that are not assigned to I/O points can be used as work bits, unless
otherwise specified in Word Allocations.

Input bits can directly input external signals to the PC and can be used in any
order in programming. Each input bit can also be used in as many instruc-

Decimal Points

I/O Words

Input Bit Usage

IR Area Section 3–3

16

tions as required to achieve effective and proper control. They cannot be
used in instructions that control bit status, e.g., the Output, Differentiation Up,
and Keep instructions.

Output bits are used to output program execution results and can be used in
any order in programming. Because outputs are refreshed only once during
each scan (i.e., once each time the program is executed), any output bit can
be used only one instruction that controls its status, including OUT,
KEEP(11), DIFU(13), DIFD(14) and SFT(10). If an output bit is used in more
than one such instruction, only the status determined by the last one will ac-
tually be output from the PC.

As outputs are refreshed only once during each scan (i.e. once each time the
program is executed), any output bit can be used in only one instruction that
controls its status, including OUT, OUT NOT, KEEP(11), DIFU(13), DIFD(14),
and SFT(10). If an output bit is used in more than one such instruction, only
the status determined by the last instruction will actually be output from the
PC. See 5–12–1 Shift Register – SFT(10) for an exception to this rule.

The maximum number of words available for I/O within the IR area is 10,
numbered 00 through 09. The remaining words (10 through 18) are to be
used for work bits. (Note that with word 18, only the bits 00 through 07 are
available for work bits although some of the remaining bits are required for
special purposes when RDM(98) is used).

The actual number of bits that can be used as I/O bits is determined by the
model of the CPU and the PC configuration. There are different models of
Expansion I/O Units and Special I/O Units and I/O Link Units which can be
connected to any of the CPUs. Each CPU model provides a particular num-
ber of I/O bits and each Expansion I/O Unit, Special I/O Unit or I/O Link Unit
provides a particular number of I/O bits. Configuration charts for the possible
combinations of CPUs and Units are included later in this section. Refer to
those to determine the actual available I/O bits.

With P-type PCs, IR 00 through IR 04 are always input bits and IR 05 through
IR 09 are always outputs bits. These are allocated in order from IR 00 (input)
and IR 05 (output) beginning from the CPU. Each Unit is allocated either one
input word and one output word or, for the C40P/C60P Units, two input words
and two output words. If the words or bits within a word are not need by the
Unit, they are not allocated to any other Unit. Unallocated input bits cannot
be used for any purpose, but unallocated output bits can be used in program-
ming as work bits.

Output Bit Usage

Word Allocations

IR Area Section 3–3

17

The following table shows which bits can be used as I/O bits in each of the
P-type CPUs. Bits in the shaded areas can be used as work bits but not as
output bits. IR 0000 and IR 0001 are used by HDM(98).

08

09

10

11

12

13

14

15

08

09

10

11

IR 00

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 05

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 00

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 05

C20K

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 00

00

01

02

03

04

05

06

07

IR 01

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 05

00

01

02

03

04

05

06

07

IR 06

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 00

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 01

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR 05

00

01

02

03

04

05

06

07

IR 06

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Model Input bits Output bits

C28K

C40K

C60K

Cannot
be used

Cannot
be used

I/O Bits Available in CPUs

IR Area Section 3–3

18

The following table shows which bits can be used as I/O bits in each of the
Expansion I/O Units. Bits in the shaded areas can be used as work bits but
not as output bits. The word addresses depend on the Unit(s) that the Expan-
sion I/O Unit is coupled to. In all cases the first Expansion I/O Unit address
for input and output words is one more than the last address for input and
output words used by the Unit to which the Expansion I/O Unit is attached.
For example, if the last word address was IR 03, the first input or output word
address for the Expansion I/O Units will be IR 04. In the tables below “n” is
the word allocated prior to the Expansion I/O Unit.

08

09

10

11

12

13

14

15

08

09

10

11

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n+1)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

IR (n + 2)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

IR (n + 2)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 1)

00

01

02

03

04

05

06

07

IR (n + 1)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

08

09

10

11

12

13

14

15

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

Model Input bits Output bits Model Input bits Output bits

C20P
C16P
Input

C28P

C40P

C60P

C16P
Output

C4K
Input

C4K
Output

Cannot
be used

Cannot
be used

Cannot
be used

IR (n+1)

IR (n+1)

IR (n+1)

IR (n + 6)

IR (n + 6)

IR (n + 4)

IR (n + 4)

IR (n + 1)

IR (n + 1)

Cannot
be used

Cannot
be used

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

I/O Bits Available in
Expansion I/O Units

IR Area Section 3–3

19

The following table shows which bits are allocated to each of the Special I/O
Units. Bits in the shaded areas can be used as work bits but not as output
bits. The word addresses depend on the Unit(s) that the Special I/O Unit is
coupled to. In all cases the first Special I/O Unit address for input and output
words is one more than the last address for input and output words used by
the Unit to which the Special I/O Unit is attached. For example, if the last
word address was IR 03, the first input or output word address for the Special
I/O Units will be IR 04. In the tables below “n” is the word allocated prior to
the Special I/O Unit.

IR (n + 1)

00

01

02

03

04

05

06

07

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 1)

00

01

02

03

IR (n + 1)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 1)

Model Input bits Output bits

C1K–AD

C4K–AD

C1K–DA

C20–LK
011(–P)

C4K–TM

Cannot
be used

Cannot
be used

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

IR (n + 6)

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Cannot
be
used

IR (n + 1)

A P-type PC consists of a CPU Unit plus one or more of the following Units:
Expansion I/O Units, Analog Timer Units, Analog I/O Units, or an I/O Link
Unit. All of these Units are connected in series with the CPU Unit at one end.
An I/O Link Unit, if included, must be on the other end (meaning only one I/O

I/O Bits Available in Special
I/O Units

PC Configuration and I/O
Word Allocation

IR Area Section 3–3

20

Link Unit can be used) and an Analog Timer Unit cannot be used with. The
rest of the Units can be in any order desired.

The tables on the following pages show the possible configurations for a
P-type PC. Although the tables branch to show the various possibilities at
any one point, there can be no branching in the actual PC connections. You
can choose either branch at any point and go as far as required, i.e., you can
break off at any point to create a smaller PC System.When implementing a
system there is a physical restriction on the total cable length allowable. The
sum of the lengths of all cables in the system must be limited to less than 1.2
meters.

The tables also show which words will be input words and which words will
be output words. All of these are determined by the position of the Unit. With
the C4P and C16P Expansion I/O Units, the type of Unit (input or output) de-
termines whether the input or output word is used.

The symbols used in the table represent the following:

C20P/C28P

Input Output

C20P/C28P/TU/AN/LU

Input Output

C4K/C16P

Input or Output

C40P/C60P

Input Output Input Output

C20P or C28P CPU Unit

C40P or C60P CPU or

Expansion I/O Unit

C4K or C16P Expansion I/O Unit

C20P Expansion I/O Unit, C28P Expansion I/O Unit,

Analog Timer Unit, Analog I/O Unit, or I/O Link Unit

IR Area Section 3–3

21

IR 00 IR 05 IR 01 IR 06 IR 02 IR 07 IR 03 IR 08 IR 04 IR 09

C20P/C28P

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C40P/C60P

Input Output Input Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

IR Area Section 3–3

22

IR 00 IR 05 IR 01 IR 06 IR 02 IR 07 IR 03 IR 08 IR 04 IR 09

C20P/C28P

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

IR Area Section 3–3

23

IR 00 IR 05 IR 01 IR 06 IR 02 IR 07 IR 03 IR 08 IR 04 IR 09

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C40P/C60P

Input Output Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C20P/C28P/TU/AN/LU

Input Output

C40P/C60P

Input Output Input Output

C20P/C28P/TU/AN/LU

Input Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

C4K/C16P

Input or Output

IR Area Section 3–3

24

3–4 SR Area
The SR area contains flags and control bits used for monitoring system op-
eration, accessing clock pulses, and signalling errors. SR area word ad-
dresses range from 18 through 19; bit addresses, from 1808 through 1907.

The following table lists the functions of SR area flags and control bits. Most
of these bits are described in more detail following the table.

Unless otherwise stated, flags are OFF until the specified condition arises,
when they are turned ON. Bits 1903 to 1907 are turned OFF when END is
executed at the end of each program scan, and thus cannot be monitored on
the Programming Console. Other control bits are OFF until set by the user.

Word Bit Function

18 08 Battery Alarm Flag

09 Scan Time Error Flag

10 High-speed Counter Reset

11 Always OFF Flag

12 Always OFF Flag

13 Always ON Flag

14 Always OFF Flag

15 First Scan Flag

19 00 0.1-second Clock Pulse

01 0.2-second Clock Pulse

02 1-second Clock Pulse

03 Error (ER) Flag

04 Carry (CY) Flag

05 Greater Than (GR) Flag

06 Equals (EQ) Flag

07 Less Than (LE) Flag

3–4–1 Battery Alarm Flag
SR 1808 turns ON if the voltage of the CPU backup battery drops. A voltage
drop can be indicated by connecting the output of this bit to an external indi-
cating device such as a LED. This bit can be used in programming to activate
an external warning for a low battery.

3–4–2 Scan Time Error Flag
SR 1809 turns ON if the scan time exceeds 100 ms. This bit is turned ON
when the scan time is between 100 and 130 ms. The PC will still operate but
timing may become inaccurate. The PC will stop operating if the execution
time exceeds 130 ms.

3–4–3 High-speed Drum Counter Reset
SR 1810 turns ON for one scan time when the hard reset signal (input 0001)
is turned ON.

3–4–4 Clock Pulse Bits
Three clock pulses are available to control program timing. Each clock pulse
bit is ON for the first half of the rated pulse time, then OFF for the second
half. In other words, each clock pulse has a duty factor of 1 to 1.

SR Area Section 3–4

25

These clock pulse bits are often used with counter instructions to create tim-
ers. Refer to 5–11 Timer and Counter Instructions for an example of this.

Pulse width 0.1 s 0.2 s 1.0 s

Bit 1900 1901 1902

SR 1900
0.1-s clock pulse

0.1 s

.05 s .05 s

SR 1901
0.2-s clock pulse

0.2 s

0.1 s 0.1 s

SR 1902
1.0-s clock pulse

1.0 s

0.5 s 0.5 s

Caution :
Because the 0.1-second clock
pulse bit has an ON time of 50 ms,
the CPU may not be able to accu-
rately read the pulses if program
execution time is too long.

3–4–5 Error Flag ER
SR 1903 turns ON when the results of an arithmetic operation is not output in
BCD or the value of the BIN data processed by the BIN to BCD or BCD to
BIN conversion instruction exceeds 9999. When the ER Flag is ON the cur-
rent instruction is not executed.

3–4–6 Always OFF and Always ON Flags
SR 1811, SR 1812 and SR 1814 are always OFF and AR 1813 is always ON.
By connecting these bits to external indicating devices such as a LED they
can be used to monitor the PC’s operating status.

3–4–7 First Scan Flag
SR 1815 turns ON when program execution starts and turns OFF after one
scan.

3–4–8 Arithmetic Flags
The following flags are used in data shifting, arithmetic calculation, and com-
parison instructions. They are generally referred to only by their two-letter
abbreviations. These flags are all reset when END is executed, and therefore
cannot be monitored from a Programming Device.

Refer to 5–12 Data Shifting, 5–14 Data Comparison and 5–16 BCD Calcula-
tions for details.

SR 1904 turns ON when there is a carry in the result of an arithmetic opera-
tion. The content of CY is also used in some arithmetic operations, e.g., it is
added or subtracted along with other operands. This flag can be set and
cleared from the program using the STC and CLC instructions. Use CLC be-
fore any instruction using CY unless the current content of CY is required.

SR 1905 turns ON when the result of a comparison shows the second of two
4-digit operands to be greater than the first.

Carry Flag, CY

Greater Than Flag, GR

SR Area Section 3–4

26

SR 1906 turns ON when the result of a comparison shows two operands to
be equal or when the result of an arithmetic operation is zero.

SR 1907 turns ON when the result of a comparison shows the second of two
4-digit operands to be less than the first.

3–5 DM Area
The DM area is used for internal data storage and manipulation and is acces-
sible only by word. Addresses range from DM 00 through DM 63.

Although composed of 16 bits just like any other word in memory, DM words
cannot be specified by bit for use in instructions with bit-size operands, such
as LD, OUT, AND, and OR.

 When the HDM(98) (High-speed Drum Counter) is used the DM area words
32 to 63 are used as the area where the upper and lower limits of the counter
are preset and as such these words cannot be used for any other purposes.

The DM area retains status during power interruptions.

3–6 HR Area
The HR area is used to store and manipulate various kinds of data and can
be accessed either by word or by bit. Word addresses range from HR 0
through HR 9; bit addresses, from HR 000 through HR 915. HR bits can be
used in any order required and can be programmed as often as required.

The HR area retains status when the system operating mode is changed, or
when power is interrupted.

3–7 TC Area
The TC area is used to create and program timers and counters and holds
the Completion Flags, set values (SV), and present values (PV) for all timers
and counters. All of these are accessed through TC numbers ranging from
TC 00 through TC 47. Each TC number is defined as either a timer or
counter using one of the following instructions: TIM, TIMH, CNT or CNTR. No
prefix is required when using a TC number as a definer in a timer or counter
instruction.

Once a TC number has been defined using one of these instructions, it can-
not be redefined elsewhere in the program using the same or a different in-
struction. If the same TC number is defined in more than one of these in-
structions or in the same instruction twice, an error will be generated during
the program check. There are no restrictions on the order in which TC num-
bers can be used.

Once defined, a TC number can be designated as an operand in one or more
instructions other than those listed above. When defined as a timer, a TC
number designated as an operand takes a TIM prefix. The TIM prefix is used
regardless of the timer instruction that was used to define the timer. Once
defined as a counter, the TC number designated as an operand takes a CNT
prefix. The CNT is also used regardless of the counter instruction that was
used to define the counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses the Completion Flag of the timer or
counter. When designated as an operand that requires word data, the TC
number accesses a memory location that holds the PV of the timer or
counter.

Equal Flag, EQ

Less Than Flag, LE

TC Area Section 3–7

27

TC numbers are also used to access the SV of timers and counters from a
Programming Device. The procedures for doing so from the Programming
Console are provided in 7–8 Monitoring Operation and Modifying Data.

The TC area retains the SVs of both timers and counters during power inter-
ruptions. The PVs of timers are reset when PC operation is begun and when
reset in interlocked program sections. Refer to 5–7 Interlock and Interlock
Clear – IL(02) and ILC(03) for details on timer and counter operation in inter-
locked program sections. The PVs of counters are not reset at these times.

Note that in programming “TIM 00” is used to designate three things: the
Timer instruction defined with TC number 00, the Completion Flag for this
timer, and the PV of this timer. The meaning in context should be clear, i.e.,
the first is always an instruction, the second is always a bit, and the third is
always a word. The same is true of all other TC numbers prefixed with TIM or
CNT. In explanations of ladder diagrams, the Completion Flag and PV ac-
cessed through a TC number are generally called the Completion Flag or the
PV of the instruction (e.g., the Completion Flag of TIM 00 is the Completion
Flag accessed through TC number 00, which has been defined using TIM).

When the RDM(98) (Reversible High-speed Drum Counter) is used TC 46 is
used as the present value storage area of the counter and thus cannot be
used for any other purpose.

3–8 TR Area
The TR area provides eight bits that are used only with the LD and OUT in-
structions to enable certain types of branching ladder diagram programming.
The use of TR bits is described in Section 4 Programming.

TR addresses range from TR 0 though TR 7. Each of these bits can be used
as many times as required and in any order required as long as the same TR
bit is not used twice in the same instruction block.

TR Area Section 3–8

29

SECTION 4
Programming

4–1 Introduction 30 .
4–2 Instruction Terminology 30 .
4–3 The Ladder Diagram 30 .

4–3–1 Basic Terms 31 .
4–3–2 Ladder Instructions 32 .
4–3–3 Logic Block Instructions 33 .
4–3–4 Branching Instruction Lines 34 .
4–3–5 Jumps 39 .

4–4 Controlling Bit Status 40 .
4–4–1 OUT and OUT NOT 40 .
4–4–2 Differentiate Up and Differentiate Down 41 .
4–4–3 Keep 41 .
4–4–4 Self-maintaining Bits 42 .

4–5 The End Instruction 42 .
4–6 Programming Precautions 43 .
4–7 Program Execution 44 .

30

4–1 Introduction
This section explains the basic steps and concepts involved in programming
and introduces the instructions used to build the basic structure of the ladder
diagram and control its execution. The entire set of instructions used in pro-
gramming is described in Section 5 Instruction Set.

There are several basic steps involved in writing a program.
1. Obtain a list of all I/O devices and the I/O points that have been as-

signed to them and prepare a table that shows the I/O bit allocated to
each I/O device.

2. If the PC has any Units, i.e. Analog Timer Units, Host Link Units , and
I/O Link Units that are allocated words in data areas other than the IR
area or are allocated IR words in which the function of each bit is speci-
fied by the Unit, prepare similar tables to show what words are used for
which Units and what function is served by each bit within the words.

3. Determine what words are available for work bits and prepare a table in
which you can allocate these as you use them.

4. Also prepare tables of TC numbers so that you can allocate these as
you use them. Remember, the function of a TC number can be defined
only once within the program. (TC number are described in 5–11 Timer
and Counter Instructions.)

5. Draw the ladder diagram.
6. Input the program into the CPU. When using the Programming Console,

this will involve converting the program to mnemonic form.
7. Check the program for syntax errors and correct these.
8. Execute the program to check for execution errors and correct these.
9. After the entire Control System has been installed and is ready for use,

execute the program and fine tune it if required.
The basics of ladder diagramming are described in the rest of this section.
Converting the program to mnemonic form and debugging are described in
Section 7 Program Input, Debugging, and Execution. Section 8 Troubleshoot-
ing also provides information required for debugging.

4–2 Instruction Terminology
There are basically two types of instructions used in ladder-diagram pro-
gramming: instructions that correspond to conditions on the ladder diagram
and are used in instruction form only when converting a program to mne-
monic code and instructions that are used on the right side of the ladder dia-
gram and are executed according to the conditions on the instruction lines
leading to them.

Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values, but are
usually the addresses of data area words or bits that contain the data to be
used. For instance, a Move instruction that has IR 00 designated as the
source operand will move the contents of IR 00 to some other location. The
other location is also designated as an operand. A bit whose address is des-
ignated as an operand is called an operand bit; a word whose address is
designated as an operand is called an operand word.

Other terms used in describing instructions are introduced in Section 5 In-
struction Set.

4–3 The Ladder Diagram
A ladder diagram consists of one line running down the left side with lines
branching off to the right. The line on the left is called the bus bar; the

1, 2, 3...

The Ladder Diagram Section 4–3

31

branching lines, instruction lines. Along the instruction lines are placed condi-
tions that lead to other instructions on the right side. The logical combinations
of these conditions determine when and how the instructions at the right are
executed. A simple ladder diagram is shown below.

0000 0315

Instruction

Instruction

0403

0001

HR 109 12031208 1200

0501 0502 0503 0504

1201

0100 0002

0010

0011

0003 HR 510 0007 TC 01 0515

1001 1002

0405

1005 1007

As shown in the diagram above, instruction lines can branch apart and they
can join back together. The vertical pairs of lines are called conditions. Con-
ditions without diagonal lines through them are called normal conditions and
correspond to a LOAD, AND, or OR instruction. The conditions with diagonal
lines through them are called inverse or NOT conditions and correspond to a
LOAD NOT, AND NOT, or OR NOT instruction. The number above each con-
dition indicates the operand bit for the instruction. It is the status of the bit
associated with each condition that determine the execution condition for fol-
lowing instructions. The function of each of the instructions that correspond
to a condition is described below. Before we consider these, however, there
are some basic terms that must be explained.

When displaying ladder diagrams with a GPC, a FIT, or LSS, a second bus
bar will be shown on the right side of the ladder diagram and will be con-
nected to all instructions on the right side. This does not change the lad-
der-diagram program in any functional sense. No conditions can be placed
between the instructions on the right side and the right bus bar, i.e., all in-
structions on the right must be connected directly to the right bus bar. Refer
to the GPC, FIT, or LSS Operation Manual for details.

4–3–1 Basic Terms

Each condition in a ladder diagram is either ON or OFF depending on the
status of the operand bit that has been assigned to it. A normal condition is
ON if the operand bit is ON; OFF if the operand bit is OFF. An inverse or
NOT condition is ON if the operand bit is OFF; OFF if the operand bit is ON.
Generally speaking, you use a normal condition when you want something to
happen when a bit is ON and an inverse condition when you want something
to happen when a bit is OFF.

Instruction

Instruction

0000

0000
Instruction is executed
when IR bit 0000 is ON.

Instruction is executed
when IR bit 0000 is OFF.

Normal condition

NOT condition

In ladder diagram programming, the logical combination of ON and OFF con-
ditions before an instruction determines the compound condition under which

Note

Normal and NOT
Conditions

Execution Conditions

The Ladder Diagram Section 4–3

32

the instruction is executed. This condition, which is either ON or OFF, is
called the execution condition for the instruction. All instructions except for
LOAD instructions have execution conditions.

The operands designated for any of the ladder instructions can be any bit in
the IR, SR, HR or TC area. This means that the conditions in a ladder dia-
gram can be determined by I/O bits, flags, work bits, timers/counters, etc.
Load and Output instructions can also use TR area bits, but they do so only
in special applications. Refer to 4–3–4 Branching Instruction Lines for details.

What conditions correspond to what instructions is determined by the rela-
tionship between the conditions established by the instruction lines that con-
nect them. Any group of conditions that go together to create a logic result is
called a logic block. Although ladder diagrams can be written without actually
analyzing individual logic blocks, understanding logic blocks is necessary for
efficient programming and is essential when programs are to be input in mne-
monic code. Analyzing logic blocks in ladder diagrams and converting ladder
diagrams to mnemonic code is covered in 7–2 Converting to Mnemonic
Code.

4–3–2 Ladder Instructions
The ladder instructions are those that correspond to the conditions on the
ladder diagram. Ladder instructions, either independently or in combination
with the logic block instructions described next, form the execution conditions
upon which all other instructions are executed.

The first condition that starts any logic block within a ladder diagram corre-
sponds to a Load or Load NOT instruction.

0000

0000

A Load instruction.

A Load NOT instruction.

When this is the only condition on the instruction line, the execution condition
for the instruction at the right is ON when the condition is ON. For the Load
instruction (i.e., a normal condition), the execution condition would be ON
when IR 0000 was ON; for the Load NOT instruction (i.e., an inverse condi-
tion), it would be ON when IR 0000 was OFF.

When two or more conditions lie in series on the same instruction line, the
first one corresponds to a Load or Load NOT instruction; the rest of the con-
ditions, to AND or AND NOT instructions. The following example shows three
conditions which correspond in order from the left to a Load, an AND NOT,
and an AND instruction.

0000 0100 HR 000
Instruction

The instruction at the right would have an ON execution condition only when
all three conditions are ON, i.e., when IR 0000 was ON, IR 0100 was OFF,
and HR 000 was ON.

Operand Bits

Logic Blocks

Load and Load NOT

AND and AND NOT

The Ladder Diagram Section 4–3

33

Actually, AND instructions can be considered individually in series, each of
which would take the logical AND between the execution condition (i.e., the
sum of all conditions up to that point) and the status of the AND instruction’s
operand bit. If both of these were ON, an ON execution condition would be
produced for the next instruction. The execution condition for the first AND
instruction in a series would be the first condition on the instruction line.

Each AND NOT instruction in a series would take the logical AND between
its execution condition and the inverse of its operand bit.

When two or more conditions lie on separate instruction lines running in par-
allel and then joining together, the first condition corresponds to a Load or
Load NOT instruction; the rest of the conditions correspond to OR or OR
NOT instructions. The following example shows three conditions which corre-
spond in order from the top to a Load NOT, an OR NOT, and an OR instruc-
tion.

Instruction

0100

HR 000

0000

The instruction at the right would have an ON execution condition when any
one of the three conditions was ON, i.e., when IR 0000 was OFF, when IR
0100 was OFF, or when HR 000 was ON.

OR and OR NOT instructions can also be considered individually, each tak-
ing the logical OR between its execution condition and the status of the OR
instruction’s operand bit. If either one of these were ON, an ON execution
condition would be produced for the next instruction.

When AND and OR instructions are combined in more complicated dia-
grams, they can sometimes be considered individually, with each instruction
performing a logic operation on the execution condition and the status of the
operand bit. The following is one example.

Instruction
0002 00030000 0001

0200

Here, an AND is taken between the status of 0000 and that of 0001 to deter-
mine the execution condition for an OR with the status of 0200. The result of
this operation determines the execution condition for an AND with the status
of 0002, which in turn determines the execution condition for an AND with the
inverse of the status of 0003. In more complicated diagrams, however, it is
necessary to consider logic blocks before an execution condition can be de-
termined for the final instruction, and that’s where AND Load and OR Load
instructions are used.

4–3–3 Logic Block Instructions
Logic block instructions do not correspond to specific conditions on the lad-
der diagram; rather, they describe relationships between logic blocks. The

OR and OR NOT

Combining AND and OR
Instructions

The Ladder Diagram Section 4–3

34

AND Load instruction logically ANDs the execution conditions produced by
two logic blocks. The OR Load instruction logically ORs the execution condi-
tions produced by two logic blocks.

Although simple in appearance, the diagram below requires an AND Load
instruction.

Instruction
0002

0003

0000

0001

The two logic blocks are indicated by dotted lines. Studying this example
shows that an ON execution condition would be produced when both 1)
either of the conditions in the left logic block was ON (i.e., when either 0000
or 0001 was ON) and 2) either of the conditions in the right logic block was
ON (i.e., when either 0002 was ON or 0003 was OFF).

Analyzing the diagram in terms of instructions, the condition at 0000 would
be a Load instruction and the condition below it would be an OR instruction
between the status of 0000 and that of 0001. The condition at 0002 would be
another Load instruction and the condition below this would be an OR NOT
instruction, i.e., an OR between the status or 0002 and the inverse of the
status of 0003. To arrive at the execution condition for the instruction at the
right, the logical AND of the execution conditions resulting from these two
blocks would have to be taken. AND Load allows us to do this. AND Load
always takes an AND between the current execution condition and the last
unused execution condition. An unused execution condition is produced by
using the Load or Load NOT instruction for any but the first condition on an
instruction line.

Although we’ll not describe it in detail, the following diagram would require an
OR Load instruction between the top logic block and the bottom logic block.
An ON execution condition would be produced for the instruction at the right
either when 0000 was ON and 0001 was OFF or when 0002 and 0003 were
both ON.

Instruction
0000 0001

0002 0003

Naturally, some diagrams will require both AND Load and OR Load instruc-
tions.

4–3–4 Branching Instruction Lines
When an instruction line branches into two or more lines, it is sometimes
necessary to use either interlocks or TR bits to maintain the execution condi-
tion that existed at a branching point. This is because instruction lines are
executed across to a terminal instruction on the right before returning to
branching points to execute instructions on the branch lines. If the execution
condition has changed during this time, the previous execution condition is
lost and proper execution will not be possible without some means of pre-

AND Load

OR Load

The Ladder Diagram Section 4–3

35

serving the previous condition. The following diagrams illustrate this. In both
diagrams, instruction 1 is executed before returning to the branching point
and moving on to the branch line leading to instruction 2.

Instruction 1

0002

0000

Instruction 2

Branching
point

Instruction 1

0002

0000

Instruction 2

Branching
point

Diagram B: Needs Correction

Diagram A: OK

0001

If, as shown in diagram A, the execution condition that existed at the branch-
ing point is not changed before returning to the branch line (instructions at
the far right do not change the execution condition), then the branch line will
be executed correctly and no special programming measure is required.

If, as shown in diagram B, a condition exists between the branching point
and the last instruction on the top instruction line, the execution condition at
the branching point and the execution condition at the end of the top line will
sometimes be different, making it impossible to ensure correct execution of
the branch line. The system remembers only the current execution condition
(i.e., the logical sum for an entire line) and does not remember partial logical
sums at points within a line.

There are two means of programming branching programs to preserve the
execution conditions. One is to use TR bits; the other, to use interlocks.

The TR area provides eight bits, TR 0 through TR 7, that can be used to tem-
porarily preserve execution conditions. If a TR bit is used as the operand of
the Output instruction placed at a branching point, the current execution con-
dition will be stored at the designated TR bit. Storing execution conditions is
a special application of the Output instruction. When returning to the branch-
ing point, the same TR bit is then used as the operand of the Load instruction
to restore the execution condition that existed when the branching point was
first reached in program execution.

The above diagram B can be written as shown below to ensure correct exe-
cution.

Instruction 1

0002

0000

Instruction 2

Diagram B: Corrected Using a TR bit

0001
TR 0

In terms of actual instructions the above diagram would be as follows: The
status of 0000 is loaded (a Load instruction) to establish the initial execution
condition. This execution condition is then output using an Output instruction
to TR 0 to store the execution condition at the branching point. The execution
condition is then ANDed with the status of 0001 and instruction 1 is executed

TR Bits

The Ladder Diagram Section 4–3

36

accordingly. The execution condition that was stored at the branching point is
then loaded back in (a Load instruction with TR 0 as the operand) and in-
struction 2 is executed accordingly.

The following example shows an application using two TR bits.

Instruction 1

0003

0000 0002
TR 1

0005

TR 0
0001

0004

Instruction 2

Instruction 3

Instruction 4

In this example, TR 0 and TR 1 are used to store the execution conditions at
the branching points. After executing instruction 1, the execution condition
stored in TR 1 is loaded for an AND with the status 0003. The execution con-
dition stored in TR 0 is loaded twice, the first time for an AND with the status
of 0004 and the second time for an AND with the inverse of the status of
0005.

TR bits can be used as many times as required as long as the same TR bit is
not used more than once in the same instruction block. Here, a new instruc-
tion block is begun each time execution returns to the bus bar. If more than
eight branching points requiring that the execution condition be saved are
necessary in a single instruction block, interlocks, which are described next,
must be used.

When drawing a ladder diagram, be careful not to use TR bits unless neces-
sary. Often the number of instructions required for a program can be reduced
and ease of understanding a program increased by redrawing a diagram that
would otherwise required TR bits. With both of the following pairs of dia-
grams, the versions on the top require fewer instructions and do not require
TR bits. The first example achieves this by merely reorganizing the parts of
the instruction block; the second, by separating the second Output instruction
and using another Load instruction to create the proper execution condition
for it.

Instruction 1
0000

Instruction 2

0001
TR 0

Instruction 2

0000

Instruction 1
0001

The Ladder Diagram Section 4–3

37

Instruction 1

0000

Instruction 2

0003

TR 0
0001

0004

0002

0001 0003

0000

0004

0002

0001

Instruction 1

Instruction 2

TR bits are only used when programming using mnemonic code and are not
necessary when inputting ladder diagrams directly, as is possible from a
GPC. The above limitations on the number of branching points requiring TR
bits and considerations on methods to reduce the number of programming
instructions still hold.

The problem of storing execution conditions at branching points can also be
handled by using the Interlock (IL(02)) and Interlock Clear (ILC(03)) instruc-
tions. When an Interlock instruction is placed at a branching point of an in-
struction line and the execution condition for the Interlock instruction is ON,
each branch line is established as an new instruction line, with the first condi-
tion on each branch line corresponding to a Load or Load NOT instruction. If
the execution condition for the Interlock instruction is OFF, all instructions on
the right side of the branch lines leading from the branching point receive an
OFF execution condition through the first Interlock Clear instruction. The ef-
fect that this has on particular instructions is described in 5–7 Interlock and
Interlock Clear – IL(02) and ILC(03).

Diagram B from the above example can also be corrected with an interlock.
As shown below, this requires one more instruction line for the Interlock Clear
instruction.

Instruction 1

0002

0000

Instruction 2

Diagram B: Corrected with an Interlock

0001

ILC(03)

IL(02)

If 0000 is ON in the above version of diagram B, the status of 0001 and that
of 0002 would determine the execution conditions for instructions 1 and 2,
respectively, on independent instruction lines. Because here 0000 is ON, this
would produce the same results as ANDing the status of each of these bits,
as would occur if the interlock was not used, i.e., the Interlock and Interlock

Note

Interlocks

The Ladder Diagram Section 4–3

38

Clear instructions would not affect execution. If 0000 is OFF, the Interlock
instruction would produce an OFF execution condition for instructions 1 and
2 and then execution would continue with the instruction line following the
Interlock Clear instruction.

As shown in the following diagram, more than one Interlock instruction can
be used within one instruction block; each is effective from its branching point
through the next Interlock Clear instruction.

Instruction 1

0002

0000

Instruction 2

0001

ILC(03)

IL(02)

0004
IL(02)

Instruction 3

Instruction 4
0006

0005

0003

If 0000 in the above diagram was OFF (i.e., if the execution condition for the
first Interlock instruction was OFF), instructions 1 through 4 would be exe-
cuted with OFF execution conditions and execution would move to the in-
struction following the Interlock Clear instruction. If 0000 was ON, the status
of 0001 would be loaded to form the execution condition for instruction 1 and
then the status of 0002 would be loaded to form the first execution status for
that instruction line, i.e., the execution condition for the second Interlock in-
struction. If 0002 was OFF, instructions 2 through 4 would be executed with
OFF execution conditions. If 0002 was ON, 0003, 0005, and 0006 would
each start a new instruction line.

Because all branch lines following branching points with Interlock instructions
form independent instruction lines, interlocked sections of programs can be
redrawn without branching points. The following diagram executes exactly
like the one above and would be input in exactly the same order using the
same instructions.

Instruction 1

0000

Instruction 2

0001

ILC(03)

IL(02)

0004

Instruction 3

Instruction 4
0006

0005

0003

0002

IL(02)

This type of interlock diagram appears when inputting ladder diagrams di-
rectly, as is possible from a GPC.

The Ladder Diagram Section 4–3

39

It’s interesting to notice that if any instructions are added to an interlocked
section of a diagram, they in essence branch from the branching point where
the Interlock instruction is located, regardless of whether they are drawn that
way or whether they are drawn connected directly to the bus bar. If we add a
third instruction between instruction 2 and the Interlock Clear instruction to
diagram B from above, we can connected it either as another branch line fol-
lowing the branch line for instruction 2 or directly to the bus bar. In either
case, the diagram, when rewritten into the type of display shown above for
GPC displays, would be the same. Both diagrams would naturally execute
exactly the same.

Instruction 1

0002

0000

Instruction 2

0001

Instruction 3

IL(02)

ILC(03)

0003

Instruction 1

0002

0000

Instruction 2

0001

Instruction 3

IL(02)

ILC(03)

0003

Instruction 1

0002

0000

Instruction 2

0001

Instruction 3

ILC(03)

0003

IL(02)

When drawing interlocked sections of ladder diagrams, either form may be
used. The non-branching form will be used in the remainder of this manual.

4–3–5 Jumps
A specific section of a program can be skipped according a designated exe-
cution condition. Although this is similar to what happens when the execution
condition for an Interlock instruction is OFF, with jumps, the operands for all
instructions maintain status. Jumps can therefore be used to control devices
that require a sustained output, e.g., pneumatics and hydraulics, whereas
interlocks can be used to control devices that do not required a sustained
output, e.g., electronic instruments.

Jumps are created using the Jump (JMP(04)) and Jump End (JME(05)) in-
structions. If the execution condition for a Jump instruction is ON, the pro-
gram is executed normally as if the jump did not exist. If the execution condi-
tion for the Jump instruction is OFF, program execution moves immediately
to a Jump End instruction without changing the status of anything between
the Jump and Jump End instruction.

In the following example, Instructions 1 and 2 would not be executed when
IR 0000 is OFF and execution would skip immediately to the Jump End in-
struction without change the status of any bits or words in between. If IR
0000 is ON, the program would be executed as if the jump did not exist.

The Ladder Diagram Section 4–3

40

Instruction 1

0002

0000

Instruction 2

Diagram B: Corrected with a Jump

0001

JME(05)

JMP(04)

Execution of programs containing multiple Jump instructions for one Jump
End instruction resembles that of similar interlocked sections. The following
diagram is the same as that used for the interlock example above, except
redrawn with jumps. This diagram, however, would not execution the same,
as has already be described, i.e., interlocks would reset certain parts of the
interlocked section but jumps would not affect any status between the Jump
and Jump End instructions.

Instruction 1

0000

Instruction 2

0001

JME(05) 00

JMP(04) 00

0004

Instruction 3

Instruction 4
0006

0005

0003

0002

JMP(04) 00

Jump diagrams can also be drawn as branching instruction lines if desired
and would look exactly like their interlock equivalents. The non-branching
form, which is the form displayed on the GPC, will be used in this manual.

4–4 Controlling Bit Status
There are five instructions that can be used generally to control individual bit
status. These are the Output or OUT, Output NOT or OUT NOT, Differentiate
Up, Differentiate Down, and Keep instructions. All of these instruction appear
as the last instruction in an instruction line and take a bit address for an oper-
and. Although details are provided in 5–6 Bit Control Instructions, these in-
structions are described here because of their importance in most programs.
Although these instructions are used to turn ON and OFF output bits in the IR
area (i.e., to send or stop output signals to external devices), they are also
used to control the status of other bits in the IR area or in other data areas.

4–4–1 OUT and OUT NOT
The OUT and OUT NOT instructions are used to control the status of the
designated operand bit according to the execution condition. With the OUT
instruction, the operand bit will be turned ON as long as the execution condi-

Controlling Bit Status Section 4–4

41

tion is ON and will be turned OFF as long as the execution condition is OFF.
With the OUT NOT instruction, the operand bit will be turned ON as long as
the execution condition is OFF and turned OFF as long as the execution con-
dition is ON. These appear as follows:

0000

0101

0100

0001

In the above examples, bit 0500 will be ON as long as 0000 is ON and bit
0501 will be OFF as long as 0001 is ON. Here, 0000 and 0001 would be in-
put bits and 0500 and 0501 output bits assigned to the Units controlled by
the PC, i.e., the signals coming in through the input points assigned 0000
and 0001 are controlling the output points assigned 0500 and 0501, respec-
tively.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT instruction with Timer instructions. Refer to Examples un-
der 5–11–1 Timer – TIM for details.

4–4–2 Differentiate Up and Differentiate Down

Differentiate Up and Differentiate Down instructions are used to turn the op-
erand bit ON for one scan at a time. The Differentiate Up turns ON the oper-
and bit for one scan after the execution condition when it goes from OFF to
ON; the Differentiate Down instruction turns ON the operand bit for one scan
after the execution condition when it goes from ON to OFF. The following ex-
ample shows the same I/O bits as above, but this time they are controlled by
Differentiate Up and Down instructions.

0000

0001

DIFU(13) 0500

DIFD(14) 0501

Here, 0500 will be turned ON for one scan after 0000 goes ON. The next
time DIFU(13) 0500 is executed, 0500 will be turned OFF, regardless of the
status of 0000. With the Differentiate Down instruction, 0501 will be turned
ON for one scan after 0001 goes OFF (0501 will be kept OFF until then) and
will be turned ON the next time DIFD(14) is executed.

4–4–3 Keep
The Keep instruction is used to maintain the status of the operand bit based
on two execution conditions. To do this, the Keep instruction is connected to
two instruction lines. When the execution condition at the end of the first in-
struction line is ON, the operand bit of the Keep instruction is turned ON.
When the execution condition at the end of the second instruction line is ON,
the operand bit of the Keep instruction is turned OFF. The operand bit for the
Keep instruction will maintain its ON or OFF status even if it is located in an
interlocked section of the diagram and the execution condition for the Inter-
lock instruction is ON.

Controlling Bit Status Section 4–4

42

In the following example, HR 000 will be turned ON when 0002 is ON and
0003 is OFF. HR 000 will then remain ON until either 0004 or 0005 turns ON.

0002
KEEP(11)

HR 000

0004

0003

0005
R: reset input

S: set input

4–4–4 Self-maintaining Bits
Although the Keep instruction can be used to create self-maintaining bits, it is
sometimes necessary to create self-maintaining bits in another way so that
they can be turned OFF when in an interlocked section of a program.

To create a self-maintaining bit, the operand bit of an Output instruction is
used as a condition for the same Output instruction in an OR setup so that
the operand bit of the Output instruction will remain ON or OFF until changes
in other bits occur. At least one other condition is used just before the Output
instruction to function as a reset. Without this reset, there would be no way to
control the operand bit of the Output instruction.

The above diagram for the Keep instruction can be rewritten as shown below.
The only difference in these diagrams would be their operation in an inter-
locked program section when the execution condition for the Interlock in-
struction was ON. Here, just as in the same diagram using the Keep instruc-
tion, two reset bits are used, i.e., HR 000 is turned OFF by turning ON both
0004 and 0005.

0002 0003

HR 000

HR 000

0004

0005

4–5 The End Instruction
The last instruction in any program must be the End instruction. When the
CPU scans the program, it executes all instructions up to the first End in-
struction before returning to the beginning of the program and beginning exe-
cution again. Although an End instruction can be placed at any point in a pro-
gram, which is sometimes done when debugging, no instructions past the
first End instruction will be executed until it is removed.

Instruction
0000 0001

END(01)
Program execution
ends here.

The End Instruction Section 4–5

43

If there is no End instruction anywhere in the program, the program will not
be executed at all.

4–6 Programming Precautions
The number of conditions that can be used in series or parallel is unlimited.
Therefore, use as many conditions as required to draw a clear diagram. Al-
though very complicated diagrams can be drawn with instruction lines almost
forming mazes, there must not be any conditions on instruction lines running
vertically between two other instruction lines. Diagram A shown below, for
example, is not possible, and should be redrawn as diagram B.

Instruction 2

Instruction 1

0002

0003

0000

0001

0004

Diagram A

Instruction 1

0004

0003

0000

0001

Diagram B

0002

Instruction 2

00040000

0001

The number of times any particular bit can be assigned to conditions is not
limited, so use them as many times as required to simplify your program.
Often, complicated programs are the result of attempts to reduce the number
of times a bit is used.

Every instruction line must also have at least one condition on it to determine
the execution condition for the instruction at the right. Again, diagram A , be-
low, must be redrawn as diagram B. If an instruction must always be exe-
cuted (e.g., if an output must always be kept ON while the program is being
executed), the Always ON Flag (1813) in the SR area can be used.

Instruction
1813

Instruction

Diagram A

Diagram B

There are, however, a few exceptions to this rule, including the Interlock
Clear, Jump End, and Step Instructions. Each of these instructions is used as
the second of a pair of instructions and is controlled by the execution condi-

Programming Precautions Section 4–6

44

tion of the first of the pair. Conditions should not be placed on the instruction
lines leading to these instructions. Refer to Section 5 Instruction Set for de-
tails.

When drawing ladder diagrams, it is important to keep in mind the number of
instructions that will be required to input it. In diagram A, below, an OR Load
instruction will be required to combine the top and bottom instruction lines.
This can be avoided by redrawing as shown in diagram B so that no AND
Load or OR Load instructions are required. Refer to 5–5–2 AND Load and
OR Load for more details and 7–5 Inputting, Modifying and Checking the
Program for further examples.

0000

0001 0207

0207

0001

0000

0207
0207

Diagram A:

Diagram B:

4–7 Program Execution
When program execution is started, the CPU scans the program from top to
bottom, checking all conditions and executing all instructions accordingly as it
moves down the bus bar. It is important that instructions be placed in the
proper order so that, for example, the desired data is moved to a word before
that word is used as the operand for an instruction. Remember that an in-
struction line is completed to the terminal instruction at the right before exe-
cuting any instruction lines branching from the first instruction line to other
terminal instructions at the right.

Program execution is only one of the tasks carried out by the CPU as part of
the scan time. Refer to Section 6 Program Execution Timing for details.

Program Execution Section 4–7

45

SECTION 5
Instruction Set

5–1 Introduction 46 .
5–2 Notation 46 .
5–3 Instruction Format 46 .
5–4 Data Areas, Definer Values, and Flags 47 .
5–5 Ladder Diagram Instructions 47 .

5–5–1 Load, Load NOT, AND, AND NOT, OR, and OR NOT 48
5–5–2 AND Load and OR Load 49 .

5–6 Bit Control Instructions 49 .
5–6–1 Output and Output NOT – OUT and OUT NOT 49
5–6–2 Differentiate Up and Down – DIFU(13) and DIFD(14) 50
5–6–3 Keep – KEEP(11) 51 .

5–7 Interlock and Interlock Clear – IL(02) and ILC(03) 53 .
5–8 Jump and Jump End – JMP(04) and JME(05) 55 .
5–9 End – END(01) 56 .
5–10 No Operation – NOP(00) 56 .
5–11 Timer and Counter Instructions 56 .

5–11–1 Timer – TIM 57 .
5–11–2 High-speed Timer – TIMH(15) 61 .
5–11–3 Analog Timer Unit 61 .
5–11–4 Counter – CNT 64 .
5–11–5 Reversible Counter – CNTR(12) 67 .
5–11–6 High-speed Counter – HDM(98) 68 .

5–12 Data Shifting 77 .
5–12–1 Shift Register – SFT(10) 78 .
5–12–2 Word Shift – WSFT(16) 80 .

5–13 Data Movement 81 .
5–13–1 Move – MOV(21) 81 .
5–13–2 Move NOT – MVN(22) 82 .

5–14 Data Compare – CMP(20) 82 .
5–15 Data Conversion 84 .

5–15–1 BCD to Binary – BIN(23) 84 .
5–15–2 Binary to BCD – BCD(24) 85 .
5–15–3 4-to-16 Decoder – MLPX(76) 85 .
5–15–4 16-to-4 Encoder – DMPX(77) 87 .

5–16 BCD Calculations 89 .
5–16–1 BCD Add – ADD(30) 90 .
5–16–2 BCD Subtract – SUB(31) 92 .
5–16–3 Set Carry – STC(40) 93 .
5–16–4 Clear Carry – CLC(41) 93 .

46

5–1 Introduction
The P-type PCs have large programming instruction sets that allow for easy
programming of complicated control processes. This section explains each
instruction individually and provides the ladder diagram symbol, data areas,
and flags used with each. Basic application examples are also provided as
required in describing the instructions.

The many instructions provided by the P-type PCs are described in following
subsections by instruction group. These groups include Ladder Diagram In-
structions, Bit Control Instructions, Timer and Counter Instructions, Data
Shifting, Data Movement, Data Comparison, Data Conversion, BCD Calcula-
tions, Subroutines, Step Instructions, and Special Instructions.

Some instructions, such as Timer and Counter instructions, are used to con-
trol execution of other instructions, e.g., a TIM Completion Flag might be
used to turn ON a bit when the time period set for the timer has expired. Al-
though these other instructions are often used to control output bits through
the Output instruction, they can be used to control execution of other instruc-
tions as well. The Output instructions used in examples in this manual can
therefore generally be replaced by other instructions to modify the program
for specific applications other than controlling output bits directly.

5–2 Notation
In the remainder of this manual, all instructions will be referred to by their
mnemonics. For example, the Output instruction will be called OUT; the AND
NOT instruction, AND NOT. If you’re not sure of what instruction a mnemonic
is used for, refer to Appendix B Programming Instructions.

If an instruction is assigned a function code, it will be given in parentheses
after the mnemonic. These function codes, which are 2-digit decimal num-
bers, are used to input most instructions into the CPU and are described
briefly below and in more detail in 7–5 Inputting, Modifying and Checking the
Program. A table of instructions listed in order of function codes is also pro-
vided in Appendix B Programming Instructions.

5–3 Instruction Format
Most instructions have at least one or more operands associated with them.
Operands indicate or provide the data on which an instruction is to be per-
formed. These are sometimes input as the actual numeric values (i.e., as
constants), but are usually the addresses of data area words or bits that con-
tain the data to be used. A bit whose address is designated as an operand is
called an operand bit; a word whose address is designated as an operand is
called an operand word. In some instructions, the word address designated
in an instruction indicates the first of multiple words containing the desired
data.

Each instruction requires one or more words in Program Memory. The first
word is the instruction word, which specifies the instruction and contains any
definers (described below) or operand bits required by the instruction. Other
operands required by the instruction are contained in following words, one
operand per word. Some instructions require up to four words.

A definer is an operand associated with an instruction and contained in the
same word as the instruction itself. These operands define the instruction
rather than telling what data it is to be used. Examples of definers are TC
numbers, which are used in timer and counter instructions to create timer
and counter. Bit operands are also contained in the same word as the in-
struction itself, although these are not considered definers.

Instruction Format Section 5–3

47

5–4 Data Areas, Definer Values, and Flags
Each instruction is introduced with the ladder diagram symbol(s), the data
areas that can be used with any operand(s), and the values that can be used
for definers. With the data areas is also specified the operand names and the
type of data required for each operand (i.e., word or bit and, for words, hexa-
decimal or BCD).

Not all addresses in a specified data area are necessarily allowed in an oper-
and, e.g., if an operand requires two words, the last word in a data area can-
not be designated because all words for a single operand must be in the
same data area. Unless a limit is specified, any bit/word in the area can be
used. Specific limitations for operands and definers are specified in a Limita-
tions subsection. Refer to Section 3 Memory Areas for addressing conven-
tions and the addresses of flags and control bits.

The IR and SR areas are considered as separate areas and both are not
necessarily allowed for an operand just because one of them is. The boarder
between the IR and SR area can, however, be crossed for a single operand,
i.e., the last bit in the IR area may be specified for an operand that requires
more than one word as long as the SR area is also allowed for that operand.

The Flags subsection lists flags that are affected by execution of the instruc-
tion. These flags include the following SR area flags.

Abbreviation Name Bit

ER Instruction Execution Error Flag 1903

CY Carry Flag 1904

EQ Equals Flag 1906

GR Greater Than Flag 1905

LE Less Than Flag 1907

ER is the flag most often used for monitoring an instruction’s execution.
When ER goes ON, it indicates that an error has occurred in attempting to
execute the current instruction. The Flags subsection of each instruction lists
possible reasons for ER being ON. ER will turn ON for any instruction if oper-
ands are not input within established parameters. Instructions are not exe-
cuted when ER is ON. A table of instructions and the flags they affect is pro-
vided in Appendix D Error and Arithmetic Flag Operation.

Although data area addresses are most often given as operands, many oper-
ands can be input and all definers are input as constants. The range in which
a number can be specified for a given definer or operand depends on the
particular instruction that uses it. Constants must also be input in the form
required by the instruction, i.e., in BCD or in hexadecimal.

5–5 Ladder Diagram Instructions
Ladder diagram instructions include ladder instructions and logic block in-
structions. Ladder instructions correspond to the conditions on the ladder
diagram. Logic block instructions are used to relate more complex parts of
the diagram that cannot be programmed with ladder instructions alone.

Note

Designating Constants

Ladder Diagram Instructions Section 5–5

48

5–5–1 Load, Load NOT, AND, AND NOT, OR, and OR NOT

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasLoad – LD

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasLoad NOT – LD NOT

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasAND – AND

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasAND NOT – AND NOT

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasOR – OR

B

B: Bit

IR, SR, HR, TC, TR

Ladder Symbol Operand Data AreasOR NOT – OR NOT

B

There is no limit in the number of any of these instructions or in the order in
which they must be used as long as the capacity of the PC is not exceeded.

These six basic instructions correspond to the conditions on a ladder dia-
gram. As described in Section 4 Programming, the status of the bits assigned
to each instruction determines the execution conditions for all other instruc-
tions. Each of these instructions can be used as many times and a bit ad-
dress can be used in as many of these instructions as required.

The status of the bit operand (B) assigned to LD or LD NOT determines the
first execution condition. AND takes the logical AND between the execution
condition and the status of its bit operand; AND NOT, the logical AND be-
tween the execution condition and the inverse of the status of its bit operand.
OR takes the logical OR between the execution condition and the status of its
bit operand; OR NOT, the logical OR between the execution condition and
the inverse of the status of its bit operand. The ladder symbol for loading TR
bits is different from that shown. See 4–3–2 Ladder Instructions for details.

There are no flags affected by these instructions.

Limitations

Description

Flags

Ladder Diagram Instructions Section 5–5

49

5–5–2 AND Load and OR Load

Ladder Symbol

AND Load – AND LD
0002

0003

0000

0001

Ladder Symbol

OR Load – OR LD
0000 0001

0002 0003

When the above instructions are combined into blocks that cannot be logi-
cally combined using only OR and AND operations, AND LD and OR LD are
used. Whereas AND and OR operations logically combine a bit status and an
execution condition, AND LD and OR LD logically combine two execution
conditions, the current one and the last unused one.

AND LD and OR LD instruction are not necessary to draw ladder diagrams,
nor are they necessary when inputting ladder diagrams directly, as is possi-
ble from the GPC. They are required, however, to convert the program to and
input it in mnemonic form. The procedures for these, limitations for different
procedures, and examples are provided in 7–5 Inputting, Modifying and
Checking the Program.

In order to reduce the number of programming instruction required, a basic
understanding of logic block instructions is required. For an introduction to
logic blocks, refer to 7–2–3 Logic Block Instructions.

There are no flags affected by these instructions.

5–6 Bit Control Instructions
There are five instructions that can be used generally to control individual bit
status. These are OUT, OUT NOT, DIFU(13), DIFD(14), and KEEP(11).
These instructions are used to turn bits ON and OFF in different ways.

5–6–1 Output and Output NOT – OUT and OUT NOT

B: Bit

IR, HR, TR

Ladder Symbol Operand Data AreasOutput – OUT

B

B: Bit

IR, HR, TR

Ladder Symbol Operand Data AreasOutput NOT –
OUT NOT

B

Any output bit can be used in only one instruction that controls its status. See
3–3–1 I/O Words for details.

OUT and OUT NOT are used to control the status of the designated bit ac-
cording to the execution condition.

Description

Flags

Limitations

Description

Bit Control Instructions Section 5–6

50

OUT turns ON the designated bit for a ON execution condition, and turns
OFF the designated bit for an OFF execution condition. OUT with a TR bit
appears at a branching point rather than at the end of an instruction line. Re-
fer to 4–3–4 Branching Instruction Lines for details.

OUT NOT turns ON the designated bit for a OFF execution condition, and
turns OFF the designated bit for an ON execution condition.

OUT and OUT NOT can be used to control execution by turning ON and OFF
bits that are assigned to conditions on the ladder diagram, thus determining
execution conditions for other instructions. This is particularly helpful when a
complex set of conditions can be used to control the status of a single work
bit, and then that work bit can be used to control other instructions.

The length of time that a bit is ON or OFF can be controlled by combining the
OUT or OUT NOT with TIM. Refer to Examples under 5–11–1 Timer – TIM
for details.

There are no flags affected by these instructions.

5–6–2 Differentiate Up and Down – DIFU(13) and DIFD(14)

B: Bit

IR, HR

Ladder Symbol Operand Data Areas

DIFU(13) B

B: Bit

IR, HR

Ladder Symbol Operand Data Areas

DIFD(14) B

Any output bit can be used in only one instruction that controls its status. See
3–3–1 I/O Words for details.

DIFU(13) and DIFD(14) are used to turn the designated bit ON for one scan
only.

Whenever executed, DIFU(13) compares its current execution with the previ-
ous execution condition. If the previous execution condition was OFF and
and current one is ON, DIFU(13) will turn ON the designated bit. If the previ-
ous execution condition was ON and the current execution condition is either
ON or OFF, DIFU(13) will turn the designated bit OFF or do nothing (i.e., if
the designated bit is already OFF). The designated bit will thus never be ON
for longer than one scan assuming it is executed each scan (see Precau-
tions, below).

Whenever executed, DIFD(14) compares its current execution with the previ-
ous execution condition. If the previous execution condition was ON and the
current one is OFF, DIFD(14) will turn ON the designated bit. If the previous
execution condition was OFF and the current execution condition is either
ON or OFF, DIFD(14) will turn the designated bit OFF or do nothing (i.e., if
the designated bit is already OFF). The designated bit will thus never be ON
for longer than one scan.

These instructions are used when a single-scan execution of a particular in-
struction is desired. Examples of these are shown below.

Flags

Limitations

Description

Bit Control Instructions Section 5–6

51

DIFU(13) and DIFD(14) operation can be tricky when used in programming
between IL and ILC, between JMP and JME, or in subroutines. Refer to 5–7
Interlock and Interlock Clear – IL(02) and ILC(03) and 5–8 Jump and Jump
End – JMP(04)/JME(05) for details. A total of 48 DIFU(13)/DIFD(14) can be
used in a program. If more than 48 are used in a program only the first 48 will
be executed and all others will be ignored. DIFU(13)/DIFD(14) are useful
when used in conjunction with CMP(20) or MOV(21), see Example below.

There are no flags affected by these instructions.

In diagram A, below, CMP(20) will compare the contents of the two operand
words (HR 1 and DM 00) whenever it is executed with an ON execution con-
dition and set the arithmetic flags (GR, EQ, and LE) accordingly. If the execu-
tion condition remains ON, flag status may be changed each scan if the con-
tents of one or both operands change. Diagram B, however, shows how
DIFU(13) can be used to ensure that CMP(20) is executed only once each
time the desired execution condition goes ON.

0000

CMP(20)

HR 1

DM 00Diagram A

1000

CMP(20)

HR 1

DM 00Diagram B

DIFU(13) 1000

0000

5–6–3 Keep – KEEP(11)

B: Bit

IR, HR

Ladder Symbol Operand Data Areas

KEEP(11)
B

R

S

Any output bit can be used in only one instruction that controls its status. See
3–3–1 I/O Words for details.

KEEP(11) is used to maintain the status of the designated bit based on two
execution conditions. These execution conditions are labeled S and R. S is
the set input; R, the reset input. KEEP(11) operates like a latching relay that
is set by S and reset by R.

When S turns ON, the designated bit will go ON and stay ON until reset, re-
gardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF and stay OFF until reset, regardless of whether R stays
ON or goes OFF. The relationship between execution conditions and
KEEP(11) bit status is shown below.

Flags

Example

Limitations

Description

Bit Control Instructions Section 5–6

52

S execution condition

R execution condition

Status of B

Notice that KEEP(11) operates like a self-maintaining bit. The following two
diagrams would function identically, though the one using KEEP(11) requires
one less instruction to program and would maintain status even in an inter-
locked program section.

0002 0003

0500

0002

0003

0500

KEEP
0500

S

R

There are no flags affected by this instruction.

Never use an input bit in an inverse condition on the reset (R) for KEEP(11)
when the input device uses an AC power supply. The delay in shutting down
the PC’s DC power supply (relative to the AC power supply to the input de-
vice) can cause the designated bit of KEEP(11) to be reset. This situation is
shown below.

KEEP
HR
000

A

S

R

Input Unit

A

NEVER

Bits used in KEEP are not reset in interlocks. Refer to the 5–7 Interlock –
IL(02) and ILC(03) for details.

If a HR bit is used, bit status will be retained even during a power interrup-
tion. KEEP(11) can thus be used to program bits that will maintain status af-
ter restarting the PC following a power interruption. An example of this that
can be used to produce a warning display following a system shutdown for
an emergency situation is shown below. Bits 0002, 0003, and 0004 would be
turned ON to indicate some type of system error. Bit 0005 would be turned
ON to reset the warning display. HR 000, which is turned ON for any of the
three bits which indicates emergency situation, is used to turn ON the warn-
ing indicator through 0500.

Flags

Precautions

Example

Bit Control Instructions Section 5–6

53

HR 000

0500

0002

0003

0004

0005

KEEP
HR 000

Reset input

S

R
Indicates
emergency
situation

Activates
warning
display

KEEP(11) can also be combined with TIM to produce delays in turning bits
ON and OFF. Refer to 5–11–1 Timer – TIM for details.

5–7 Interlock and Interlock Clear – IL(02) and ILC(03)

Ladder Symbol IL(02)

Ladder Symbol ILC(03)

Description
IL(02) is always used in conjunction with ILC(03) to create interlocks. Inter-
locks are used to enable branching in the same way as can be achieved with
TR bits, but treatment of instructions between IL(02) and ILC(03) differs from
that with TR bits when the execution condition for IL(02) is OFF. If the execu-
tion condition of IL(02) is ON, the program will be executed as written, with
an ON execution condition used to start each instruction line from the point
where IL(02) is located through ILC(03). Refer to 4–3–4 Branching Instruc-
tion Lines for basic descriptions of both methods.

If the execution condition for IL(02) condition is OFF, the interlocked section
between IL(02) and ILC(03) will be treated as shown in the following table:

Instruction Treatment

OUT and OUT NOT Designated bit turned OFF.

TIM and TIMH(15) Reset.

CNT, CNTR(12) PV maintained.

KEEP(11) Bit status maintained.

DIFU(13) and DIFD(14) Not executed (see below).

All others Not executed.

IL(02) and ILC(03) do not necessarily have to be used in pairs. IL(02) can be
used several times in a row, with each IL(02) creating an interlocked section
through the next ILC(03). ILC(03) cannot be used unless there is at least one
IL(02) between it and any previous ILC(03).

Changes in the execution condition for a DIFU(13) or DIFD(14) are not re-
corded if the DIFU(13) or DIFD(14) is in an interlocked section and the exe-

DIFU(13) and DIFD(14) in
Interlocks

Interlock and Interlock Clear Section 5–7

54

cution condition for the IL(02) is OFF. When DIFU(13) or DIFD(14) is ex-
ecuted in an interlocked section immediately after the execution condition for
the IL(02) has gone ON, the execution condition for the DIFU(13) or
DIFD(14) will be compared to the execution condition that existed before the
interlock became effective (i.e., before the interlock condition for IL(02) went
OFF). The ladder diagram and bit status changes for this are shown below.
The interlock is in effect while 0000 is OFF. Notice that 1000 is not turned ON
at the point labeled A even though 0001 has turned OFF and then back ON.

0000

IL(02)

DIFU(13) 1000

ILC(03)

0001

0000

0001

ON

OFF

ON

OFF

1000
ON

OFF

A

There must be an ILC(03) following any one or more IL(02).

Although as many IL(02) as necessary can be used with one ILC(03),
ILC(03) cannot be used consecutively without at least one IL(02) in between,
i.e., nesting is not possible. Whenever a ILC(03) is executed, all interlocks
are cleared.

When more than one IL(02) is used with a single ILC(03), an error message
will appear when the program check is performed, but execution will proceed
normally.

There are no flags affected by these instructions.

The following diagram shows IL(02) being used twice with one ILC(03).

0000

0001

ILC(03)

IL(02)

0004

0005

0003

0002

IL(02)

0502

TIM 11

CP

R
CNT 01

100100

001.5 s

Precautions

Flags

Example

Interlock and Interlock Clear Section 5–7

55

When the execution condition for the first IL(02) is OFF, TIM 11 will be reset
to 1.5 s, CNT 01 will not be changed, and 0502 will be turned OFF. When the
execution condition for the first IL(02) is ON and the execution condition for
the second IL(02) is OFF, TIM 11 will be executed according to the status of
0001, CNT 01 will not be changed, and 0502 will be turned OFF. When the
execution conditions for both the IL(02) are ON, the program will execute as
written.

5–8 Jump and Jump End – JMP(04) and JME(05)

Ladder Symbols

JMP(04) JME(05)

A maximum of eight jumps are allowable in any program.

JMP(04) is always used in conjunction with JME(05) to create jumps, i.e., to
skip from one point in a ladder diagram to another point. JMP(04) defines the
point from which the jump will be made; JME(05) defines the destination of
the jump. When the execution condition for JMP(04) in ON, no jump is made
and the program is executed as written. When the execution condition for
JMP(04) is OFF, a jump is made to the the JME(05) with the same jump
number and the instruction following JME(05) is executed next.

Jumps, when made, will go immediately from JMP(04) to JME(05) without
executing any instructions in between. The status of timers, counters, bits
used in OUT, bits used in OUT NOT, and all other status controlled by the
instructions between JMP(04) and JME(05) will not be changed. As all of the
instructions between JMP(04) and JME(05) are skipped, jumps can be used
to reduce scan time.

Although DIFU(13) and DIFD(14) are designed to turn ON the designated bit
for one scan, they will not necessarily do so when written between JMP(04)
and JMP (05). Once either DIFU(13) or DIFD(14) has turned ON a bit, it will
remain ON until the next time DIFU(13) or DIFD(14) is executed again. In
normal programming, this means the next scan. In a jump, it means the next
time the jump from JMP(04) to JME(05) is not made, i.e., if a bit is turned ON
by DIFU(13) or DIFD(14) and then a jump is made that skips the DIFU(13) or
DIFD(14), the designated bit will remain ON until the next time the execution
condition for the JMP(04) controlling the jump is ON.

When JMP(04) and JME(05) are not used in pairs, an error message will ap-
pear when the program check is performed. Although this message also ap-
pears if JMP(04) 00 and JME(05) 00 are not used in pairs, the program will
execute properly as written.

The High-speed Counter (HDM(98) should not be used within a
JMP(04)–JME(05) portion of the program.

There are no flags affected by these instructions.

Examples of jump programs are provided in 4–3–5 Jumps.

Limitations

Description

DIFU(13) and DIFD(14) in
Jumps

Precautions

Flags

Examples

Jump and Jump End Section 5–8

56

5–9 End – END(01)

Ladder Symbol END(01)

END(01) is required as the last instruction in any program. No instruction
written after END(01) will be executed. END(01) can be placed anywhere in
the program to execute all instructions up to that point, as is sometimes done
to debug a program, but it must be removed to execute the remainder of the
program.

If there is no END(01) in the program, no instructions will be executed and
the error message “NO END INST” will appear.

END(01) turns OFF ER, CY, GR, EQ, and LE.

5–10 No Operation – NOP(00)

NOP(00) is not generally required in programming and there is no ladder
symbol for it. When NOP(00) is found in a program, nothing is executed and
the next instruction is moved to. When memory is cleared prior to program-
ming, NOP(00) is written at all addresses. NOP(00) can be input through the
00 function code.

There are no flags affected by NOP(00).

5–11 Timer and Counter Instructions
TIM and TIMH are decrementing ON-delay timer instructions which require a
TC number and a set value (SV).

CNT is a decrementing counter instruction and CNTR is a reversible counter
instruction. Both require a TC number and a SV. Both are also connected to
multiple instruction lines which serve as an input signal(s) and a reset.

Any one TC number cannot be defined twice, i.e., once it has been used as
the definer in any of the timer or counter instructions it cannot be used again.
Once defined, TC numbers can be used as many times as required as oper-
ands in instructions other than timer and counter instructions.

TC numbers run from 00 through 47. No prefix is required when using a TC
number as a definer in a timer or counter instruction. Once defined as a tim-
er, a TC number can be prefixed with TIM for use as an operand in certain
instructions. The TIM prefix is used regardless of the timer instruction that
was used to define the timer. Once defined as a counter, a TC number can
be prefixed with CNT for use as an operand in certain instructions. The CNT
is also used regardless of the counter instruction that was used to define the
counter.

TC numbers can be designated for operands that require bit data or for oper-
ands that require word data. When designated as an operand that requires
bit data, the TC number accesses a bit that functions as a “Completion Flag”
that indicates when the time/count has expired, i.e., the bit, which is normally
OFF, will turn ON when the designated SV has expired. When designated as
an operand that requires word data, the TC number accesses a memory lo-
cation that holds the present value (PV) of the timer or counter. The PV of a
timer or counter can thus be used as an operand in CMP(20) or any other
instruction for which the TC area is allowed by designating the TC number

Description

Flags

Description

Flags

Timer and Counter Instructions Section 5–11

57

used to define that timer or counter to access the memory location that holds
the PV.

Note that “TIM 00” is used to designate the Timer instruction defined with TC
number 00, to designate the Completion Flag for this timer, and to designate
the PV of this timer. The meaning of the term in context should be clear, i.e.,
the first is always an instruction, the second is always a bit operand, and the
third is always a word operand. The same is true of all other TC numbers
prefixed with TIM or CNT. In explanations of ladder diagrams, the Completion
Flag and PV accessed through a TC number are generally called the Com-
pletion Flag or the PV of the instruction (e.g., the Completion Flag of TIM 00
is the Completion Flag of TC number 00, which has been defined using TIM).

An SV can be input as a constant or as a word address in a data area. If an
IR area word assigned to an Input Unit is designated as the word address,
the Input Unit can be wired so that the SV can be set externally through
thumbwheel switches or similar devices. Timers and counter wired in this
way can be set externally only during RUN or MONITOR mode. All SVs, in-
cluding those set externally, must be in BCD.

5–11–1 Timer – TIM

N: TC number

(00 through 47)

Ladder Symbol

Definer Values

TIM N SV

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

SV may be between 000.0 and 999.9 seconds. The decimal point of SV is
not input.

Each TC number can be used as the definer in only one timer or counter in-
struction.

TC 00 through TC 47 should not be used in TIM if they are required for
TIMH(15). Refer to 5–11–2 High–Speed Timer – TIMH(15) for details.

A timer is activated when its execution condition goes ON and is reset (to
SV) when the execution condition goes OFF. Once activated, TIM measures
in units of 0.1 second from the SV. TIM accuracy is +0.0/–0.1 second.

If the execution condition remains ON long enough for TIM to time down to
zero, the Completion Flag for the TC number used will turn ON and will re-
main ON until TIM is reset (i.e., until its execution condition goes OFF).

The following figure illustrates the relationship between the execution condi-
tion for TIM and the Completion Flag assigned to it.

Limitations

Description

Timer and Counter Instructions Section 5–11

58

Execution condition

Completion Flag

ON

OFF

ON

OFF

SV SV

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be
counted to produce timers using CNT. Refer to 5–11–4 Counter – CNT for
details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

ER: SV is not in BCD.

All of the following examples use OUT in diagrams that would generally be
used to control output bits in the IR area. There is no reason, however, why
these diagrams cannot be modified to control execution of other instructions.

The following example shows two timers, one set with a constant and one set
via input word 01. Here, 0200 will be turned ON 15 seconds after 0000 goes
ON and stays ON for at least 15 seconds. When 0000 goes OFF, the timer
will be reset and 0200 will be turned OFF. When 0001 goes ON, TIM 01 is
started from the SV provided through IR word 01. Bit 0201 is also turned ON
when 0001 goes ON. When the SV in 01 has expired, 0201 is turned OFF.
This bit will also be turned OFF when TIM 01 is reset, regardless of whether
or not SV has expired.

0000

TIM 00

0001

TIM 01

TIM
00

0200

0201

TIM
01

015.0 s

01

Timers operating longer than 999.9 seconds can be formed in two ways. One
is by programming consecutive timers, with the Completion Flag of each tim-
er used to activate the next timer. A simple example with two 900.0-second
(15-minute) timers combined to functionally form a 30-minute timer.

0000

TIM 01

TIM 02

TIM
01

TIM
02

0200

900.0 s

900.0 s

Precautions

Flags

Examples

Example 1:
Basic Application

Example 2:
Extended Timers

Timer and Counter Instructions Section 5–11

59

In this example, 0200 will be turned ON 30 minutes after 0000 goes ON.

TIM can also be combined with CNT or CNT can be used to count SR area
clock pulse bits to produce longer timers. An example is provided in 5–11–4
Counter – CNT.

TIM can be combined with KEEP(11) to delay turning a bit ON and OFF in
reference to a desired execution condition. KEEP(11) is described in 5–6–3
Keep – KEEP(11).

To create delays, the Completion Flags for two timers are used to determine
the execution conditions for setting and resetting the bit designated for
KEEP(11). The bit whose manipulation is to be delayed is used in KEEP(11).
Turning ON and OFF the bit designated for KEEP(11) is thus delayed by the
SV for the two timers. The two SV could naturally be the same if desired.

In the following example, 0500 would be turned ON 5.0 seconds after 0000
goes ON and then turned OFF 3.0 seconds after 0000 goes OFF. It is neces-
sary to use both 0500 and 0000 to determine the execution condition for TIM
02; 0000 in an inverse condition is necessary to reset TIM 02 when 0000
goes ON and 0500 is necessary to activate TIM 02 when 0000 goes OFF,
setting 0500 by resetting TIM 01.

0000

0500 0000

TIM 01

TIM 02

TIM 01

TIM 02

KEEP
0500

S

R

5.0 s

3.0 s

The length of time that a bit is kept ON or OFF can be controlled by combin-
ing TIM with OUT or OUT NOT. The following diagram demonstrates how
this is possible. In this example, 0204 would remain ON for 1.5 seconds after
0000 goes ON regardless of the time 0000 stays ON. This is achieved by
using 1000, activated by 0000, to turn ON 0204 . When TIM 01 comes ON
(i.e., when the SV of TIM 01 has expired), 0204 will be turned OFF through
TIM 01 (i.e., TIM 01 will turn ON for an inverse condition, creating an OFF
execution condition for OUT 0204). TIM 01 will also turn OFF 1000 the next
scan, resetting the one-shot.

Example 3:
ON/OFF Delays

Example 4:
One-shot Bits

Timer and Counter Instructions Section 5–11

60

1000 TIM 01 0000

1000

1000 TIM 01

1000

TIM 0100

0204

1.5 s

0000

0204

1.5 s 1.5 s

Bits can be programmed to turn ON and OFF at a regular interval while a
designated execution condition is ON by using TIM twice. One TIM functions
to turn ON and OFF a specified bit, i.e., the Completion Flag of this TIM turns
the specified bit ON and OFF. The other TIM functions to control the opera-
tion of the first TIM, i.e., when the first TIM’s Completion Flag goes ON, the
second TIM is started and when the second TIM’s Completion Flag goes ON,
the first TIM is started.

0000 TIM 02

TIM 01

TIM 01

TIM 01

TIM 02

0205

0000

0205

1.5 s

1.0 s

1.5 s

1.0 s 1.5 s1.0 s

An easier but more limited method of creating a flicker bit is to AND one of
the SR area clock pulse bits with the execution condition that is to be ON
when the flicker bit is operating. Although this method does not use TIM, it is
included here for comparison. This method is more limited because the ON
and OFF times must be the same and they depend on the clock pulse bits
available in the SR area.

Example 5:
Flicker Bits

Timer and Counter Instructions Section 5–11

61

5–11–2 High-speed Timer – TIMH(15)

N: TC number

(00 though 47)

Ladder Symbol

Definer Values

TIMH(15)
 N SV

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

SV may be between 00.00 and 99.99 seconds. The decimal point of SV is
not input.

Each TC number can be used as the definer in only one timer or counter in-
struction.

A scan time of greater than 10 ms may affect the accuracy of the timer.

TIMH(15) operates the same as TIM except that TIMH measures in units of
0.01 second and accuracy is +0.00/–0.01 second.

Refer to 5–11–1 Timer – TIM for operational details and examples. All as-
pects except for the above considerations are the same.

Timers in interlocked program sections are reset when the execution condi-
tion for IL(02) is OFF. Power interruptions also reset timers. If a timer that is
not reset under these conditions is desired, SR area clock pulse bits can be

details.

Program execution will continue even if a non-BCD SV is used, but timing will
not be accurate.

ER: SV is not in BCD.

5–11–3 Analog Timer Unit
The Analog Timer Unit uses two I/O words to provide four timers (T0 to T3).
Each of the four timers may be set to a specific timer value (SV) within one of
four ranges. The SV for each timer may be set using either a variable resistor
on the Analog Timer Unit or from an external variable resistor.

Each timer is allocated five bits within the IR words allocated to the Analog
Timer Units. The function of these is shown below. The words shown in the
table are as seen from the CPU, i.e., the input word goes from the Analog
Timer Unit to the CPU, the output word, from the CPU to the Analog Timer
Unit. The CPU receives the Time Expired Flag from the Unit and sends the
Start Control Bit, Pause Control Bit and Range Bits to the Unit.

Limitations

Description

Precautions

Flags

Timer and Counter Instructions Section 5–11

counted to produce timers using CNT. Refer to 5–11–4 Counter – CNT for

62

Bit Input word Output word

00 T0 Time Expired Flag T0 Start Control Bit

01 T1 Time Expired Flag T1 Start Control Bit

02 T2 Time Expired Flag T2 Start Control Bit

03 T3 Time Expired Flag T3 Start Control Bit

04 T0 Pause Control Bit

05 T1 Pause Control Bit

06 T2 Pause Control Bit

07 T3 Pause Control Bit

08 T0 Range Bits

09 Cannot be used.

10 T1 Range Bits

11

12 T2 Range Bits

13

14 T3 Range Bits

15

There is a SET indicator and a time expired indicator on the Analog Timer
Unit for each timer. These indicators are lit when the corresponding timer’s
Start Control Bit or Time Expired Flag is ON.

When the Start Control Bit is turned ON, the timer begins operation and the
SET indicator is lit.

When the time set with the internal or external adjustment has expired, the
corresponding Time Expired Flag is set. The time up indicator also lights.

If the Pause Control Bit for a timer is turned ON from the PC, the timer will
cease timing and the present value (PV) will be retained. Timing will resume
when the Pause Control Bit is turned OFF. If the Start Control Bit is turned
OFF before the set value (SV) of the timer has expired, the Time Expired
Flag will not be turned ON.

Timer ranges are set in the output words as shown in the following table.

Timer Output
word bit

0.1 to 1s 1 to 10s 10 to 60s 1 to 10m

T0 08 OFF ON OFF ON

09 OFF OFF ON ON

T1 10 OFF ON OFF ON

11 OFF OFF ON ON

T2 12 OFF ON OFF ON

13 OFF OFF ON ON

T3 14 OFF ON OFF ON

15 OFF ON OFF ON

Example

This example uses an Analog Timer Unit connected to a C28K CPU. Word
allocations are shown in the following table.

Setup

Timer and Counter Instructions Section 5–11

63

Unit Input word Output word

CPU 00 01

Analog Timer Unit 02 03

All four time’s are used. Times for two of them are adjusted on the variable
resistors provided on the Analog Timer Unit. The other two times are ad-
justed using external resistors. These adjustments are made as follows. Re-
fer to the Analog Timer Unit Installation Guide for hardware details.

Timer SV Range Resistor adjustment

T0 Approx. 0.6 s 0.1 to 1 s 6/10th turn clockwise

T1 Approx. 3 s 1 to 10 s 3/10th turn clockwise

T2 Approx. 2.6 s 10 to 60 s 2/10th turn clockwise

T3 Approx. 8 min 1 to 10 min 8/10th turn clockwise

The following program sections are used to set up the required data and pro-
duce outputs from the four timers. The first section moves E400 into IR 06 to
set the desired ranges (see table above). The second program section
achieves the following operation.

1. IR 0500 is turned ON approximately 0.6 seconds after IR 0002 turns ON
as the result of the action of T0.

2. IR 0501 is turned ON approximately 3 seconds after IR 0003 turns ON
as the result of the action of T1.

3. IR 0502 is turned ON approximately 20 seconds after IR 0004 turns ON
as the result of the action of T2.

4. IR 0503 is turned ON approximately 8 minutes after IR 0004 turns ON
as the result of the action of T3.

5. T2 and T3 are made inoperative if IR 0015 is turned ON.

MOV(21)

#E400

06

1815
First Scan Flag

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0

Content of IR O6 after MOV(21)

Range settings

Programming

1, 2, 3...

Timer and Counter Instructions Section 5–11

64

0606

0015

0607

0600

0002

0500

0100

0601

0003

0501

0101

0502

0102

0503

0103

0602

0004

0603

Used to inhibit operation of T2 and T3.

T0 started.

0500 turned ON when time for T0 expires.

T1 started.

0501 turned ON when time for T1 expires.

T2 and T3 started.

0502 turned ON when time for T2 expires.

0502 turned ON when time for T3 expires.

T0 Time Expired
Flag

T0 Start Control Bit

T1 Time Expired
Flag

T2 Time Expired
Flag

T3 Time Expired
Flag

T1 Start Control Bit

T2 Start Control Bit

T3 Start Control Bit

5–11–4 Counter – CNT

N: TC number

(00 through 47)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

CP

R

CNT N

SV

Each TC number can be used as the definer in only one timer or counter in-
struction.

CNT is used to count down from SV when the execution condition on the
count pulse, CP, goes from OFF to ON, i.e., the present value (PV) will be
decremented by one whenever CNT is executed with an ON execution condi-

Limitations

Description

Timer and Counter Instructions Section 5–11

65

tion for CP and the execution condition was OFF for the last execution. If the
execution condition has not changed or has changed from ON to OFF, the
PV of CNT will not be changed. Counter is turned ON when the PV reaches
zero and will remain ON until the counter is reset.

CNT is reset with a reset input, R. When R goes from OFF to ON, the PV is
reset to SV. The PV will not be decremented while R is ON. Counting down
from SV will begin again when R goes OFF. The PV for CNT will not be reset
in interlocked program sections or for power interruptions.

Changes in execution conditions, the Completion Flag, and the PV are illus-
trated below. PV line height is meant to indicate changes in the PV only.

Execution condition
on count pulse (CP)

Execution condition
on reset (R)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV – 1

SV – 2

0002

0001

0000

SV

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

ER: SV is not in BCD.

In the following example, the PV will be decremented whenever both 0000
and 0001 are ON provided that 0002 is OFF and either 0000 or 0001 was
OFF the last time CNT 04 was executed. When 150 pulses have been
counted down (i.e., when PV reaches zero), 0205 will be turned ON.

0000
CP

R

CNT 04

#0150
0002

0001

0205

CNT 04

Here, 0000 can be used to control when CNT is operative and 0001 can be
used as the bit whose OFF to ON changes are being counted.

The above CNT can be modified to restart from SV each time power is
turned ON to the PC. This is done by using the First Scan Flag in the SR
area (1815) to reset CNT as shown below.

0000
CP

R

CNT 04

#0150
0002

0001

0205

CNT 04

1815

Precautions

Flags

Example 1:
Basic Application

Timer and Counter Instructions Section 5–11

66

Counters that can count past 9,999 can be programmed by using one CNT to
count the number of times another CNT has reached zero from SV.

In the following example, 0000 is used to control when CNT 01 operates and
CNT 01, when 0000 is ON, counts down the number of OFF to ON changes
in 0001. CNT 01 is reset by its Completion Flag, i.e., it starts counting again
as soon as its PV reaches zero. CNT 02 counts the number of times the
Completion Flag for CNT 01 goes ON. Bit 0002 serves as a reset for the en-
tire extended counter, resetting both CNT 01 and CNT 02 when it is OFF.
The Completion Flag for CNT 02 is also used to reset CNT 01 to inhibit CNT
01 operation once PV for CNT 02 has been reached until the entire extended
counter is reset via 0002.

Because in this example the SV for CNT 01 is 100 and the SV for CNT 02 is
200, the Completion Flag for CNT 02 turns ON when 100 x 200 or 20,000
OFF to ON changes have been counted in 0001. This would result in 0203
being turned ON.

0203

CP

R

CNT 01

#0100

CP

R

CNT 02

#0200

CNT 01

0002

CNT 02

0000 0001

0002

CNT 01

CNT 02

CNT can be used in sequence as many times as required to produce count-
ers capable of counting down even higher values.

CNT can be used to create extended timers in two ways: by combining TIM
with CNT and by counting SR area clock pulse bits.

In the following example, CNT 02 counts the number of times TIM 01
reaches zero from its SV. The Completion Flag for TIM 01 is used to reset
TIM 01 so that is runs continuously and CNT 02 counts the number of times
the Completion Flag for TIM 01 goes ON (CNT 02 would be executed once
each time between when the Completion Flag for TIM 01 goes ON and TIM
01 is reset by its Completion Flag). TIM 01 is also reset by the Completion
Flag for CNT 02 so that the extended timer would not start again until CNT
02 was reset by 0001, which serves as the reset for the entire extended tim-
er.

As the SV for TIM 01 is 5.0 seconds and the SV for CNT 02 is 100, the Com-
pletion Flag for CNT 02 turns ON when 5 seconds x 100 times, or 8 minutes
and 20 seconds have expired. This would result in 0201 being turned ON.

Example 2:
Extended Counter

Example 3:
Extended Timers

Timer and Counter Instructions Section 5–11

67

0000 TIM 01 CNT 02

TIM 01

0001

CNT 00

0200

CP

R

TIM
0100 5.0 s

CNT 02

#0100

In the following example, CNT 01 counts the number of times the 1-second
clock pulse bit (1902) goes from OFF to ON. Here again, 0000 is used to
control when CNT is operating.

As the SV for CNT 01 is 700, the Completion Flag for CNT 02 turns ON when
1 second x 700 times, or 10 minutes and 40 seconds have expired. This
would result in 0202 being turned ON.

CP

R

CNT 01

#0700

0000 1902

0001

CNT 01
0202

The shorter clock pulses may not produce accurate timers because their
short ON times may not be read accurately for longer scan times. In particu-
lar the 0.02-second and 0.1-second clock pulses should not be used to cre-
ate timers with CNT.

5–11–5 Reversible Counter – CNTR(12)

N: TC number

(00 through 47)

Ladder Symbol

Definer Values

SV: Set value (word, BCD)

IR, HR, #

Operand Data Areas

II

DI
CNTR(12)

N

SVR

Each TC number can be used as the definer in only one timer or counter in-
struction.

The CNTR(12) is a reversible, up-down circular counter, i.e., it is used to
count between zero and SV according to changes in two execution condi-
tions, those in the increment input (II) and those in the decrement input (DI).

The present value (PV) will be incremented by one whenever CNTR(12) is
executed with an ON execution condition for II and the execution condition

Note

Limitations

Description

Timer and Counter Instructions Section 5–11

68

was OFF for II for the last execution. The present value (PV) will be decre-
mented by one whenever CNTR(12) is executed with an ON execution condi-
tion for DI and the execution condition was OFF for DI for the last execution.
If OFF to ON changes have occurred in both II and DI since the last execu-
tion, the PV will not be changed.

If the execution conditions have not changed or has changed from ON to
OFF for both II and DI, the PV of CNT will not be changed.

When decremented from 0000, the present value is set to SV and the Com-
pletion Flag is turned ON until the PV is decremented again. When incre-
mented past the SV, the PV is set to 0000 and the Completion Flag is turned
ON until the PV is incremented again.

CNTR(12) is reset with a reset input, R. When R goes from OFF to ON, the
PV is reset to zero. The PV will not be incremented or decremented while R
is ON. Counting will begin again when R goes OFF. The PV for CNTR(12)
will not be reset in interlocked program sections or for power interruptions.

Changes in II and DI execution conditions, the Completion Flag, and the PV
are illustrated below starting from part way through CNTR(12) operation (i.e.,
when reset, counting begins from zero). PV line height is meant to indicate
changes in the PV only.

Execution condition
on increment (II)

Execution condition
on decrement (DI)

ON

OFF

ON

OFF

Completion Flag
ON

OFF

PV
SV

SV – 1

SV – 2
0001

0000 0000

SV

SV – 1

SV – 2

Program execution will continue even if a non-BCD SV is used, but the SV
will not be correct.

ER: SV is not in BCD.

5–11–6 High-speed Counter – HDM(98)

N: TC number

Must be 47

Ladder Symbol

Definer Values

R: Result word

IR, HR, DM

Operand Data Areas

HDM(98) N

R

If any of the lower limits for the DM ranges are set to “0000”, the correspond-
ing output bits are turned ON when the high-speed counter is reset.

Precautions

Flags

Limitations

Timer and Counter Instructions Section 5–11

69

If the time it takes to count through some range is less than the scan time of
the CPU, the high-speed counter may count past between scans and thus
the output bit for this range may not be turned ON.

Counting Time

Lower Limit Upper Limit

The count signal must be at least 250 µs (2 kHz) wide and have a duty factor
of 1:1, as shown below.

250 µs 250 µs

Input
0000

In the hard reset mode, the reset signal must have an ON time of at least 250
µs.

250 µs max.

Input
0001

Description

The high-speed counter counts the signals input from an external device con-
nected to input 0000 and, when the high-speed counter instruction is ex-
ecuted, compares the current value with a set of ranges which have been
preset in DM words 32 through 63. If the current value is within any of the
preset ranges, the corresponding bit of a specified result word is turned ON.
The bit in the result word remains ON until the current value is no longer
within the specified range.

An internal buffer is incremented whenever bit 0000 goes from OFF to ON.
When the high-speed counter instruction is executed, the value in the count-
er buffer is transferred to counter 47 which serves as the count value storage
area.

When using the high-speed counter, the following bits are reserved and can-
not be used for any other purpose:

• Input 0000 (count input)

• Input 0001 (hard reset)

• IR bit 1807 (soft reset)

• TC 47 (present count value)

• DM 32 to 63 (upper and lower limits)

If a power failure occurs, the count value of the high speed counter immedi-
ately before the power failure is retained.

The high-speed counter is programmed differently depending on how it is to
be reset. Two resetting modes are possible: hard-reset and soft-reset. The
hard reset is made effective or ineffective with the DIP switch in the CPU.

General

Note

Timer and Counter Instructions Section 5–11

70

To use the hard reset, turn pins 7 and 8 ON. In this mode, input 0001 is the
reset input. When it is turned ON, the present value in the high-speed count-
er buffer is reset to “0000”. When the reset is ON, the count signal from input
0000 is not accepted. When programmed with the hard reset, the high-speed
counter would appear as below.

0002
HDM(98)

10

IR 1807 is the soft reset. When it is turned ON, the present value in the
high-speed counter buffer is reset to “0000”. As for the hard reset, when the
soft reset is ON, the count signal from input 0000 is not accepted. When pro-
grammed with the soft reset, the high-speed counter would appear as below.
Note that when the soft reset is used, the timing at which the counter buffer is
reset may be delayed due to the scan time of the CPU.

0003

0002

1807

HDM(98)

10

If required, both the hard reset and the soft reset can be used together.

Hard Reset

Soft Reset

Timer and Counter Instructions Section 5–11

71

The following table shows the upper and lower limits that need to be set in
DM 32 through DM 63. In this table, “S” denotes the present value of counter
47 and R is the results word.

DM 32 DM 33 Value of DM 32 ≤ S ≤ value of DM 33 00

DM 34 DM 35 Value of DM 34 ≤ S ≤ value of DM 35 01

DM 36 DM 37 Value of DM 36 ≤ S ≤ value of DM 37 02

DM 38 DM 39 Value of DM 38 ≤ S ≤ value of DM 39 03

DM 40 DM 41 Value of DM 40 ≤ S ≤ value of DM 41 04

DM 42 DM 43 Value of DM 42 ≤ S ≤ value of DM 43 05

DM 44 DM 45 Value of DM 44 ≤ S ≤ value of DM 45 06

DM 46 DM 47 Value of DM 46 ≤ S ≤ value of DM 47 07

DM 48 DM 49 Value of DM 48 ≤ S ≤ value of DM 49 08

DM 50 DM 51 Value of DM 50 ≤ S ≤ value of DM 51 09

DM 52 DM 53 Value of DM 52 ≤ S ≤ value of DM 53 10

DM 54 DM 55 Value of DM 54 ≤ S ≤ value of DM 55 11

DM 56 DM 57 Value of DM 56 ≤ S ≤ value of DM 57 12

DM 58 DM 59 Value of DM 58 ≤ S ≤ value of DM 59 13

DM 60 DM 61 Value of DM 60 ≤ S ≤ value of DM 61 14

DM 62 DM 63 Value of DM 62 ≤ S ≤ value of DM 63 15

Lower
limit

Upper
limit

Present value of the counter Bit of R
that turns
ON

The values must be four-digit BCD in the range 0000 to 9999. Note that fail-
ure to enter BCD values will not activate the ERR Flag. Always set a lower
limit which is less than the corresponding upper limit. MOV is useful in setting
limits. The following ladder diagram shows the use of MOV for setting limits
and the associated timing diagram shows the state of the relevant bits of the
result word (IR 05) as the counter is incremented.

Upper and Lower Limit
Setting

Timer and Counter Instructions Section 5–11

72

1813 (normally ON)

0002 (start input)

MOV(21)

#0200

DM 32

MOV(21)

#1500

DM 33

MOV(21)

#0600

DM 34

MOV(21)

#2000

DM 35

HDM(98)

05

Transfers
preset
value to
DM 32 to
35

Corresponding
result word is 05

Start input 0002

Output 0500

Output 0501

Count input 0000

200

600

1500

2000

The maximum response speed of the high-speed counter hardware is 2 kHz.
Note however that the start signal, reset signal (in the case of soft reset), and
corresponding outputs are all processed by software. Because of this, re-
sponse may be delayed by the scan time.

When programming the high-speed counter with the GPC, “00” is displayed
on each of the three lines below the instruction code (HDM(60)). Do not alter
the second and third lines; if they are not “00”, an error occurs when an at-
tempt is made to transfer the program from the GPC to the PC.

Do not program the high-speed counter between JMP and JME. The
high-speed counter can be programmed between IL and ILC. However, the
hard reset signal remains active, causing the corresponding output(s) to turn
ON or OFF, even when the IL condition is OFF.

Examples

The high-speed counter normally provides 16 output bits. If more than 16 are
required, the high-speed counter may be programmed more than once. In
the following program example, the high-speed counter is used twice to pro-
vide 32 output bits.

Response Speed

Precautions

Extending the Counter

Timer and Counter Instructions Section 5–11

73

1813 (normally ON)

0002

MOV(21)

“S1”

DM 32

MOV(21)

“S2”

DM 33

MOV(21)

“S32”

DM 35

HDM(98)

HR 0

Transfers limit values
S1 to S32 to DM.
Output thru HR 0

A

1813 (normally ON)

0002

MOV(21)

Transfers limit values
S33 to S64 to DM.
Output thru HR 1

B

“S33”

DM 32

MOV(21)

“S34”

DM 33

MOV(21)

“S64”

DM 35

HDM(98)

HR 1

In this program, each bit in the specified words, HR 0 and HR 1 are turned
ON under the following conditions (where S is the present count value of the
high-speed counter stored as the data of CNT 47):
Where S1 ≤ S ≤ S2, HR 000 is ON.
Where S3 ≤ S ≤ S4, HR 001 is ON.
Where S31 ≤ S ≤ S32, HR 015 is ON.
Where S33 ≤ S ≤ S34, HR 100 is ON.
Where S63 ≤ S ≤ S64, HR 115 is ON.

Note that in the program just mentioned, the present value in the counter
buffer is transferred to counter number 47 at points A and B. In this case, if
S31 (=1,000) < S < S32 (=2,000) and S33 (=2,000) < S < S34 (=3,000), and
if the present count value of the first high-speed counter (at point A) is 1,999
and that of the second counter (at point B) is 2,003, HR 015 and HR100 may
be simultaneously turned ON. If it is necessary to avoid this, set the values of

Timer and Counter Instructions Section 5–11

74

S32 and S33 so that there is a value difference equivalent to the time lag
from points A to B. For example, set the value of S32 to 2,000 and that of
S33 to 2,010.

More than 16 output bits may be obtained using CMP.

1813 (normally ON)

1905 (GR)
0600

CMP(20)

CNT 47

#6850

In the above program, output 0600 is turned ON when the following condition
is satisfied, where S is the present count value of the high-speed counter:
6,850 < S ≤ 9,999.

1813 (normally ON)

1905 (GR)
1000

CMP(20)

CNT 47

#0300

1813 (normally ON)

1907 (LE)
1001

CMP(20)

CNT 47

#2300

1000 1001
0601

In the above program, output 0601 is turned ON when the following condition
is satisfied, where S is the present count value of the high-speed counter:
300 < S < 2,300.

The number of digits of the upper and lower limits of the high-speed counter
can be increased from four to eight by using the high-speed counter together
with CNTR and CMP.

The high-speed counter is a ring counter and thus when its present count
value is incremented from 9999 to 0000, the Completion Flag of CNT 47 is
turned ON for one scan. By using this flag as an input to the UP input of the
reversible counter (i.e., cascade connection) you can increase the number of
digits to eight. Although an ordinary counter can be cascade-connected to

Cascade Connection
(Counting Past 9,999)

Timer and Counter Instructions Section 5–11

75

the high-speed counter, programming is easier with CNTR since an ordinary
counter is decrementing.

II

DI

R

1813 (normally ON)

0002 (start input)

MOV(21)

#0000

DM 32

MOV(21)

#5000

DM 33

HDM(98)

HR 0

1813 (normally ON)

1906 (EQ)
0500

CMP(20)

CNT 46

#0002

CNT 47

1814 (normally OFF)

1810 (turns On for 1 scan upon hard reset)

CNTR(12)
46

#9999

HR 000

In the above program example, output 0500 is turned ON when the following
condition is satisfied (where S is the present count value of the high-speed
counter):
20,000 ≤ S ≤ 25,000.

In hard reset mode, program SR 1810, which turns ON for one scan time
upon input of the hard reset signal, to CNTR as the reset input. Unless CNTR
and CMP are programmed immediately after the high-speed counter, the cor-
rect corresponding outputs may not be produced.

The high-speed counter is very useful in the following application. Here,
packages are being carried on a conveyor belt at random intervals. Some of
them are spaced far apart and others are clustered together, making it im-
possible to accurately detect and count them with photoelectric switches
alone.

By presetting the number of pulses generated when a single package is de-
tected and by counting those pulses, the number of packages can be accu-
rately counted, regardless of whether the packages are spaced or clustered.

The following diagram shows the packaging system and the corresponding
timing chart.

Note

Packaging Machine

Timer and Counter Instructions Section 5–11

76

Pusher

Packages

Rotary encoder E6A
(0000)

Reflective photoelectric
switch PH1 (0002)

Motor 2 (M2)
Rear limit switch for
pusher LS1 (0003)

Fixed stopper

Front limit switch for
pusher LS2 (0004)

Upper limit switch for stopper LS3 (0005)

Moving stopper

Lower limit switch for stopper LS4 (0006)Motor 1 (M1)

PH1
(0002)

E6A
(0000)

M1 rise
(0100)

LS4
(0006)

LS3
(0005)
M2
forward
(0102)
LS2
(0004)

LS1
(0003)
M2
backward
(0103)

M1 fall
(0101)

In this example, “x” is the number of pulses per package. To detect four pack-
ages therefore, 4x must be set as the preset value of the high-speed counter.

Here is the program example for the application.

Timer and Counter Instructions Section 5–11

77

MOV(21)

#0905

DM 32

MOV(21)

#1150

DM 33

MOV(21)

#1450

DM 34

MOV(21)

#1550

DM 35

1815
1807

HDM(60)

HR 0

HR 000 0011 0006 0005
0100

0005 0003 0100 0004
0102

0004 0102 0003
0103

1000 0005 0006
0101

DIFU(13) 1000

0005

0002

1813 (normally ON)

HR 001

0102

0103

0003

0101

0011

0100

Transfer limit values

Resets counter
upon power
application or at
stopper
operation

Counts pulses
from encoder
only when PH1
is ON

Normally counts 4
packages. When
input 0011 is ON,
counts 6 packages.
Pushes stopper up
at count-up to stop
following packages

Pushes
packages
out

Returns pusher
to original
position after
operation

Pushes stopper
down and
continues
operating when
pusher returns
to original
position

5–12 Data Shifting
This section describes the instructions that are used to create and manipu-
late shift registers. SFT(10) creates a single- or multiple-word register that
shift in a second execution condition when executed with an ON execution

Data Shifting Section 5–12

78

condition. SFTR(84) creates a reversible shift register that is controlled
through the bits in a control word. WSFT(16) creates a multiple-word register
that shifts by word.

5–12–1 Shift Register – SFT(10)

St : Starting word

IR, HR

E : End word

IR, HR

Operand Data AreasLadder Symbol

I

P

SFT(10)

St

E
R

E must be less than or equal to St, and St and E must be in the same data
area.

If a bit address in one of the words used in a shift register is also used in an
instruction that controls individual bit status (e.g., OUT, KEEP(11)), an error
(“COIL DUPL”) will be generated when program syntax is checked on the
Programming Console or another Programming Device. The program, how-
ever, will be executed as written. See Example 2: Controlling Bits in Shift
Registers for a programming example that does this.

SFT(10) shifts an execution condition into a shift register. SFT(10) is con-
trolled by three execution conditions, I, P, and R. If SFT(10) is executed and
1) execution condition P is ON and was OFF the last execution and 2) R is
OFF, then execution condition I is shifted into the rightmost bit of a shift regis-
ter defined between St and E, i.e., if I is ON, a 1 is shifted into the register; if I
is OFF, a 0 is shifted in. When I is shifted into the register, all bits previously
in the register are shifted to the left and the leftmost bit of the register is lost.

Execution
condition I

Lost
data

E St + 1, St + 2, ... St

The execution condition on P functions like a differentiated instruction, i.e., I
will be shifted into the register only when P is ON and was OFF the last time
SFT(10) was executed. If execution condition P has not changed or has gone
from ON to OFF, the shift register will remain unaffected.

St designates the rightmost word of the shift register; E designates the left-
most. The shift register includes both of these words and all words between
them. The same word may be designated for St and E to create a 16-bit (i.e.,
1-word) shift register.

When execution condition R goes ON, all bits in the shift register will be
turned OFF (i.e., set to 0) and the shift register will not operate until R goes
OFF again.

There are no flags affected by SFT(10).

Limitations

Description

Flags

Data Shifting Section 5–12

79

The following example uses the 1-second clock pulse bit (1902) to so that the
execution condition produced by 0005 is shifted into a 3-word register be-
tween 10 and 12 every second.

I

P

SFT(10)

10

12
R

0005

1902

0006

The following program is used to control the status of the 17th bit of a shift
register running from IR 00 through IR 01 (i.e. bit 00 of IR 01). When the 17th
bit is to be set, 0204 is turned ON. This causes the jump for JMP(04) 00 not
to be made for that one scan and IR 0100 (the 17th bit) will be turned ON.
When 1280 is OFF (all times but the first scan after 0204 has changed from
OFF to ON), the jump is taken and the status of 0100 will not be changed.

I

P

R

SFT(10)

00

01

JME(05) 00

JMP(04) 00

0200

0100

DIFU(13) 1280

0201

0202

0203

0204

1280

1280

When a bit that is part of a shift register is used in OUT (or any other instruc-
tion that controls bit status), a syntax error will be generated during the pro-
gram check, but the program will execute properly (i.e., as written).

The following program controls the conveyor line shown below so that faulty
products detected at the sensor are pushed down a chute. To do this, the
execution condition determined by inputs from the first sensor (0001) are
stored in a shift register: ON for good products; OFF for faulty ones. Con-
veyor speed has been adjusted so that HR 003 of the shift register can be
used to activate a pusher (0500) when a faulty product reaches it, i.e., when
HR 003 turns ON, 0500 is turned ON to activate the pusher.

The program is set up so that a rotary encoder (0000) controls execution of
SFT(10) through a DIFU(13), the rotary encoder is set up to turn ON and
OFF each time a product passes the first sensor. Another sensor (0002) is
used to detect faulty products in the chute so that the pusher output and HR
003 of the shift register can be reset as required.

Example 1:
Basic Application

Example 2:
Controlling Bits in Shift
Registers

Example 3:
Control Action

Data Shifting Section 5–12

80

Sensor

Chute

(0002)

(0500)

Sensor
(0001)

Rotary Encoder
(0000)

Pusher

I

P

SFT(10)

HR 0

HR 1
R

0001

0000

0003

0500

HR 003

0002

HR 003

0500

5–12–2 Word Shift – WSFT(16)

St : Start word

IR, DM, HR

E : End word

IR, DM, HR

Ladder Symbols Operand Data Areas

WSFT(16)

St

E

St and E must be in the same data area and St must be less than E.

When the execution condition is OFF, WSFT(16) is not executed and the
next instruction is moved to. When the execution condition is ON, 0000 is
moved into St, the content of St is moved to St + 1, the content of St + 1 is
moved to St + 2, etc., and the content of E is lost.

Limitations

Description

Data Shifting Section 5–12

81

F 0 C 2 3 4 5 2 1 0 2 9

E St + 1 St

3 4 5 2 1 0 2 9 0 0 0 0

E St + 1 St

Lost

0000

ER: St and E are not in the same data area.

Indirectly addressed DM word is non-existent. (Content of *DM word
is not BCD, or the DM area boundary has been exceeded.)

5–13 Data Movement
This section describes the instructions used for moving data between differ-
ent addresses in data areas. These movements can be programmed within
the same data area or between different data areas. Data movement is es-
sential for utilizing all of the data areas of the PC. All of these instructions
change only the content of the words to which data is being moved, i.e., the
content of source words is the same before and after execution of any of the
move instructions.

5–13–1 Move – MOV(21)

S : Source word

IR, SR, DM, HR, TC, #

D : Destination word

IR, DM, HR

Ladder Symbol Operand Data Areas

MOV(21)

S

D

When the execution condition is OFF, MOV(21) is not executed and the next
instruction is moved to. When the execution condition is ON, MOV(21) trans-
fers the content of S (specified word or four-digit hexadecimal constant) to D.

Source word Destination word

Bit status
not changed.

TC numbers cannot be designated as D to change the PV of the timer or
counter.

EQ: ON when all zeros are transferred to D.

Flags

Description

Precautions

Flags

Data Movement Section 5–13

82

5–13–2 Move NOT – MVN(22)

S : Source word

IR, SR, DM, HR, TC, #

D : Destination word

IR, DM, HR

Ladder Symbol Operand Data Areas

MVN(22)

S

D

When the execution condition is OFF, MVN(22) is not executed and the next
instruction is moved to. When the execution condition is ON, MOV(21) trans-
fers the inverted content of S (specified word or four-digit hexadecimal con-
stant) to D, i.e., for each ON bit in S, the corresponding bit in D is turned
OFF, and for each OFF bit in S, the corresponding bit in D is turned ON.

Source word Destination word

Bit status
inverted.

TC numbers cannot be designated as D to change the PV of the timer or
counter.

EQ: ON when all zeros are transferred to D.

5–14 Data Compare – CMP(20)
This section describes the instruction used for comparing data. CMP(20) is
used to compare the contents of two words.

Cp1 : First compare word

IR, SR, DM, HR, TC, #

Cp2 : Second compare word

IR, SR, DM, HR, TC, #

Ladder Symbols Operand Data Areas

CMP(20)

Cp1

Cp2

When comparing a value to the PV of a timer or counter, the value must be
four-digit BCD.

When the execution condition is OFF, CMP(20) is not executed and the next
instruction is moved to. When the execution condition is ON, CMP(20) com-
pares Cp1 and Cp2 and outputs the result to GR, EQ, and LE in the SR area.

Description

Precautions

Flags

Limitations

Description

Data Comparison Section 5–14

83

Placing other instructions between CMP(20) and accessing EQ, LE, and GR
may change the status of these flags. Be sure to access them before the de-
sired status is changed.

EQ: ON if Cp1 equals Cp2.

LE: ON if Cp1 is less than Cp2.

GR: ON if Cp1 is greater than Cp2.

The following example shows how to save the comparison result immedi-
ately. If the content of HR 8 is greater than that of 9, 0200 is turned ON; if the
two contents are equal, 0201 is turned ON; if content of HR 8 is less than
that of HR 9, 0202 is turned ON. In some applications, only one of the three
OUTs would be necessary, making the use of TR 0 unnecessary. With this
type of programming, 0200, 0201, and 0202 are changed only then CMP(20)
is executed.

CMP(20)

HR 8

HR 9

0000

1905
0200

1907
0202

TR
0

1906

0201

Greater Than

Equal

Less Than

The following example uses TIM, CMP(20), and LE (SR 1907) to produce
outputs at particular times in the timer’s countdown. The timer is started by
turning ON 0000. When 0000 is OFF, the TIM (10) is reset and the second
two CMP(20)s are not executed (i.e., executed with OFF execution condi-
tions). Output 0200 is output after 100 seconds; output 0201, after 200 sec-
onds; output 0202, after 300 seconds; and output 0204, after 500 seconds.

The branching structure of this diagram is important so that 0200, 0201, and
0202 are controlled properly as the timer counts down. Because all of the
comparisons here are to the timer’s PV, the other operand for each CMP(20)
must be in 4-digit BCD.

Precautions

Flags

Example 1:
Saving CMP(20) Results

Example 2:
Obtaining Indications
during Timer Operation

Data Comparison Section 5–14

84

#2000

CMP(20)

TIM 10

#3000

CMP(20)

TIM 10

CMP(20)

TIM 10

#4000

0201

0204

0202

0000
TIM 10

0200

1907

0200

1907

0201

1907

TIM 10

0500 s.

Output at
100 s.

Output at
200 s.

Output at
300 s.

Output at
500 s.

5–15 Data Conversion
The conversion instructions convert word data that is in one format into an-
other format and output the converted data to specified result word(s). Con-
versions are available to convert between binary (hexadecimal) and BCD
and between multiplexed and non-multiplexed data. All of these instructions
change only the content of the words to which converted data is being
moved, i.e., the content of source words is the same before and after execu-
tion of any of the conversion instructions.

5–15–1 BCD to Binary – BIN(23)

S : Source word (BCD)

IR, SR, DM, HR, TC

R : Result word

IR, DM, HR

Ladder Symbol Operand Data Areas

BIN(23)

S

R

BIN(23) can be used to convert BCD to binary so that displays on the Pro-
gramming Console or any other programming device will appear in hexadeci-
mal rather than decimal. It can also be used to convert to binary to perform
binary arithmetic operations rather than BCD arithmetic operations, e.g.,
when BCD and binary values must be added.

Description

Data Conversion Section 5–15

85

ER: The content S is not BCD

EQ: ON when 0000 is placed in R.

5–15–2 Binary to BCD – BCD(24)

S : Source word (binary)

IR, SR, DM, HR, TC

R : Result word

IR, DM, HR

Ladder Symbol Operand Data Areas

BCD(24)

S

R

If the content of S exceeds 270F, the converted result would exceed 9999
and BCD(24) will not be executed. When the instruction is not executed, the
content of R remains unchanged.

BCD(24) converts the binary (hexadecimal) content of S into the numerically
equivalent BCD bits, and outputs the BCD bits to R. Only the content of R is
changed; the content of S is left unchanged.

BCD(24) can be used to convert binary to BCD so that displays on the Pro-
gramming Console or any other programming device will appear in decimal
rather than hexadecimal. It can also be used to convert to BCD to perform
BCD arithmetic operations rather than binary arithmetic operations, e.g.,
when BCD and binary values must be added.

ER: S is greater than 270F.

EQ: ON when 0000 is placed in R.

5–15–3 4-to-16 Decoder – MLPX(76)

S : Source word

IR, SR, DM, HR, TC

Di : Digit designator

IR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

R : First result word

IR, DM, HR

MLPX(76)

S

Di

R

The rightmost two digits of Di must each be between D and 3.

All result words must be in the same data area.

When the execution condition is OFF, MLPX(76) is not executed and the next
instruction is moved to. When the execution condition is ON, MLPX(76) con-
verts up to four, four-bit hexadecimal digits from S into decimal values from 0
to 15, each of which is used to indicate a bit position. The bit whose number
corresponds to each converted value is then turned ON in a result word. If
more than one digit is specified, then one bit will be turned ON in each of
consecutive words beginning with R. (See examples, below.)

Flags

Limitations

Description

Flags

Limitations

Description

Data Conversion Section 5–15

86

The following is an example of a one-digit decode operation from digit num-
ber 1 of S, i.e., here Di would be 0001.

S

R

C

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Bit C (i.e., bit number 12) turned ON.

The first digit and the number of digits to be converted are designated in Di. If
more digits are designated than remain in S (counting from the designated
first digit), the remaining digits will be taken starting back at the beginning of
S. The final word required to store the converted result (R plus the number of
digits to be converted) must be in the same data area as R, e.g., if two digits
are converted, the last word address in a data area cannot be designated; if
three digits are converted, the last two words in a data area cannot be desig-
nated.

The digits of Di are set as shown below.

Specifies the first digit to be converted (0 to 3)

Number of digits to be converted (0 to 3)
0: 1 digits
1: 2 digits
2: 3 digits
3: 4 digits

Not used.

Digit numbers: 0 1 2 3

Some example Di values and the digit-to-word conversions that they produce
are shown below.

0

1

2

3

 R

R + 1

 R

R + 1

R + 2

0

1

2

3

0

1

2

3

0

1

2

3

 R

R + 1

R + 2

R + 3

 R

R + 1

R + 2

R + 3

S

Di : 0031 Di : 0023

Di : 0030Di : 0010

S

SS

Digit Designator

Data Conversion Section 5–15

87

ER: Undefined digit designator, or R plus number of digits exceeds a data
area.

The following program converts three digits of data from DM 20 to bit posi-
tions and turns ON the corresponding bits in three consecutive words starting
with HR 1.

S : DM 20 R : HR 1 R+1 : HR 2 R+2 : HR 3

DM 00 20 HR 100 0 HR 200 0 HR 300 1

DM 01 21 HR 101 0 HR 201 0 HR 301 0

DM 02 22 HR 102 0 HR 202 0 HR 302 0

DM 03 23 HR 103 0 HR 203 0 HR 303 0

DM 04 1 20 HR 104 0 HR 204 0 HR 304 0

DM 05 1 21 1 HR 105 0 HR 205 0 HR 305 0

DM 06 1 22 HR 106 0 HR 206 1 HR 306 0

DM 07 1 23 HR 107 0 HR 207 0 HR 307 0

DM 08 0 20 HR 108 0 HR 208 0 HR 308 0

DM 09 1 21 2 HR 109 0 HR 209 0 HR 309 0

DM 10 1 22 HR 110 0 HR 210 0 HR 310 0

DM 11 0 23 HR 111 0 HR 211 0 HR 311 0

DM 12 0 20 HR 112 0 HR 212 0 HR 312 0

DM 13 0 21 3 HR 113 0 HR 213 0 HR 313 0

DM 14 0 22 HR 114 0 HR 214 0 HR 314 0

DM 15 0 23 HR 115 1 HR 215 0 HR 315 0

0000
MLPX(76)

DM 20

#0021

HR 1

15

6

0

Not
Converted

5–15–4 16-to-4 Encoder – DMPX(77)

S : First source word

IR, SR, DM, HR, TC

R : Result word

IR, DM, HR

Ladder Symbol

Operand Data Areas

Di : Digit designator

IR, DM, HR, TC, #

DMPX(77)

S

R

Di

The rightmost two digits of Di must each be between 0 and 3. All source
words must be in the same data area.

Flags

Example

Limitations

Data Conversion Section 5–15

88

When the execution condition is OFF, DMPX(77) is not executed and the
next instruction is moved to. When the execution condition is ON, DMPX(77)
determines the position of the highest ON bit in S, encodes it into single-digit
hexadecimal value corresponding to the bit number of the highest ON bit
number, then transfers the hexadecimal value to the specified digit in R. The
digits to receive the results are specified in Di, which also specifies the num-
ber of digits to be encoded.

The following is an example of a one-digit encode operation to digit number 1
of R, i.e., here Di would be 0001.

R

S

C

0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0

C transferred to indicate bit number 12 as
the highest ON bit.

Up to four digits from four consecutive source words starting with S may be
encoded and the digits written to R in order from the designated first digit. If
more digits are designated than remain in R (counting from the designated
first digit), the remaining digits will be placed at digits starting back at the be-
ginning of R.

The final word to be converted (S plus the number of digits to be converted)
must be in the same data area as SB.

The digits of Di are set as shown below.

Specifies the first digit to receive converted data (0 to 3).

Number of words to be converted (0 to 3)
0: 1 word
1: 2 words
2: 3 words
3: 4 words

Not used.

Digit Numbers: 0 1 2 3

Some example Di values and the word-to-digit conversions that they produce
are shown below.

Description

Digit Designator

Data Conversion Section 5–15

89

0

1

2

3

R

Di : 0011

 S

S + 1

0

1

2

3

 S

S + 1

S + 2

S + 3

Di : 0030

R

 S

S + 1

S + 2

S + 3

0

1

2

3

Di : 0032
R

Di : 0013

0

1

2

3

 S

S + 1

R

ER: Undefined digit designator, or S plus number of digits exceeds a data
area.

Content of a source word is 0000.

When 0000 is ON, the following diagram encodes IR words 10 and 11 to the
first two digits of HR 2 and then encodes DM 10 and 11 to the last two digits
of HR 2. Although the status of each source word bit is not shown, it is as-
sumed that the bit with status 1 (ON) shown is the highest bit that is ON in
the word.

0000
DMPX(77)

10

HR 2

#0010

DM10

HR 2

#0012

 IR 010

1000

 :

1011 1

1012 0

 : :

1015 0

 DM 10

DM1000

 :

DM1001 1

DM1002 0

 : :

DM1015 0

Digit 0

 IR 011

1100

 :

1109 1

1110 0

 : :

1115 0

Digit 1

Digit 2

Digit 3

B

9

1

8
 DM 11

DM1100

 :

DM1108 1

DM1109 0

 : :

DM1115 0

HR 2

DMPX(77)

5–16 BCD Calculations
The BCD calculation instructions perform mathematic operations on BCD
data.

Flags

Example

BCD Calculations Section 5–16

90

These instructions change only the content of the words in which results are
placed, i.e., the contents of source words are the same before and after exe-
cution of any of the BCD calculation instructions.

STC(40) and CLC(41), which set and clear the Carry Flag, are included in
this group because most of the BCD operations make use of the Carry Flag
(CY) in their results. Binary arithmetic and shift operations also use CY.

The addition and subtraction instructions use CY in the calculation as well as
in the result. Be sure to clear CY if its previous status is not required in the
calculation, and to use the result placed in CY, if required, before it is
changed by execution of any other instruction.

5–16–1 BCD Add – ADD(30)

Au : Augend word (BCD)

IR, SR, DM, HR, TC, #

Ad : Addend word (BCD)

IR, SR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

R : Result word

IR, DM, HR

ADD(30)

Au

Ad

R

When the execution condition is OFF, ADD(30) is not executed and the next
instruction is moved to. When the execution condition is ON, ADD(30) adds
the contents of Au, Ad, and CY, and places the result in R. CY will be set if
the result is greater than 9999. Au and Ad should not be designated as con-
stants. This instruction will be executed every scan as long as the execution
condition remains ON. If the instruction is to be executed only once for a giv-
en ON execution condition then it must be used in conjunction with DIFU(13)
or DIFD(14).

Au + Ad + CY CY R

ER: Au and/or Ad is not BCD.

CY: ON when there is a carry in the result.

EQ: ON when the result is 0.

If 0002 is ON, the following diagram clears CY with CLC(41), adds the con-
tent of IR 02 to a constant (6103), places the result in DM 01, and then
moves either all zeros or 0001 into DM 02 depending on the status of CY
(1904). This ensures that any carry from the last digit is preserved in R + 1
so that the entire result can be later handled as eight-digit data.

Description

Flags

Example

BCD Calculations Section 5–16

91

TR 0

MOV(21)

#0001

DM 02

0002
CLC(41)

ADD(30)

 02

#6103

DM 01

MOV(21)

#0000

DM 02

1904

1904

Consecutive ADD(30)s can be used to perform eight-digit BCD addition. By
using two ADD(30)s and combining the augend and the addend words of one
ADD(30) with those of the other, two 8-digit values can be added. The result
may or may not be 9 digits depending on whether a carry is generated.

TR 0

MOV(21)

#0001

DM 06

1000
CLC(41)

ADD(30)

DM 00

DM 02

DM 04

MOV(21)

#0000

DM 06

1904

1904

0002
DIFU(13) 1000

ADD(30)

DM 01

DM 03

DM 05

In the above program the 8 digit augend consists of two words: DM 00 and
DM 01, with DM 01 being used for the 4 left digits and 00 for the 4 right dig-
its. Similarly the 8-digit addend consist of DM 02 and 03. Three words are
used to hold the results of the addition: DM 04, DM 05, and DM 06. In this
case DM 05 and DM 04 are used to represent the intermediate 4 digits and
the 4 right digits respectively. DM 06 represents the leftmost digit, the 9th dig-
it.

BCD Calculations Section 5–16

92

If a carry is generated, SR 1904 (CY) is turned ON and the constant 0001 is
transferred to DM 06. If a carry is not generated SR 1904 remains OFF and
the constant 0000 is transferred to DM 06.

5–16–2 BCD Subtract – SUB(31)

Mi : Minuend word (BCD)

IR, SR, DM, HR, TC, #

Su : Subtrahend word (BCD)

IR, SR, DM, HR, TC, #

Ladder Symbol

Operand Data Areas

R : Result word

IR, DM, HR

SUB(31)

Mi

Su

R

When the execution condition is OFF, SUB(31) is not executed and the next
instruction is moved to. When the execution condition is ON, SUB(31) sub-
tracts the contents of Su and CY from Mi and places the result in R. If the
result is negative, CY is set and the 10’s complement of the actual result is
placed in R. To convert the 10’s complement to the true result, subtract the
content of R from zero (see example below).. This instruction will be ex-
ecuted every scan as long as the execution condition remains ON. If the in-
struction is to be executed only once then it must be used in conjunction with
DIFU(13) or DIFD(14).

Mi – Su – CY CY R

ER: Mi and/or Su is not BCD.

CY: ON when the result is negative, i.e., when Mi is less than Su plus CY.

EQ: ON when the result is 0.

Be sure to clear the Carry Flag (CY) with CLC(41) before executing SUB(31)
if its previous status is not required, and check the status of CY after doing a
subtraction with SUB(31). If CY is ON as a result of executing SUB(31) (i.e.,
if the result is negative), the result is output as the 10’s complement of the
true answer. To convert the output result to the true value, subtract the value
in R from 0.

When 0002 is ON, the following diagram clears CY, subtracts the contents of
DM 01 and CY from the content of IR 10 and places the result in HR 2.

If CY is set by executing SUB(31), the result in HR 2 is subtracted from zero
(note that CLC(41) is again required to obtain an accurate result), the result
is placed back in HR 2, and HR 300 is turned ON to indicate a negative re-
sult.

If CY is not set by executing SUB(31), the result is positive, the second sub-
traction is not performed and HR 300 is not turned ON. HR 300 is pro-
grammed as a self-maintaining bit so that a change in the status of CY will
not turn it OFF when the program is rescanned.

Description

Flags

Caution

Example

BCD Calculations Section 5–16

93

CLC(41)

SUB(31)

10

DM 01

HR 2

CLC(41)

SUB(31)

#0000

HR 2

HR 2

TR 0

1904
HR 300

0002

1904

HR 300

First
subtraction

Second
subtraction

Turned ON to indicate
negative result.

5–16–3 Set Carry – STC(40)
Set carry is used to set (turn ON) the CY (SR bit 1904) to “1”.

0002
STC(40)

5–16–4 Clear Carry – CLC(41)
Clear carry is used to reset (turn OFF) the CY (SR bit 1904) to “0”.

0002
CLC(41)

BCD Calculations Section 5–16

95

SECTION 6
Program Execution Timing

6–1 Introduction 96 .
6–2 Scan Time 96 .
6–3 Calculating Scan Time 98 .

6–3–1 Single PC Unit 98 .
6–3–2 PC with Additional Units 99 .

6–4 Instruction Execution Times 100 .
6–5 I/O Response Time 102 .

96

6–1 Introduction
When writing and debugging a program, the timing of various operations
must be considered. Not only is the time required to execute the program
and perform other CPU operations important, but also the timing of each sig-
nal coming into and leaving the PC must be such that the desired control ac-
tion is achieved at the right time.

The major factors in determining program timing are the scan time and the
I/O response time. One cycle of CPU operation is called a scan; the time re-
quired for one cycle is called the scan time. The time required to produce a
control output signal following reception of an input signal is called the I/O
response time. This section explains the scan and shows how to calculate
the scan time and I/O response time.

6–2 Scan Time
To aid in PC operation, the average scan time can be displayed on the Pro-
gramming Console or any other Programming Device. Understanding the
operations that occur during the scan and the elements that affect scan time
is essential to effective programming and PC operations.

The overall flow of CPU operation is as shown in the following flowchart.

Scan Time Section 6–2

97

YES

NO

Power application

Clears IR area and
resets all timers

Checks I/O Unit
connections

Resets watchdog
timer

Checks hardware and
Program Memory

Check OK?

Resets watchdog timer

Services Peripheral
Devices

ERROR or ALARM

Sets error flags and
lights indicator

Executes program

Input and output
refreshing

ERROR

ALARM

Resets watchdog timer

The first three operations immediately after power application are performed
once each time the PC is turned on. The then on the operations shown
above are performed in cyclic fashion, with each cycle forming one scan. The
scan time is the time that is required for the CPU to complete one of these
cycles. This cycle includes four types of operation.

1. Overseeing
2. Input/Output refreshing
3. Peripheral Device servicing
4. Instruction execution

Scan time = Overseeing time + Input/output refreshing + Peripheral
Device servicing time + Instruction execution time

1, 2, 3...

Scan Time Section 6–2

98

1

2

3

4

Overseeing

Peripheral Device
servicing

Instruction
 execution

Input refreshing
Output refreshing

1.26 ms (Fixed)

T = (1 + 3 + 4) x 0.05.
T <= 1, execution time = 1 ms.
T > 1, round off in units of 0.5 ms
(e.g.,1.65 ms rounds to 1.5 ms)
No peripherals connected = 0 ms.

Total of execution time for each instruction.
Varies with program size, the instructions
used, and execution conditions. Refer to
6–4 Instruction Execution Times for details.

0.29 ms + 0.07 ms times N where N =
number of input and output words – 1.

Watchdog timer set and program
memory and I/O bus checked.

Commands from Program Devices and
Interface Units processed.

Instructions executed.

Reading data input from input terminals
and writing the results of instruction
execution to output terminals.

The scan time can be obtained by adding the four scan time components
identified above. An adequately short scan time is important to ensure effi-
cient, error-free operation.

Within the PC, the watchdog timer measures the scan time and compares it
to a set value. If the scan time exceeds the set value of the watchdog timer,
an error is generated and the CPU stops.

Even if the scan time does not exceed the set value of the watchdog timer, a
long scan time can adversely affect the accuracy of system operations as
shown in the following table.

Scan time (ms) Possible adverse affects

10 or greater TIMH(15) becomes inaccurate.

100 or greater 0.1-second clock pulse generator SR 1900 may malfunction.

Between ALARM indicator on the CPU lights and SR 1809 turns ON.
100 and 130

130 or greater ERROR indicator on the CPU lights and the system halts.

6–3 Calculating Scan Time
The PC configuration, the program, and program execution conditions must
be taken into consideration when calculating the scan time. This means tak-
ing into account such things as the number of I/O points, the programming
instructions used, and whether or not Peripheral Devices are employed. This
subsection shows some basic scan time calculation examples.

6–3–1 Single PC Unit
Configuration: A single C20K CPU.
Program: 300 addresses.
Instructions Used: LD and OUT.

The equation for the scan time from above is as follows:

Scan time = Overseeing time
+ Input/output refreshing
+ Peripheral device servicing time
+ Instruction execution time

Watchdog Timer and Long
Scan Times

Calculations

Calculating Scan Time Section 6–3

99

The overseeing time is fixed at 1.26 ms.

The input/output refresh time would be as follows: 0.29 ms + (0.07 ms x N).
As the C20K is provided with only one input and one output word the value of
the constant N is 1 (i.e. N = 1 – 1 = 0) and so the time required is 0.29 ms + (
0.07 ms x 0) = 0.29 ms.

The execution time can be calculated by obtaining the average instruction
execution time and multiplying this by the number of addresses used in the
program. As only LD and OUT are used in this program and they have ex-
ecution times of 12 µs and 17.5 µs respectively, the average instruction ex-
ecution time is:

2

12 µs + 17.5 µs = 14.75 ms

The total execution time is equal to this average instruction execution time
multiplied by the number of program addresses.
Total execution time = 300 addresses x 14.75 µs = 4.43 ms

The peripheral device servicing time is calculated by adding the other three
time values and multiplying the result by a factor of 0.05. This value is only
required in configurations where a peripheral device is connected to the PC.
The result is calculated as an example. As there are no peripheral devices
used in this example the following results will be ignored in the final calcula-
tion.

Peripheral device servicing = (1.26 ms + 0.29 ms + 4.43 ms) x 0.05 = 0.3 ms
As this is less than 1 ms it must be rounded up to 1 ms. Had it been over 1
ms it would then need to be rounded down to the nearest 0.5 ms.

The scan time is the total of all these calculations.

1.26 ms + 0.29 ms + 4.43 ms = 5.98 ms

If a peripheral device had been present it would have been:

1.26 ms + 0.29 ms + 4.43 ms + 1 ms = 6.98 ms

Overseeing
Input/output refreshing
Peripheral device servicing
Instruction execution

Total

Fixed
0.29 + 0.07 * (1–1)
((1) + (3) + (4)) * 0.05 = 0.3 < 1
14.75 * 300

(1) + (2) + (3) + (4)

1.26
0.29
1.00
4.43

6.98

1.26
0.29
0.00
4.43

5.98

Process Formula Peripheral device
servicing (ms)

WithoutWith

6–3–2 PC with Additional Units
Configuration: A C40K CPU, a C40P Expansion I/O Unit, an I/O Link Unit.
Program: 1150 addresses.
Average instruction execution time: 30 µs.

The equation for the scan time from above is as follows:

Scan time = Overseeing time
+ Input/output refreshing

Calculations

Calculating Scan Time Section 6–3

100

+ Peripheral device servicing time
+ Instruction execution time

The overseeing time is fixed at 1.26 ms.

The input/output refresh time would be as follows: 0.29 ms + (0.07 ms x N).
As the C40K is provided with only one input and one output word and the
C40P Expansion unit contains input and output words the value of the con-
stant N is 5. (i.e., N = 5 – 1 = 4) and so the time required is 0.29 ms + (0.07
ms x 4) = 0.57 ms.

The total execution time can be calculated by obtaining the average instruc-
tion execution time and multiplying this by the number of addresses used in
the program. As given above the average instruction execution time is 30 µs.

Total execution time = 1150 addresses x 30 µs = 34.50 ms

The peripheral device servicing time is calculated by adding the other three
time values and multiplying the result by a factor of 0.05. This value is only
required in configurations where a peripheral device is connected to the PC.
The result is calculated as an example. As there are no peripheral devices
used in this example the following results will be ignored in the final calcula-
tion.

Peripheral device servicing = (1.26 ms + 0.57 ms + 34.50 ms) x 0.05 = 1.81
ms which is rounded down to 1.50 ms.

The scan time is the total of all these calculations.
1.26 ms + 0.57 ms + 34.50 ms = 36.33 ms

If a peripheral device had been present it would have been:
1.26 ms + 0.57 ms + 34.50 ms + 1.50 ms = 37.83 ms

Overseeing
Input/output refreshing
Peripheral device servicing
Instruction execution

Total

Fixed
0.29 + 0.07 * (1–1)
((1) + (3) + (4)) * 0.05 = 1.8 > 1
30 * 1150

(1) + (2) + (3) + (4)

1.26
0.57
1.50
34.50

37.83

1.26
0.57
0.00
34.50

36.33

Process Formula Peripheral device
Servicing (ms)

WithoutWith

6–4 Instruction Execution Times
This following table lists the execution times for all instructions that are avail-
able for the P-types. The maximum and minimum execution times and the
conditions which cause them are given where relevant.

Execution times for most instructions depend on whether they are executed
with an ON execution condition or an OFF execution condition. The OFF
execution time for an instruction can also vary depending on the circum-
stances. Where this is the case, the circumstances that will produce different
execution times are given.

Execution times are expressed in microseconds except where noted.

Instruction Execution Times Section 6–4

101

Function
code

Instruction Execution
time(µs)

Conditions

LD 12 Always

LD NOT 12 Always

AND 11.5 Always

AND NOT 11.5 Always

OR 11.5 Always

OR NOT 11.5 Always

AND LD 4 Always

OR LD 4 Always

OUT 17 When outputting logical ”1” (ON)

17.5 When outputting logical ”0” (OFF)

OUT NOT 19 When outputting logical ”1” (ON)

17.5 When outputting logical ”0” (OFF)

TIM 95 When timing

95.5 to 186.5 When reset

CNT 80.5 When counting

91.5 TO 184 When reset

00 NOP 2 Always

01 END — Refer to Scan Time Calculation Example.

02 IL 2.5 Always

03 ILC 3 Always

04 JMP 94 Always

05 JME 38 Always

10 SFT 102 When shifting 1 word

248 When shifting 13 words

90 to 254 When reset (1 to 13 words)

11 KEEP 19 When set

20 When reset

12 CNTR 95 When counting DOWN

190.5 When counting UP (word specified)

13 DIFU 60.5 When input = 1

56.5 When input = 0

14 DIFD 59 When input = 1

62.5 When input = 0

15 TIMH 94.5 When timing

97 to 187.5 When reset

16 WSFT 97 When shifting DM by 1 word

825.5 When shifting DM by 64 words

20 CMP 121.5 When comparing a constant with word data

212 When comparing a TIM/CNT with word data

21 MOV 109 When transferring a constant to a word

196 When transferring a TIM/CNT to a word

22 MVN 108.5 When inverting & transferring a constant to a word

196 When inverting & transferring a TIM/CNT to a word

23 BIN 115 When converting & transferring a TIM/CNT to a word

193.5 When converting & transferring a word to a word

24 BCD 194 When converting & transferring DM to DM

202.5 When converting & transferring data in other areas

Instruction Execution Times Section 6–4

102

Function
code

ConditionsExecution
time(µs)

Instruction

30 ADD 233 When adding two words

352 When adding a TIM/CNT to a constant

31 SUB 237.5 When subtracting a word from a word

356.5 When subtracting a constant from a TIM/CNT

40 STC 16 Always

41 CLC 16 Always

61 HDM 734 Always

76 MLPX 212.5 Word, 1 digit (constant) —> word

288 Word, 4 digits (constant) —> word

355 TIM/CNT, 1 digit (TIM/CNT) —> word

431 TIM/CNT, 4 digits (TIM/CNT) —> word

77 DMPX 298.5 Word, 1 digit (constant) —> word

658.5 Word, 4 digits (constant) —> word

456 TIM/CNT, 1 digit (TIM/CNT) —> word

1,080 TIM/CNT, 4 digits (TIM/CNT) —> word

145 When shifting one word

743 When shifting 64 DM words

6–5 I/O Response Time

The I/O response time is the time it takes for the PC to output a control signal
after it has received an input signal. How long it takes to respond depends on
the scan time and when the CPU receives the input signal relative to the in-
put refresh period. The I/O response times for a PC not in a Link System are
discussed below. For response times for PCs with Link Systems, refer to the
relevant System Manual.

The minimum and maximum I/O response time calculations described below
are for the following, where 0000 is the input bit that receives the signal and
0500 is the output bit corresponding to the desired output point.

0000

0500

The PC responds most quickly when it receives an input signal just prior to
the input refresh period in the scan. Once the input bit corresponding to the
signal has been turned ON, the program will have to be executed once to
turn ON the output bit for the desired output signal and then the input refresh
and overseeing operations would have to be repeated before the output from
the output bit was refreshed. The I/O response time in this case is thus found
by adding the input ON-delay time, the scan time, the I/O refresh time, the
overseeing time, and the output ON-delay time. This situation is illustrated
below.

Minimum I/O Response
Time

I/O Response Time Section 6–5

103

Scan time

Input
signal

Output
signal

Scan

Scan time

I/O refresh

Overseeing

I/O response time

CPU reads
input signal

CPU writes
output signal

Output ON delayInput ON delay

Minimum I/O response time = Input ON delay + Scan time + I/O refresh time
+ Overseeing time + Output ON delay

The PC takes longest to respond when it receives the input signal just after
the input refresh phase of the scan. In this case the CPU does not recognize
the input signal until the end of the next scan. The maximum response time
is thus one scan longer than the minimum I/O response time, except that the
input refresh time would not need to be added in because the input comes
just after it rather than before it.

Input
signal

Output
signal

Scan

Scan time

I/O refresh

I/O response time

CPU reads
input signal

CPU writes
output signal

Output ON delayInput ON delay

Overseeing

Scan time

Maximum I/O response time = input ON delay + (scan time x 2) + overseeing
time + output ON delay

Maximum I/O Response
Time

I/O Response Time Section 6–5

104

The data in the following table would produce the minimum and maximum
scan times shown calculated below.

Input ON-delay 1.5 ms

Scan time 20 ms

Input refresh time 0.23 ms

Overseeing time 3.0 ms

Output ON-delay 15 ms

Minimum I/O response time = 1.5 + 20 + 0.23 + 3.0 +15 = 39.73 ms

Maximum I/O response time = 1.5 + (20 x 2) + 3.0 +15 = 59.5 ms

Calculation Example

I/O Response Time Section 6–5

105

SECTION 7
Program Input, Debugging and Execution

7–1 Introduction 106 .
7–2 Converting to Mnemonic Code 106 .

7–2–1 Program Memory Structure 106 .
7–2–2 Ladder Instructions 106 .
7–2–3 Logic Block Instructions 107 .
7–2–4 Coding Other Instructions 116 .

7–3 The Programming Console 121 .
7–3–1 The Keyboard 121 .
7–3–2 PC Modes 123 .

7–4 Preparation for Operation 124 .
7–4–1 Entering the Password 125 .
7–4–2 Clearing Memory 126 .

7–5 Inputting, Modifying, and Checking the Program 128 .
7–5–1 Setting and Reading from Program Memory Address 128
7–5–2 Inputting or Overwriting Programs 129 .
7–5–3 Checking the Program 132 .
7–5–4 Displaying the Scan Time 133 .
7–5–5 Program Searches 134 .
7–5–6 Inserting and Deleting Instructions 136 .

140
140
141
143
144
145
148
151
151

7–6 Program Backup and Restore Operations .

7–6–2 Restoring or Comparing Program Memory Data
7–6–1 Saving Program Memory Data .

7–7 Debugging .

7–8–1 Bit/Digit Monitor .

7–8–3 Hexadecimal/BCD Data Modification .

7–8 Monitoring Operation and Modifying Data .

7–8–2 Force Set/Reset .

7–8–4 Changing Timer/Counter SV .

106

7–1 Introduction
This section provides the procedures for inputting and debugging a program
and monitoring and controlling the PC through a Programming Console. The
Programming Console is the most commonly used Programming Device for
the K-type PCs. It is compact and available both in hand-held models or
CPU-mounted models. Refer to Appendix A Standard Models for model num-
bers and other details.

If you are using a GPC, FIT, or a computer running LSS, refer to the Opera-
tion Manual for corresponding procedures on these. If you are going to use a
GPC, FIT, or a computer running LSS, but want to input in mnemonic code
rather than in ladder-diagram form, refer to 7–2 Converting to Mnemonic
Code.

7–2 Converting to Mnemonic Code
Before a program can be input via a Programming Console, it must be con-
verted to mnemonic code. Converting a ladder diagram to mnemonic code
prepares it so that it can be keyed directly into the appropriate Program
Memory addresses.

7–2–1 Program Memory Structure

The program is input into addresses in Program Memory. Addresses in Pro-
gram Memory are slightly different than those in other memory areas be-
cause each address does not necessarily hold the same amount of data.
Rather, each address holds one instruction and all of the definers and oper-
ands required for that instruction. Because some instructions require no op-
erands, while other require up to three operands, Program Memory ad-
dresses can be from one to four words long.

Program Memory addresses start at 0000 and run until the capacity of Pro-
gram Memory has been exhausted. The first word at each address defines
the instruction. Any definers and some bit operands used by the instruction
are also contained in the first word. The rest of the words required by an in-
struction contain the operands that tell what data is to be used. When con-
verting to mnemonic code, instructions are written in the same form, one
word to a line, just as they appear in the ladder diagram symbols. The only
exception to this is TIMH(15), in which the definer is written on a second line.

When programming, addresses are automatically displayed and do not have
to be set unless for some reason a different location is desired for the pro-
gram. When converting to mnemonic code, it is best to start at Program
Memory address 0000 unless there is a specific reason for starting else-
where.

7–2–2 Ladder Instructions

As described in 4–3–2 Ladder Instructions, the conditions on the ladder dia-
gram correspond to LD, LD NOT, AND, AND NOT, OR, and OR NOT. Logic
blocks containing various combinations of these are combined with AND LD
and OR LD. These are described in 4–3–3 Logic Block Instructions. Only one
word is required for each of these instructions. This is illustrated in the follow-
ing diagram, which turns ON 0505 whenever both 0005 and 0006 are ON.
The table of mnemonic code is also provided for this diagram.

Converting to Mnemonic Code Section 7–2

107

Address Instruction Data

0000 LD 0005

0001 AND 0006

0002 OUT 0505

0005 0006

0505

All instruction lines begin with a LD or LD NOT for the first condition. LD or
LD NOT is always used when an instruction line starts from the bus bar.

The address of the operand bit for LR (here, 0005) is written into the data
column next to LD. The data column will include any definers or bit operands
in the instruction word and the operands for all other words. Notice that the
data column is split into two. The left side is used to designate a data area or
(to indicate a value as a constant) and the right side is used for the address
or numeric value of each.

The other condition in the ladder diagram corresponds to an AND. The oper-
and for AND is also a bit. In this case 0006, is placed on the right side. Re-
member, all data area addresses except for those for the IR or SR areas re-
quire designation with the appropriate prefix.

The final instruction in the diagram is OUT, which turns 0505 ON or OFF de-
pending on the execution condition. The operand bit 0505, is written in the
data column.

The following example requires both AND and OR instructions to convert, but
does so without requiring AND LD or OR LD. We provide the diagram and
corresponding mnemonic code for reference.

0000 0001 0002 0003

0200

0500

Address Instruction Data

0000 LD 0000

0001 AND 0001

0002 OR 0200

0003 AND 0002

0004 AND NOT 0003

0005 OUT 0500

7–2–3 Logic Block Instructions
When series of conditions lie in parallel to each other or when parallel groups
of conditions lie in series, it is impossible to convert them to mnemonic code
using only AND and OR operations. It is thus necessary to use the two logic
block instructions, AND LD and OR LD. These are introduced in 4–3–3 Logic
Block Instructions.

As described in 4–3–3 Logic Block Instructions, a logic block instruction logi-
cally combines execution conditions of two logic blocks or the execution con-
dition of a logic block and the execution condition produced by another logic
block instruction.

Converting to Mnemonic Code Section 7–2

108

To use logic block instructions, the diagram must be divided into logic blocks.
Each block is coded using LD to code the first condition, and then AND LD or
OR LD is used to logically combine the blocks. With both AND LD and OR
LD there are two ways to achieve this. One is to code the logic block instruc-
tion after the first two blocks and then after each additional block. The other
way is to code all the blocks to be combined and then code the logic block
instructions to combine them, coding the instruction for the last pair of blocks
first and then coding the instruction to combine each other block backward to
the first block. Although either of these methods will produce exactly the
same program, the second method, coding all logic block instructions to-
gether, can be used only if eight or fewer blocks are being combined, i.e., if
seven or fewer logic block instructions are required.

The following diagram requires AND LD to be converted to mnemonic code
because three pairs of parallel conditions lie in series.

0000 0002 0004

0001 0003 0005

0500

The first of each pair of conditions is converted to LD with the assigned bit
operand and then ORed with the other condition. The first two blocks can be
coded first, followed by AND LD, the last block, and another AND LD, or the
three blocks can be coded first followed by two AND LDs. The mnemonic
code for both methods is shown below.

Address Instruction Data

0000 LD 0000

0001 OR NOT 0001

0002 LD NOT 0002

0003 OR 0003

0004 AND LD —

0005 LD 0004

0006 OR 0005

0007 AND LD —

0008 OUT 0500

Address Instruction Data

0000 LD 0000

0001 OR NOT 0001

0002 LD NOT 0002

0003 OR 0003

0004 LD 0004

0005 OR 0005

0006 AND LD —

0007 AND LD —

0008 OUT 0500

Again, with last method (on the right), a maximum of eight blocks can be
combined. There is no limit to the number of blocks that can be combined
with the first method.

The following diagram requires OR LD to be converted to mnemonic code
because three pairs of conditions in series lie in parallel to each other.

AND LD

OR LD

Converting to Mnemonic Code Section 7–2

109

0000 0001

0002 0003

0004 0005

0501

The first of each pair of conditions is converted to LD with the assigned bit
operand and then ANDed with the other condition. The first two blocks can
be coded first, followed by OR LD, the last block, and another OR LD, or the
three blocks can be coded first followed by two OR LDs. The mnemonic code
for either method is shown below.

Address Instruction Data

0000 LD 0000

0001 AND NOT 0001

0002 LD NOT 0002

0003 AND NOT 0003

0004 OR LD —

0005 LD 0004

0006 AND 0005

0007 OR LD —

0008 OUT 0501

Address Instruction Data

0000 LD 0000

0001 AND NOT 0001

0002 LD NOT 0002

0003 AND NOT 0003

0004 LD 0004

0005 AND 0005

0006 OR LD —

0007 OR LD —

0008 OUT 0501

Again, with last method (on the right), a maximum of eight blocks can be
combined. There is no limit to the number of blocks that can be combined
with the first method.

Both of the coding methods described above can also be used when using
both AND LD and OR LD, as long as the number of blocks being combined
does not exceed eight.

The following diagram contains only two logic blocks as shown. It is not nec-
essary to break block b down further, because it can coded directly using
only AND and OR.

0000 0001 0002 0003

0201

0501

0004

Block
a

Block
b

Combining AND LD and
OR LD

Converting to Mnemonic Code Section 7–2

110

Address Instruction Data

0000 LD 0000

0001 AND NOT 0001

0002 LD 0002

0003 AND 0003

0004 OR 0201

0005 OR 0004

0006 AND LD —

0007 OUT 0501

Although the following diagram is similar to the one above, block b in the dia-
gram below cannot be coded without being broken down into two blocks
combined with OR LD. In this example, the three blocks have been coded
first and then OR LD has been used to combine the last two blocks followed
by AND LD to combine the execution condition produced by the OR LD with
the execution condition of block a.

When coding the logic block instructions together at the end of the logic
blocks they are combining, they must, as shown below, be coded in reverse
order, i.e., the logic block instruction for the last two blocks is coded first, fol-
lowed by the one to combine the execution condition resulting from the first
logic block instruction and the execution condition of the logic block third from
the end, and on back to the first logic block that is being combined.

0000 0001 0002 0003
0502

0004 0202

Block
a

Block
b

Block
b2

Block
b1

Converting to Mnemonic Code Section 7–2

111

Address Instruction Data

0000 LD NOT 0000

0001 AND 0001

0002 LD 0002

0003 AND NOT 0003

0004 LD NOT 0004

0005 AND 0202

0006 OR LD —

0007 AND LD —

0008 OUT 0502

When determining what logic block instructions will be required to code a dia-
gram, it is sometimes necessary to break the diagram into large blocks and
then continue breaking the large blocks down until logic blocks that can be
coded without logic block instructions have been formed. These blocks are
then coded, combining the small blocks first, and then combining the larger
blocks. AND LD and OR LD is used to combine either, i.e., AND LD or OR
LD always combines the last two execution conditions that existed, regard-
less of whether the execution conditions resulted from a single condition,
from logic blocks, or from previous logic block instructions.

When working with complicated diagrams, blocks will ultimately be coded
starting at the top left and moving down before moving across. This will gen-
erally mean that, when there might be a choice, OR LD will be coded before
AND LD.

The following diagram must be broken down into two blocks and each of
these then broken into two blocks before it can be coded. As shown below,
blocks a and b require an AND LD. Before AND LD can be used, however,
OR LD must be used to combine the top and bottom blocks on both sides,
i.e., to combine a1 and a2; b1 and b2.

0000 0001 0004 0005
0503

Block
a

Block
b

0006 0007

Block
b2

Block
b1

0002 0003

Block
a2

Block
a1

Complicated Diagrams

Converting to Mnemonic Code Section 7–2

112

Address Instruction Data

0000 LD 0000

0001 AND NOT 0001

0002 LD NOT 0002

0003 AND 0003

0004 OR LD —

0005 LD 0004

0006 AND 0005

0007 LD 0006

0008 AND 0007

0009 OR LD —

0010 AND LD —

0011 OUT 0503

Blocks a1 and a2

Blocks b1 and b2

Blocks a and b

This type of diagram can be coded easily if each block is worked with in or-
der first top to bottom and then left to right. In the following diagram, blocks a
and b would be combined with AND LD as shown above, and then block c
would be coded and a second AND LD would be used to combine it with the
execution condition from the first AND LD, and so on through to block n.

Block
a

Block
b

00

Block
n

Block
c

The following diagram requires first an OR LD and an AND LD to code the
top of the three blocks, and then two more OR LDs to complete the mne-
monic code.

0002 0003

0505

0000 0001

0004 0005

0006 0007

Converting to Mnemonic Code Section 7–2

113

Address Instruction Data

0000 LD 0000

0001 LD 0001

0002 LD 0002

0003 AND NOT 0003

0004 OR LD ––

0005 AND LD ––

0006 LD NOT 0004

0007 AND 0005

0008 OR LD ––

0009 LD NOT 0006

0010 AND 0007

0011 OR LD ––

0012 OUT 0505

Although the program will execute as written, this diagram could be redrawn
as shown below to eliminate the need for the first OR LD and the AND LD,
simplifying the program and saving memory space.

0002 0003
0505

0001

0000

0004 0005

0006 0007

Address Instruction Data

0000 LD 0002

0001 AND NOT 0003

0002 OR 0001

0003 AND 0000

0004 LD NOT 0004

0005 AND 0005

0006 OR LD ––

0007 LD NOT 0006

0008 AND 0007

0009 OR LD ––

0010 OUT 0505

The following diagram requires five blocks, which here are coded in order
before using OR LD and AND LD to combine them starting from the last two
blocks and working forward. The OR LD at address 0008 combines blocks d
and e, the following AND LD combines the resulting execution condition with
that of block c, etc.

Converting to Mnemonic Code Section 7–2

114

0505

0000

0003 0004

0006 0007

0001 0002

0005

Block e

Block dBlock c

Block b

Block a

Address Instruction Data

0000 LD 0000

0001 LD 0001

0002 AND 0002

0003 LD 0003

0004 AND 0004

0005 LD 0005

0006 LD 0006

0007 AND 0007

0008 OR LD ––

0009 AND LD ––

0010 OR LD ––

0011 AND LD ––

0012 OUT 0505

Blocks d and e

Block c with above

Block b with above

Block a with above

Again, this diagram can be redrawn as follows to simplify program structure
and coding and to save memory space.

0006 0007
0505

0005

0001 0002

0003 0004 0000

Converting to Mnemonic Code Section 7–2

115

Address Instruction Data

0000 LD 0006

0001 AND 0007

0002 OR 0005

0003 AND 0003

0004 AND 0004

0005 LD 0001

0006 AND 0002

0007 OR LD ––

0008 AND 0000

0009 OUT 0505

Our last example may at first appear very complicated but can be coded us-
ing only two logic block instructions. The diagram appears as follows:

0000 0001

0505

0002 0003

0100 0101

0004 0005

0500

0006

Block cBlock b

Block a

The first logic block instruction is used to combine the execution conditions
resulting from blocks a and b, and the second one is used to combine the
execution condition of block c with the execution condition resulting from the
inverse condition assigned 0003. The rest of the diagram can be coded with
ladder instructions. The logical flow for this and the resulting code are shown
below.

0000 0001

0505

0002 0003

0100 0101

0004 00050500

0006

Block c

Block bBlock a

OR LD

LD 0000
AND 0001

LD 0500

LD 0002
AND NOT 0003

LD 0100
AND 0101

LD 0006

LD 0004
AND 0005

AND LD

Converting to Mnemonic Code Section 7–2

116

Address Instruction Data

0007 AND NOT 0003

0008 LD 0004

0009 AND 0005

0010 OR 0006

0011 AND LD ––

0012 OUT 0505

Address Instruction Data

0000 LD 0000

0001 AND 0001

0002 LD 0100

0003 AND 0101

0004 OR LD ––

0005 OR 0500

0006 AND 0002

7–2–4 Coding Other Instructions

When combining other right-hand instructions with ladder diagram instruc-
tions, they would appear in the same place as the OUTs used in the example
in the preceding section. Many of these instructions, however, require more
than one word to code.

The first word of any instruction defines the instruction and provides any de-
finers and sometimes bit operands required by the instruction. All other oper-
ands (i.e., operand words) are placed in words after the instruction word, one
operand to a word, in the same order as these appear in the ladder symbol
for the instruction. Although the SV for TIM and CNT are written to the left of
the symbol on the same line as the instruction, these are the only instructions
for which one line in the ladder symbol must be coded as two words (i.e., two
lines) in the mnemonic code. Also the TC number for TIMH(15) is placed on
a second line even though it is part of the instruction word. For all other in-
structions, each line of the ladder diagram will go into one word of mnemonic
code.

The address and instruction columns of the mnemonic code table are filled in
for the instruction word only. For all other words, the left two columns are left
blank. If the instruction word requires no definer or bit operand, the data col-
umn for it is left blank. It is a good idea to cross though the blank data col-
umn for all instruction words not requiring data so that the data column can
be quickly scanned to see if any addresses have been left out.

If an IR or SR address is used in the data column, the left side of the column
is left blank. If any other data area is used, the data area abbreviation is
placed on the left side and the address is place on the right side. If a con-
stant is to be input, the number symbol (#) is placed on the left side of the
data column and the number to be input is placed on the right side. Any num-
bers input as definers in the instruction word do not require the number sym-
bol on the right side. Remember, TR bits, once defined as a timer or counter,
take a TIM (timer) or CNT (counter) prefix.

When coding an instruction that has a function code, be sure to write in the
function code, which will be necessary when inputting the instruction.

The following diagram and corresponding mnemonic code illustrate the
points described above.

Converting to Mnemonic Code Section 7–2

117

Address Instruction Data

0000 LD 0000

0001 AND 0001

0002 OR 0002

0003 DIFU(13) 1500

0004 LD 0100

0005 AND NOT 0200

0006 LD 0101

0007 AND NOT 0102

0008 AND NOT 1505

0009 OR LD ––

0010 AND 1500

0011 ADD(30) ––

0001

0004

HR 0

0012 LD 0005

0013 TIM 00

0150

0014 LD TIM 00

0015 MOV(21) ––

HR 0

HR 2

0016 LD HR 015

0017 OUT NOT 0500

0100 0200

DIFU(13) 1500

0500

TIM 00 # 15.0

ADD(30)

#0001

0004

HR 0

MOV(21)

HR 0

HR 2

0101 0102 1505

TIM 00

1500

0002

00005

HR 015

0000 0001

If a right-hand instruction requires multiple instruction lines, all of the lines for
the instruction are coded before the right-hand instruction. Each of the lines
for the instruction are coded starting with LD or LD NOT to form ‘logic
blocks’ that are combined by the right-hand instruction. An example of this for
CNTR(12) is shown below.

I

P

R

CNTR(12)

01

#5000
0100 0200

0500

0101 0102 1501

1500

0002

HR 015

0000 0001

Multiple Instruction Lines

Converting to Mnemonic Code Section 7–2

118

Address Instruction Data

0000 LD 0000

0001 AND 0001

0002 LD 0002

0003 LD 0100

0004 AND NOT 0200

0005 LD 0101

0006 AND NOT 0102

0007 AND NOT 1501

0008 OR LD ––

0009 AND 1500

0010 CNTR(12) ––

01

5000

0011 LD HR 015

0012 OUT NOT 0500

If there is more than one right-hand instruction executed with the same exe-
cution condition, they are coded consecutively following the last condition on
the instruction line. In the following example, the last instruction line contains
one more condition that corresponds to an AND.

0000 0003

0001

TIM 010002

HR 000

HR
001

TIM
02

0506

001.0s

Address Instruction Data

0000 LD 0000

0001 OR 0001

0002 OR 0002

0003 OR HR 0000

0004 AND 0003

0005 OUT HR 01

0006 TIM 02

0100

0007 AND TIM 01

0008 OUT 0506

Multiple Right-hand
Instructions

Converting to Mnemonic Code Section 7–2

119

TR bits in a program are used to output (OUT) the execution condition at the
branching point and then to load back (LD) the execution condition when it is
required after returning to the branch lines. Within any one instruction block,
OUT cannot be used with the same TR address. The same TR address can,
however, be used with LD as many times as required. The following example
shows an instruction block using two TR bits. TR 1 is used in LD once; TR 0,
twice.

0000 0001 0002

0003

0004

0005

0500

0501

0502

0503

TR
0

TR
1

Address Instruction Data

0000 LD 0000

0001 OUT TR 0

0002 AND 0001

0003 OUT TR 1

0004 AND 0002

0005 OUT 0500

0006 LD TR 1

0007 AND 0003

0008 OUT 0501

0009 LD TR 0

0010 AND 0004

0011 OUT 0502

0012 LD TR 0

0013 AND NOT 0005

0014 OUT 0503

If the condition assigned 0004 was not in the diagram, the second LD using
TR 0 would not be necessary because OUT with 0502 and the AND NOT
with 0005 both require the same execution condition, i.e., the execution con-
dition stored in TR 0. The diagram and mnemonic code for this program are
shown below.

TR Bits

Converting to Mnemonic Code Section 7–2

120

0000 0001 0002

0003

0005

0500

0501

0502

0503

TR
0

TR
1

Address Instruction Data

0000 LD 0000

0001 OUT TR 0

0002 AND 0001

0003 OUT TR 1

0004 AND 0002

0005 OUT 0500

0006 LD TR 1

0007 AND 0003

0008 OUT 0501

0009 LD TR 0

0010 OUT 0502

0011 AND NOT 0005

0012 OUT 0503

When coding IL(02) and ILC(03), the mnemonic code will be the same re-
gardless of whether the instruction is drawn as branching instruction lines or
whether IL(02) is placed on its own instruction line. If drawn as branching
instruction lines, each branch line is coded as if it were connected to the bus
bar, i.e., the first condition on each branch line corresponds to a LD or LD
NOT instruction.

Interlocks

Converting to Mnemonic Code Section 7–2

121

0002

0000 0001

ILC(03)

IL(02)

0004
IL(02)

0006

0005

0003

0500

0501

0502

0503

Address Instruction Data

0000 LD 0000

0001 IL(02) ––

0002 LD 0001

0003 OUT 0200

0004 LD 0002

0005 IL(02) ––

0006 LD 0003

0007 AND NOT 0004

0008 OUT 0201

0009 LD 0005

0010 OUT 0202

0011 LD 0006

0012 OUT 0203

0013 ILC(03) ––

When you have finished coding the program, make sure you have placed
END(01) at the last address.

7–3 The Programming Console
Depending on the model of Programming Console used, it is either con-
nected to the CPU via a Programming Console Adapter and Connecting Ca-
ble or it is mounted directly to the CPU. Refer to the Programming Console
Operation Guide for details.

7–3–1 The Keyboard
The keyboard of the Programming Console is functionally divided by key
color into the following four areas:

The ten white keys are used to input numeric program data such as program
addresses, data area addresses, and operand values. The numeric keys are
also used in combination with the function key (FUN) to enter instructions
with function codes.

The CLR key clears the display and cancels current Programming Console
operations. It is also used when you key in the password at the beginning of

END(01)

White Numeric Keys

Red CLR Key

The Programming Console Section 7–3

122

programming operations. Any Programming Console operation can be can-
celled by pressing the CLR key, although the CLR key may have to be
pressed two or three times to cancel the operation and clear the display.

The yellow keys are used for writing and correcting programs. Detailed ex-
planations of their functions are given later in this section.

Except for the SHIFT key on the upper right, the gray keys are used to input
instructions and designate data area prefixes when inputting or changing a
program. The SHIFT key is similar to the shift key of a typewriter, and is used
to alter the function of the next key pressed. (It is not necessary to hold the
SHIFT key down; just press it once and then press the key to be used with
it.)

The gray keys other than the SHIFT key have either the mnemonic name of
the instruction or the abbreviation of the data area written on them. The func-
tions of these keys are described below.

Yellow Operation Keys

Gray Instruction and Data
Area Keys

The Programming Console Section 7–3

123

Pressed before the function code when inputting an instruction
via its function code.

Pressed to enter SFT (the Shift Register instruction).

Input after a ladder instruction to designate an inverse condi-
tion.

Pressed to enter AND (the AND instruction) or used with NOT
to enter AND NOT.

Pressed to enter OR (the OR instruction) or used with NOT to
enter OR NOT.

Pressed to enter CNT (the Counter instruction) or to designate
a TC number that has already been defined as a counter.

Pressed to enter LD (the Load instruction) or used with NOT to
enter LD NOT. Also pressed to indicate an input bit.

Pressed to enter OUT (the Output instruction) or used with
NOT to enter OUT NOT. Also pressed to indicate an output bit.

Pressed to enter TIM (the Timer instruction) or to designate a
TC number that has already been defined as a timer.

Pressed before designating an address in the TR area.

Pressed before designating an address in the LR area. Cannot
be used with the P-type PCs.

Pressed before designating an address in the HR area.

Pressed before designating an address in the DM area.

Pressed before designating an indirect DM address. Cannot be
used with the P-type PCs.

Pressed before designating a word address.

Pressed before designating an operand as a constant.

Pressed before designating a bit address.

7–3–2 PC Modes
The Programming Console is equipped with a switch to control the PC mode.
To select one of three operating modes—RUN, MONITOR, or PROGRAM—
use the mode switch. The mode that you select will determine PC operation
as well as the procedures that are possible from the Programming Console.

RUN mode is the mode used for normal program execution. When the switch
is set to RUN and the START input on the CPU Power Supply Unit is ON, the
CPU will begin executing the program according to the program written in its
Program Memory. Although monitoring PC operation from the Programming
Console is possible in RUN mode, no data in any of the memory areas can
be input or changed.

The Programming Console Section 7–3

!

!

124

MONITOR mode allows you to visually monitor in-progress program execu-
tion while controlling I/O status, changing PV (present values) or SV (set val-
ues), etc. In MONITOR mode, I/O processing is handled in the same way as
in RUN mode. MONITOR mode is generally used for trial system operation
and final program adjustments.

In PROGRAM mode, the PC does not execute the program. PROGRAM
mode is for creating and changing programs, clearing memory areas, and
registering and changing the I/O table. A special Debug operation is also
available within PROGRAM mode that enables checking a program for cor-
rect execution before trial operation of the system.

WARNING Do not leave the Programming Console connected to the PC by an extension
cable when in RUN mode. Noise entering via the extension cable can affect the
program in the PC and thus the controlled system.

When the PC is turned on, the mode it is in will depend on what Peripheral
Device, if any, is connected or mounted to the CPU.

• No Peripheral Device Connected
When power is applied to the PC without a Peripheral Device connected,
the PC is automatically set to RUN mode. Program execution is then con-
trolled through the CPU Power Supply Unit’s START terminal.

• Programming Console Connected
If the Programming Console is connected to the PC when PC power is ap-
plied, the PC is set to the mode set on the Programming Console’s mode
switch.

• Other Peripheral Connected
If a Peripheral Interface Unit, PROM Writer, Printer Interface Unit, or a
Floppy Disk Interface Unit is attached to the PC when PC power is turned
on, the PC is automatically set to PROGRAM mode.

If the PC power supply is already turned on when a peripheral device is at-
tached to the PC, the PC will stay in the same mode it was in before the pe-
ripheral device was attached. The mode can be changed with the mode
switch on the Programming Console once the password has been entered. If
it is necessary to have the PC in PROGRAM mode, (for the PROM Writer,
Floppy Disk Interface Unit, etc.), be sure to select this mode before connect-
ing the peripheral device, or alternatively, apply power to the PC after the pe-
ripheral device is connected.

The mode will also not change when a Peripheral Device is removed from
the PC after PC power is turned on.

WARNING Always confirm that the Programming Console is in PROGRAM mode when
turning on the PC with a Programming Console connected unless another mode
is desired for a specific purpose. If the Programming Console is in RUN mode
when PC power is turned on, any program in Program Memory will be executed,
possibly causing any PC-controlled system to begin operation. Also be sure that
starting operation is safe and appropriate whenever turning on the PC without a
device mounted to the CPU when the START input on the CPU Power Supply
Unit is ON.

7–4 Preparation for Operation
This section describes the procedures required to begin Programming Con-
sole operation. These include password entry, clearing memory, and error
message clearing.

The following sequence of operations must be performed before beginning
initial program input.

Mode Changes

Preparation for Operation Section 7–4

!

125

1. Confirm that all wiring for the PC has been installed and checked prop-
erly.

2. Confirm that a RAM Unit is mounted as the Memory Unit and that the
write-protect switch is OFF.

3. Connect the Programming Console to the PC (referring to the Program-
ming Console Operation Guide). Make sure that the Programming Con-
sole is securely connected or mounted to the CPU; improper connection
may inhibit operation.

4. Set the mode switch to PROGRAM mode.
5. Turn on PC power.
6. Enter the password.
7. Clear memory.

Each of these operations from entering the password on is described in detail
in the following subsections. All operations should be done in PROGRAM
mode unless otherwise noted.

7–4–1 Entering the Password
To gain access to the PC’s programming functions, you must first enter the
password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned on or, if PC
power is already on, after the Programming Console has been connected to
the PC. To gain access to the system when the ”Password!” message ap-
pears, press CLR and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is al-
ready on, the first display below will indicate the mode the PC was in before
the Programming Console was connected.

When the password is entered, the PC will shift to the mode set on the mode
switch, causing PC operation to begin if the mode is set to RUN or MONI-
TOR. You can change the mode to RUN or MONITOR with the mode switch
after entering the password.

Indicates the mode set by the mode selector switch.

WARNING Never change the PC operating mode or enter the password without first
confirming that it is safe to do so. Changing the mode or entering the password
can create dangerous or fatal situations when the controlled system starts or
stops as a result of changing the PC operating mode.

Immediately after the password is input or anytime immediately after the
mode has been changed, SHIFT and then the 1 key can be pressed to turn
ON and OFF the beeper that sounds when Programming Console keys are
pressed. If BZ is displayed in the upper right corner, the beeper is operative.
If BZ is not displayed, the beeper is not operative.

1, 2, 3...

Beeper

Preparation for Operation Section 7–4

126

The beeper will also sound whenever an error occurs during PC operation.
Beeper operation for errors is not affected by the above setting.

7–4–2 Clearing Memory
Using the Memory Clear operation it is possible to clear all or part of the Pro-
gram Memory, and the IR, HR, DM and TC areas. Unless otherwise speci-
fied, the clear operation will clear all memory areas above provided that the
Memory Unit attached to the PC is a RAM Unit or an EEPROM Unit and the
write-protect switch is OFF. If the write-protect switch is ON, or the Memory
Unit is an EPROM Unit, Program Memory cannot be cleared.

Before beginning to program for the first time or when installing a new pro-
gram, clear all areas. To clear all memory areas, press CLR until all zeros are
displayed and then the top line of the following sequence. The branch lines in
the sequence are used when clearing only part of the memory areas, which
is described below. Memory can be cleared in PROGRAM mode only.

Key Sequence

The following procedure is used to clear memory completely.All Clear

Preparation for Operation Section 7–4

127

It is possible to retain the data in specified areas and/or part of the Program
Memory. To retain the data in the HR and TC, and/or DM areas, press the
appropriate key after entering REC/RESET. The CNT key is used for the en-
tire TC area. The display will show those areas that will be cleared.

It is also possible to retain a portion of the Program Memory from the begin-
ning to a specified address. After designating the data areas to be retained,
specify the first Program Memory address to be cleared. For example, to
leave addresses 0000 to 0122 untouched, but to clear addresses from 0123
to the end of Program Memory, input 0123.

For example, to leave the TC area uncleared and retaining Program Memory
addresses 0000 through 0122, input as follows:

Partial Clear

Preparation for Operation Section 7–4

128

7–5 Inputting, Modifying, and Checking the Program
Once a program has been converted to mnemonic code, it is ready to be in-
put into the PC and checked. Mnemonic code is keyed into Program Memory
addresses from the Programming Console. Checking the program involves a
syntax check to see that the program has been written according to syntax
rules before trial execution and finally correction under actual conditions can
begin.

The operations required to input a program are explained below. Operations
to modify programs that already exist in memory are also provided in this
section, as well as the procedure to obtain the current scan time.

7–5–1 Setting and Reading from Program Memory Address
When inputting a program for the first time, it is generally input from Program
Memory address 0000. As this address appears when the display is cleared,
it is not necessary to input it.

When inputting a program starting from other than 0000 or to read or modify
a program that already exists in memory, the desired address must be desig-
nated. To designate an address, press CLR and then input the desired ad-
dress. Leading zeros of the address need not be input, i.e., when specifying
an address such as 0053 you need to enter only 53. The contents of the des-
ignated address will not be displayed until the down key is pressed.

Once the down key has been pressed to display the contents of the desig-
nated address, the up and down keys can be used to scroll through Program
Memory. Each time one of these keys is pressed, the next or previous word
in Program Memory will be displayed.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

Key Sequence

If the following mnemonic code has already been input into Program Memory,
the key inputs below would produce the displays shown.

Address Instruction Data

0200 LD 0000

0201 AND 0001

0202 TIM 00

#0123

0203 LD 0100

Example

Inputting, Modifying, and Checking the Program Section 7–5

129

7–5–2 Inputting or Overwriting Programs
Programs can be input or overwritten only in PROGRAM mode.

The same procedure is used to either input a program for the first time or to
overwrite a program that already exists. In either case, the current contents
of Program Memory are overwritten, i.e., if there is no previous program, the
NOP(00) instruction, which will be written at every address, will be overwrit-
ten.

To input a program, just follow the mnemonic code that was produced from
the ladder diagram, making sure that the proper address is set before start-
ing. Once the proper address is displayed, input the first instruction word,
press WRITE, and then input any operands required, pressing WRITE after
each, i.e., WRITE is pressed at the end of each line of the mnemonic code.
When WRITE is pressed, the designated instruction will be input and the next
display will appear. If the instruction requires two or more words, the next
display will indicate the next operand required and provide a default value for
it. If the instruction requires only one word, the next address will be dis-
played. Continue inputting each line of the mnemonic code until the entire
program has been input.

When inputting numeric values for operands, it is not necessary to input lead-
ing zeros. Leading zeros are required only when inputting function codes
(see below). When designating operands, be sure to designate the data area
for all but IR and SR addresses by pressing the corresponding data area key
or to designate a constant by pressing CONT/# . CONT/# is not required for
counter or timer SV (see below). TC numbers as bit operands (i.e., comple-
tion flags) are designated by pressing either TIM or CNT before the address,
depending on whether the TC number has been used to define a timer or a
counter.

The SV (set value) for a timer or counter is generally input as a constant, al-
though inputting the address of a word that holds the SV is also possible.

Inputting SV for Counters
and Timers

Inputting, Modifying, and Checking the Program Section 7–5

130

When inputting an SV as a constant, CONT/# is not required; just input the
numeric value and press WRITE. To designate a word, press CLR and then
input the word address as described above.

The most basic instructions are input using the Programming Console keys
provided for them. All other instructions are input using function codes.
These function codes are always written after the instruction’s mnemonic. If
no function code is given, there should be a Programming Console key for
that instruction.

To input an instruction word using a function code, set the address, press
FUN, input the function code including any leading zero, input any bit oper-
ands or definers required on the instruction line, and then press WRITE.

Enter function codes with care.

The following ladder diagram can be input using the key inputs shown below.
Displays will appear as indicated.

Address Instruction Data

0200 LD 0002

0201 TIM 00

#0123

0202 TIMH(15) 01

#0500

Designating Instructions

Note

Example

Inputting, Modifying, and Checking the Program Section 7–5

131

The following error messages may appear when inputting a program. Correct
the error as indicated and continue with the input operation. The asterisks in
the displays shown below will be replaced with numeric data, normally an
address, in the actual display.

Error Messages

Inputting, Modifying, and Checking the Program Section 7–5

132

Message Cause and correction

****REPL ROM An attempt was made to write to ROM or to write-protected
RAM. Be sure a RAM Unit is mounted and that its write-pro-
tect switch is set to OFF.

****PROG OVER The instruction at the last address in memory is not NOP(00).
Erase all unnecessary instructions at the end of the program
or use a larger Memory Unit.

****ADDR OVER An address was set that is larger than the highest memory in
Program Memory. Input a smaller address

****SETDATA ERR Data has been input in the wrong format or beyond defined
limits, e.g., a hexadecimal value has been input for BCD.
Reinput the data.

****I/O NO. ERR A data area address has been designated that exceeds the
limit of the data area, e.g., an address is too large. Confirm
the requirements for the instruction and reinput the address.

7–5–3 Checking the Program
Once a program has been input, it should be checked for syntax to be sure
that no programming rules have been violated. This check should also be
performed if the program has been changed in any way that might create a
syntax error.

To check the program, input the key sequence shown below. If an error is
discovered, the check will stop and a display indicating the error will appear.
Press SRCH to continue the check. If an error is not found, the program will
be checked through the first END(01), with a display indicating when each 64
instructions have been checked (e.g., display #1 below).

CLR can be pressed to cancel the check after it has been started, and a dis-
play like display #2, in the example, will appear. When the check has reached
the first END, a display like display #3 will appear.

A syntax check can be performed on a program only in PROGRAM mode.

Key Sequence

The following table provides the error types, displays, and explanations of all
syntax errors. The address where the error was generated will also be dis-
played.

Message Meaning and appropriate response

????? The program has been destroyed. Reinput the program.

NO END INSTR There is no END(01) in the program. Write END(01) at the
final address in the program.

CIRCUIT ERR The number of logic blocks and logic block instructions does
not agree, i.e., either LD or LD NOT has been used to start a
logic block whose execution condition has not been used by
another instruction or a logic block instruction has been used
that does not have the required number of logic blocks (i.e.,
unused execution conditions). Check your program.

IL–ILC ERR IL(02) and ILC(03) are not used in pairs. Correct the program
so that each IL(02) has a unique ILC(03). Although this error
message will appear if more than one IL(02) is used with the
same ILC(03), the program will be executed as written. Make
sure your program is written as desired before proceeding.

Error Messages

Inputting, Modifying, and Checking the Program Section 7–5

133

Message Meaning and appropriate response

JMP–JME ERR JMP(04) and JME(05) are not used in pairs. Match each
JMP(04) to a JME(05).

COIL DUPL The same bit is being controlled (i.e., turned ON and/or OFF)
by more than one instruction (e.g., OUT, OUT NOT, DIFU(13),
DIFD(14), KEEP(11), SFT(10)). Although this is allowed for
certain instructions, check instruction requirements to confirm
that the program is correct or rewrite the program so that each
bit is controlled by only one instruction.

DIF OVER More than 48 DIFU(14) and DIFD(14) are used in the pro-
gram. Reduce the number of DIFU(13) and DIFD(14) used to
48 or less.

JMP OVER More than either jumps are used in the program. Reduce the
number of JMP(04) and JME(05) pairs.

The following examples shows some of the displays that can appear as a
result of a program check.

Display #1

Display #2

Display #3

Halts program check

Check continues until END(01)

When errors are found

7–5–4 Displaying the Scan Time
Once the program has been cleared of syntax errors, the scan time should
be checked. This is possible only in RUN or MONITOR mode while the pro-

Example

Inputting, Modifying, and Checking the Program Section 7–5

134

gram is being executed. See Section 6 Program Execution Timing for details
on the scan time.

To display the current average scan time, press CLR then MONTR. The time
displayed by this operation is an average scan time. The differences in dis-
played values depend on the execution conditions that exist when MONTR is
pressed.

 Example

7–5–5 Program Searches
The program can be searched for occurrences of any designated instruction
or data area bit address used in an instruction. Searches can be performed
from any currently displayed address or from a cleared display.

To designate a bit address, press SHIFT, press CONT/#, then input the ad-
dress, including any data area designation required, and press SRCH. To
designate an instruction, input the instruction just as when inputting the pro-
gram and press SRCH. Once an occurrence of an instruction or bit address
has been found, any additional occurrences of the same instruction or bit can
be found by pressing SRCH again. SRCHG will be displayed while a search
is in progress.

When the first word of a multiword instruction is displayed for a search opera-
tion, the other words of the instruction can be displayed by pressing the down
key before continuing the search.

If Program Memory is read in RUN or MONITOR mode, the ON/OFF status
of any bit displayed will also be shown.

Key Sequence

Inputting, Modifying, and Checking the Program Section 7–5

135

Example: Instruction
Searches

Inputting, Modifying, and Checking the Program Section 7–5

136

Bit Search

7–5–6 Inserting and Deleting Instructions
In PROGRAM mode, any instruction that is currently displayed can be de-
leted or another instruction can be inserted before it. These are not possible
in RUN or MONITOR modes.

To insert an instruction, display the instruction before which you want the new
instruction to be placed, input the instruction word in the same way as when
inputting a program initially, and then press INS and the down key. If other
words are required for the instruction, input these in the same way as when
inputting a program initially.

To delete an instruction, display the instruction word of the instruction to be
deleted and then press DEL and the up key. All the words for the designated
instruction will be deleted.

Be careful not to inadvertently delete instructions; there is no way to recover
them without reinputting them completely.

Key Sequences

When an instruction is inserted or deleted, all addresses in Program Memory
following the operation are adjusted automatically so that there are no blank
addresses and no unaddressed instructions.

The following mnemonic code shows the changes that are achieved in a pro-
gram through the key sequences and displays shown below.

Note

Example

Inputting, Modifying, and Checking the Program Section 7–5

137

Address Instruction Data

0000 LD 0100

0001 AND 0101

0002 LD 0201

0003 AND NOT 0102

0004 OR LD –

0005 AND 0103

0006 AND NOT 0104

0007 OUT 0201

0008 END(01) –

Before Insertion

Address Instruction Data

0000 LD 0100

0001 AND 0101

0002 LD 0201

0003 AND NOT 0102

0004 OR LD –

0005 AND 0103

0006 AND 0105

0007 AND NOT 0104

0008 OUT 0201

0009 END(01) –

Address Instruction Data

0000 LD 0100

0001 AND NOT 0101

0002 LD 0201

0003 AND NOT 0102

0004 OR LD –

0005 AND 0103

0006 AND 0105

0007 AND NOT 0104

0008 OUT 0201

After Insertion After Deletion

The following key inputs and displays show the procedure for achieving the
program changes shown above.

Inputting, Modifying, and Checking the Program Section 7–5

138

Find the
address
prior to the
insertion
point

Insert the
instruction

Inputting, Modifying, and Checking the Program Section 7–5

139

Find the
instruction
that re-
quires dele-
tion.

Confirm that
this is the
instruction to
be deleted.

Inputting, Modifying, and Checking the Program Section 7–5

140

7–6 Program Backup and Restore Operations
Program Memory (UM) can be backed-up on a standard commercially avail-
able cassette tape recorder. Any kind of dependable magnetic tape of ade-
quate length will suffice. To save a 16K-word program, the tape must be 30
minutes long. Always allow about 5 seconds of blank tape leader before the
taped data begins. Store only one program on a single side of a tape; there is
no way to identify separate programs stored on the same side of the tape. If
a program is longer than will fit on one side, it can be split onto two sides.

Be sure to label the contents of all cassette tapes clearly.

Use patch cords to connect the cassette recorder earphone (or LINE-OUT)
jack to the Programming Console EAR jack and the cassette recorder micro-
phone (or LINE-IN) jack to the Programming Console MIC jack. Set the cas-
sette recorder volume and tone controls to maximum levels.

The PC must be in PROGRAM mode for all cassette tape operations.

While the operation is in progress, the cursor will blink and the block count
will be incremented on the display.

Cassette tape operations may be halted at any time by pressing the CLR key.

The following error messages may appear during cassette tape operations.

Message Meaning and appropriate response

0000 ERR ******* File number on cassette and designated file number are
FILE NO.******** not the same. Repeat the operation using the correct file

number.

**** MT VER ERR Cassette tape contents differs from that in the PC. Check
content of tape and/or the PC.

**** MT ERR Cassette tape is faulty. Replace it with another.

7–6–1 Saving Program Memory Data
This operation is used to copy the content of Program Memory to a cassette
tape. The procedure is as follows:

1. Press EXT.
2. Input a file number for the data that is to be saved.
3. Start cassette tape recording.
4. Within 5 seconds, press the SHIFT and REC/RESET keys.

Program saving continues until END(01) or the final address is reached.
Cancel by pressing the CLR key.

Key Sequence

Error Messages

1, 2, 3...

Program Backup and Restore Operations Section 7–8

141

Example

Saved up to the final address)

Stop recording with CLR

When it comes to END

(Recording in progress)

Within 5 seconds...

Blinking

Blinking

Blinking

7–6–2 Restoring or Comparing Program Memory Data
This operation is used to restore Program Memory data from a cassette tape
or to compare Program Memory data with the contents on a cassette tape.
The procedure is as follows:

1. Press EXT.
2. Specify the number of the file to be restored or compared.
3. Start playing the cassette tape.
4. Within 5 seconds, press SHIFT and PLAY/SET to restore data or VER to

compare data.

Program restoration or comparison continues until the final address or
END(01) is reached or until the tape is finished. Cancel by pressing the CLR
key.

To restore or compare program data recorded on two sides of a tape or on
two or more tapes, begin restoring or comparing from the lowest address.

1, 2, 3...

Program Backup and Restore Operations Section 7–8

142

Key Sequence

Example

Program Backup and Restore Operations Section 7–8

143

7–7 Debugging
After inputting a program and correcting it for syntax errors, it must be exe-
cuted and all execution errors must be eliminated. Execution errors include
an excessively long scan time, errors in settings for various Units in the PC,
and inappropriate control actions, i.e., the program not doing what it is de-
signed to do.

When necessary, the program can first be executed isolated from the actual
control system and wired to artificial inputs and outputs to check for certain
types of errors before actual trial operation with the controlled system.

When an error occurs during program execution, it can be displayed for iden-
tification by pressing CLR, FUN, and then MONTR. If an error message is
displayed, the MONTR key can be press to access any other error messages
that are stored by the system in memory. If MONTR is pressed in PROGRAM
mode, the error message will be cleared from memory; be sure to write down
the error message when required before pressing MONTR. OK will be dis-
played when the last message has been cleared.

If a beeper sounds and the error cannot be cleared by pressing MONTR, the
cause of the error still exists and must be eliminated before the error mes-
sage can be cleared. If this happens, take the appropriate corrective action to
eliminate the error. Refer to Section 8 Troubleshooting for all details on all
error messages. The sequence in which error messages are displayed de-
pends on the priority levels of the errors. The messages for fatal errors (i.e.,
those that stop PC operation) are displayed before non-fatal ones.

Although error messages can be displayed in any mode, they can be cleared
only in PROGRAM mode. There is no way to restart the PC following a fatal
error without first clearing the error message in PROGRAM mode.

Key Sequence

The following displays show some of the messages that may appear. Refer
to Section 8 Troubleshooting for an inclusive list of error messages, mean-
ings, and appropriate responses.

Displaying and Clearing
Error Messages

Example

Debugging Section 7–6

144

Fatal
errors

Non-fatal
errors

All errors
have been
cleared

7–8 Monitoring Operation and Modifying Data
The simplest form of operation monitoring is to display the address whose
operand bit status is to be monitored using the Program Read or one of the
search operations. As long as the operation is performed in RUN or MONI-
TOR mode, the status of any bit displayed will be indicated.

This section provides other procedures for monitoring data as well as proce-
dures for modifying data that already exists in a data area. Data that can be
modified includes the PV (present value) and SV (set value) for any timer or
counter.

All monitor operations in this section can be performed in RUN, MONITOR,
or PROGRAM mode and can be cancelled by pressing the CLR key.

All data modification operations except for timer/counter SV changes are per-
formed after first performing one of the monitor operations. Data modification
is possible in either MONITOR or PROGRAM mode, but cannot be per-
formed in RUN mode.

Monitoring Operation and Modifying Data Section 7–7

145

7–8–1 Bit/Digit Monitor
The status of any bit or word in any data area can be monitored using the
following operation. Although the operation is possible in any mode, ON/OFF
status displays will be provided for bits only in MONITOR or RUN mode.

The Bit/Digit Monitor operation can be entered either from a cleared display
by designating the first bit or word to be monitored or it can be entered from
any address in the program by displaying the bit or word address whose
status is to be monitored and pressing MONTR.

When a bit is monitored, it’s ON/OFF status will be displayed (in MONITOR
or RUN mode); when a word address is designated other than a timer or
counter, the digit contents of the word will be displayed; and when a timer or
counter number is designated, the PV of the timer will be displayed and a
small box will appear if the timer or counter’s completion flag is ON. The
status of TR bits and SR flags cleared when END(01) is executed (e.g., the
arithmetic flags) cannot be monitored.

Up to six memory addresses, either bits, words, or a combination of both,
can be monitored at once, although only three of these are displayed at any
one time. To monitor more than one address, return to the start of the proce-
dure and continue designating addresses. Monitoring of all designated ad-
dresses will be maintained unless more than six addresses are designated. If
more than six addresses are designated, the leftmost address of those being
monitored will be cancelled.

To display addresses that are being monitored but are not presently on the
Programming Console display, press MONTR without designating another
address. The addresses being monitored will be shifted to the right. As
MONTR is pressed, the addresses being monitored will continue shifting to
the right until the rightmost address is shifted back onto the display from the
left.

During a monitor operation the up and down keys can be pressed to incre-
ment and decrement the leftmost address on the display and CLR can be
pressed to cancel monitoring the leftmost address on the display. If the last
address is cancelled, the monitor operation will be cancelled. The monitor
operation can also be cancelled regardless of the number of addresses being
monitored by pressing SHIFT and then CLR.

LD and OUT can be used only to designate the first address to be displayed;
they cannot be used when an address is already being monitored.

Monitoring Operation and Modifying Data Section 7–7

146

Key Sequence

The following examples show various applications of this monitor operation.

Program Read then Monitor

Indicates the Completion flag is ON

Examples

Monitoring Operation and Modifying Data Section 7–7

147

Bit Monitor

Word Monitor

Monitoring Operation and Modifying Data Section 7–7

148

Multiple Address Monitoring

7–8–2 Force Set/Reset
When the Bit/Digit Monitor operation is being performed and a bit, timer, or
counter address is leftmost on the display, PLAY/SET can be pressed to turn
ON the bit, start the timer, or increment the counter and REC/RESET can be
pressed to turn OFF the bit or reset the timer or counter. Timers will not oper-
ate in PROGRAM mode. SR bits cannot be turned ON and OFF with this op-
eration.

Monitoring Operation and Modifying Data Section 7–7

149

Bit status will remain ON or OFF for only one scan after pressing the key; it
will then return to its original status. When timers or counters are reset in
MONITOR mode, they will start after one scan.

This operation can be used in MONITOR mode to check wiring of outputs
from the PC prior to actual program execution. This operation cannot be
used in RUN mode.

Key Sequence

The following example shows how either bits or timers can be controlled with
the Force Set/Reset operation. The displays shown below are for the follow-
ing program section.

Address Instruction Data

0200 LD 0002

0201 TIM 00

0123

0202 LD TIM 00

0203 OR 0501

0204 AND NOT 0003

0205 OUT 0501

0002

TIM 00

TIM
00

0501

0501

0003

The following displays show what happens when TIM 00 is set with 0100
OFF (i.e., 0500 is turned ON) and what happens when TIM 00 is reset with
0100 ON (i.e., timer starts operation, turning OFF 0500, which is turned back
ON when the timer has finished counting down the SV).

Example

Monitoring Operation and Modifying Data Section 7–7

150

Indicates
that the
time is up

Returns to the
original condition
after a scan

The timer
commences after
the first scan

OUT 0501 is ON
after the timer has
reached its SV

Monitoring Operation and Modifying Data Section 7–7

151

7–8–3 Hexadecimal/BCD Data Modification
When the Bit/Digit Monitor operation is being performed and a BCD or hexa-
decimal value is leftmost on the display, CHG can be input to change the
value. SR words cannot be changed.

If a timer or counter is leftmost on the display, the PV will be displayed and
will be the value changed. See 7–8–4 Changing Timer/Counter SV for the
procedure to change SV. PV can be changed in MONITOR mode and only
when the timer or counter is operating.

To change contents of the leftmost word address, press CHG, input the de-
sired value, and press WRITE

Key Sequence

The following example shows the effects of changing the PV of a timer.

PV changed

7–8–4 Changing Timer/Counter SV
The SV of a timer or counter can be changed by inputting a new value nu-
merically when in MONITOR mode. The SV can be changed while the pro-
gram is being executed.

To change the SV, first display the address of the timer or counter whose SV
is to be changed, press the down key, and then press CHG. The new value
can then be input numerically and WRITE pressed to change the SV.

Example

Monitoring Operation and Modifying Data Section 7–7

152

When changing the SV of timers or counters while operation is stopped, use
PROGRAM mode and follow the procedure outlined in 7–5–2 Inputting or
Overwriting Programs.

This operation can be used to change a SV from designation as a constant to
a word address designation and visa verse.

Key Sequence

The following example shows inputting a new constant and changing from a
constant to a word designation.

Inputting New SV

Example

Monitoring Operation and Modifying Data Section 7–7

153

SECTION 8
Troubleshooting

8–1 Introduction 154 .
8–2 Reading and Clearing Errors and Messages 154 .
8–3 Error Messages 154 .
8–4 Error Flags 156 .

!

154

8–1 Introduction
The P-type PCs provide self-diagnostic functions to identify many types of
abnormal system conditions. These functions minimize downtime and enable
quick, smooth error correction.

This section provides information on hardware and software errors that occur
during PC operation. Program input and program syntax errors are described
in 7–5 Inputting, Modifying and Checking the Program. Although described in
Section 3 Memory Areas, flags and other error information provided in SR
areas are listed in 8–4 Error Flags.

There are two indicators on the front of the CPU that provide visual indication
of an abnormality in the PC. The error indicator (ERR) indicates fatal errors
(i.e., ones that will stop PC operation); the alarm indicator (ALARM) indicates
nonfatal ones. These indicators are shown in 2–2 Indicators.

WARNING The PC will turn ON the error indicator (ERR), stop program execution, and turn
OFF all outputs from the PC for most hardware errors, or certain fatal software
errors. PC operation will continue for all other errors. It is the user’s responsibility
to take adequate measures to ensure that a hazardous situation will not result
from automatic system shutdown for fatal errors and to ensure that proper
actions are taken for errors for which the system is not automatically shut down.
System flags and other system and/or user-programmed error indications can
be used to program proper actions.

8–2 Reading and Clearing Errors and Messages
System error messages can be displayed on the Programming Console or
any other Programming Device.

On the Programming Console, press the CLR, FUN, and MONTR keys. If
there are multiple error messages stored by the system, the MONTR key can
be pressed again to access the next message. If the system is in PROGRAM
mode, pressing the MONTR key will clear the error message, so be sure to
write down all message errors as you read them out. (It is not possible to
clear an error or a message while in RUN or MONITOR mode; the PC must
be in PROGRAM mode.) When all messages have been cleared, “ERR CHK
OK” will be displayed.

Details on accessing error messages from the Programming Console are
provided in 7–8 Monitoring Operation and Modifying Data. Procedures for the
GPC, LSS, and FIT are provided in the relevant Operation Manual.

8–3 Error Messages
There are basically two types of errors for which messages are displayed:
non-fatal operating errors, and fatal operating errors.

The type of error can be quickly determined from the indicators on the CPU,
as described below for the two types of errors. If the status of an indicator is
not mentioned, it makes no difference whether it is lit or not.

After eliminating the cause of an error, clear the error message from memory
before resuming operation.

The following error messages appear for errors that occur after program exe-
cution has been started. PC operation and program execution will continue
after one or more of these error have occurred. The POWER, RUN, and
ALARM indicators will be lit and the ERR indicator will not be lit for any of
these errors. The RUN output will be ON.

Non-fatal Operating Errors

Error Messages Section 8–3

155

Error and message

Scan time overrun

Battery error

Probable cause

Watchdog timer has ex-
ceeded 100 ms.

Backup battery is miss-
ing or it’s voltage has
dropped.

Possible correction

Program scan time is longer
then desirable. Reduce scan
time if possible.

Check battery and replace if
necessary.

The following error messages appear for errors that occur after program exe-
cution has been started. PC operation and program execution will stop and
all outputs from the PC will be turned OFF when any of the following errors
occur. All CPU indicators will not be lit for the power interruption error. For all
other fatal operating errors, the POWER, and ERR indicators will be lit and
the RUN indicator will not be lit. The RUN output will be OFF.

Error and message

Power interruption

 No message

CPU error

 No message

Memory error

No END(01) instruction

I/O bus error

Probable cause

Power has been inter-
rupted for at least 10 ms.

Watchdog timer has ex-
ceeded maximum setting
(default setting: 130 ms).

Memory Unit is incor-
rectly mounted or miss-
ing or parity error has oc-
curred.

END(01) is not written
anywhere in program.

Error has occurred in the
bus line between the
CPU and Units.

Possible correction

Check power supply voltage and
power lines. Try to power-up
again.

Restart system in PROGRAM
mode and check program. Re-
duce scan time or reset watch-
dog timer if longer time required.
(Consider effects of longer scan
time before resetting).

Check Memory Unit to make sure
it is mounted and backed up
properly. Perform a Program
Check Operation to locate cause
of error. If error not correctable,
try inputting program again.

Write END(01) at the final ad-
dress of the program.

Check the CPU Left/Right selec-
tor switch on the Expansion I/O
Unit. Check cable connections
between the Units and Racks.

Fatal Operating Errors

Error Messages Section 8–3

156

8–4 Error Flags
The following table lists the flags and other information provided in the SR
area that can be used in troubleshooting. Details are provided in 3–4 SR
Area.

SR Area

Address Function

1808 Battery Alarm Flag

1809 Scan Time Error Flag

1903 Instruction Execution Error (ER) Flag

A number of other error messages are detailed within this manual. Errors in
program input and debugging can be examined in Sections 7–5–2 and 7–5–3
and errors in cassette tape operation are detailed in Section 7–8.

Other Error Messages

Error Flags Section 8–4

157

Appendix A
Standard Models

There are four basic sizes of P-type C-series CPU. A CPU can be combined with any of six basic sizes of Expan-

sion I/O Unit and/or Analog Timers, Analog I/O Units, or an I/O Link Unit.

CPUs Expansion I/O Units Analog Timer Unit

Analog I/O Units

I/O Link Unit

C20P–C_ _–_

C28P–C_ _–_

C40P–C_ _–_

C60P–C_ _–_

C4K–I_/O_ _ C4K–TM

C16P–I_–_/O_–_

C20P–E_ _–_

C28P–E_ _–_

C40P–E_ _–_

C60P–E_ _–_

C1K–AD/DA

C4K–AD

C4K–CN502
(included with Unit)

To order cable
separately, specify
C4K–CN502

5 cm or 40 cm
One included with
each Expansion I/O
Unit.

Cable (70 cm)
C20P–CN711
(ordered separately)

C20–LK011/LK011–P

C20P

C28P

C40P

C60P

C20P

C28P

C16P

C60P

C40P

C4K – AD

Standard Models Appendix A

158

• U: UL, C: CSA, N: NK
See Omron sales representatives concerning operating conditions
under which UL, CSA, and NK standards were met (Aug. 1988).

CPUs

Name Power supply Inputs Outputs Model number Standards

C20P 100 to 240 VAC 24 VDC, 12 pts. Relay with socket 8 pts. C20P–CDR–AE U, C

Transistor, 0.5 A C20P–CDT–AE U, C

Transistor, 1 A C20P–CDT1–AE U

Triac, 1 A C20P–CDS1–AE U, C

24 VDC, 2 pts.

100 VAC, 10 pts.

Relay with socket C20P–CAR–AE U, C

24 VDC 24 VDC, 12 pts. Relay with socket C20P–CDR–DE U, C

Transistor, 0.5 A C20P–CDT–DE U

Transistor, 1 A C20P–CDT1–DE U

C28P 100 to 240 VAC 24 VDC, 16 pts. Relay with socket 12 pts. C28P–CDR–AE U, C

Transistor, 0.5 A C28P–CDT–AE U, C

Transistor, 1 A C28P–CDT1–AE U, C

Triac, 1 A C28P–CDS1–AE U, C

24 VDC, 2 pts.

100 VAC, 14 pts.

Triac, 1A C28P–CAS1–AE U, C

24 VDC 24 VDC, 24 pts. Relay with socket C40P–CDR–DE U, C

Transistor, 0.5 A C28P–CDT–DE U

Transistor, 1 A C28P–CDT1–DE U

C40P 100 to 240 VAC 24 VDC, 24 pts. Relay with socket 16 pts. C40P–CDR–AE U, C

Transistor, 0.5 A C40P–CDT–AE –––

Transistor, 1 A C40P–CDT1–AE U, C

Triac, 1 A C40P–CDS1–AE U, C

24 VDC, 2 pts. Relay with socket C40P–CAR–AE C

100 VAC, 22 pts. Triac, 1 A C40P–CAS1–AE U, C

24 VDC 24 VDC, 24 pts. Relay with socket C40P–CDR–DE U, C

Transistor, 0.5 A C40P–CDT–DE U

Transistor, 1 A C40P–CDT1–DE U

C60P 100 to 240 VAC 24 VDC, 32 pts. Relay with socket 28 pts. C60P–CDR–AE –––

Transistor, 1 A C60P–CDT1–AE –––

Triac, 1 A C60P–CDS1–AE –––

24 VDC, 2 pts. Relay with socket C60P–CAR–AE –––

100 VAC, 30 pts. Triac, 1 A C60P–CAS1–AE –––

24 VDC 24 VDC, 32 pts. Relay with socket C60P–CDR–DE –––

Transistor, 1 A C60P–CDT1–DE –––

Appendix AStandard Models

159

Expansion I/O Units
Name Power supply Inputs Outputs Model number Standards

C4K Expansion ––– 24 VDC, 4 pts. ––– 4 pts. C4K–ID U, C

I/O Unit 100 to 120 VAC,

4 pts.

––– C4K–IA U, C

––– Relay with socket C4K–OR2 U, C

Transistor, 1 A C4K–OT2 U, C

Triac, 1A C4K–OS2 U, C

C16P Expansion 100 to 240 VAC 24 VDC, 16 pts. ––– 16 pts. C16P–ID–A U, C

I/O Unit ––– Relay with socket C16P–OR–A U, C

Transistor, 1 A C16P–OT1–A U, C

Triac, 1A C16P–OS1–A U, C

––– 24 VDC, 16 pts. ––– C16P–ID U, C

100 to 120 VAC,

16 pts.

––– C16P–IA U, C

24 VDC ––– Relay with socket C16P–OR–D U

Transistor, 1 A C16P–OT1–D U

C20P Expansion 100 to 240 VAC 24 VDC, 12 pts. Relay with socket 8 pts. C20P–EDR–A U, C, N

I/O Unit Transistor, 1 A C20P–EDT1–A N

Triac, 1A C20P–EDS1–A U, C, N

100 to 120 VAC,

12 pts.

Relay with socket C20P–EAR–A U, C, N

Triac, 1A C20P–EAS1–A U, C, N

24 VDC 24 VDC, 12 pts. Relay with socket C20P–EDR–D U, C, N

Transistor, 1 A C20P–EDT1–D –––

C28P Expansion 100 to 240 VAC 24 VDC, 16 pts. Relay with socket 12 pts. C28P–EDR–A U, C, N

I/O Unit Transistor, 1 A C28P–EDT1–A N

Triac, 1A C28P–EDS1–A U, C, N

100 to 120 VAC,

16 pts.

Relay with socket C28P–EAR–A U, C

Triac, 1A C28P–EAS1–A U, C, N

24 VDC 24 VDC, 16 pts. Relay with socket C28P–EDR–D U, C, N

Transistor, 1 A C28P–EDT1–D –––

Standard Models Appendix A

160

• U: UL, C: CSA, N: NK
See Omron sales representatives concerning operating conditions
under which UL, CSA, and NK standards were met (Aug. 1988).

Name StandardsModel numberOutputsInputsPower supply

C40P Expansion 100 to 240 VAC 24 VDC, 24 pts. Relay with socket 16 pts. C40P–EDR–A U, C, N

I/O Unit Transistor, 1 A C40P–EDT1–A –––

Triac, 1A C40P–EDS1–A U, C, N

100 to 120 VAC,

24 pts.

Relay with socket C40P–EAR–A U, C, N

Triac, 1A C40P–EAS1–A U, C, N

24 VDC 24 VDC, 24 pts. Relay with socket C40P–EDR–D U, C, N

Transistor, 1 A C40P–EDT1–D –––

C60P Expansion 100 to 240 VAC 24 VDC, 32 pts. Relay with socket 28 pts. C60P–EDR–A –––

I/O Unit Transistor, 1 A C60P–EDT1–A –––

Triac, 1A C60P–EDS1–A –––

100 VAC, 32

pts.

Relay with socket C60P–EAR–A –––

Triac, 1A C60P–EAS1–A –––

24 VDC 24 VDC, 32 pts. Relay with socket C60P–EDR–D –––

Transistor, 1 A C60P–EDT1–D –––

Appendix AStandard Models

161

Special Units

Name Specifications Model number Standards

Analog Timer Unit Settings: 0.1 s to 10 min (C4K–CN502 Cable, included) C4K–TM –––

Analog Timer

Variable Resistor

Connector

2–m cable and connector C4K–CN223 –––

Analog Input Unit 1 input; input ranges: 4 to 20 mA, 1 to 5 V C1K–AD –––

4 inputs; input ranges: 4 to 20 mA, 1 to 5 V C4K–AD –––

Analog Output Unit 1 output; output ranges: 4 to 20 mA, 1 to 5 V C1K–DA –––

Host Link Unit RS–232C 3G2C7–LK201–EV1 –––

RS–422 3G2C7–LK202–EV1 –––

I/O Link Unit APF/PCF C20–LK011–P –––

PCF C20–LK011 –––

I/OConnectingCable For horizontal mounting; cable length: 5 cm

(for maintenance)

C20P–CN501 –––

For vertical mounting; cable length: 40 cm

(for maintenance)

C20P–CN411 –––

I/OConnecting Cable For horizontal mounting; connects to Cable length: 5 cm C4K–CN502 –––

C4K I/O Units, Analog Timer Unit, or Cable length: 50 cm C4K–CN512 –––

Analog I/O Units (for maintenance) Cable length: 1 m C4K–CN122 –––

I/O Link Connecting

Cable

Cable length: 70 cm; for I/O Link Units only C20P–CN711 –––

EPROM 2764 ROM–H –––

Battery Set Built into CPU (same for all C–series PCs) 3G2A9–BAT08 –––

Relay 24-VDC contact relay G6B–1174P–FD–US U, C

24-VDC transistor relay G3SD–Z01P–PD–US U, C

24-VDC triac relay G3S–201PL–PD–US U, C

Standard Models Appendix A

162

• U: UL, C: CSA, N: NK
See Omron sales representatives concerning operating conditions
under which UL, CSA, and NK standards were met (Aug. 1988).

DIN Products

Name Specifications Model number Standards

DIN Track Length: 50 cm Not usable with C60P PFP–50N

Length: 1 m PFP–100N –––

PFP–100N2

End Plate ––– PFP–M

Spacer ––– PFP–S

Factory Intelligent Terminal (FIT)

Name Specifications Model number Standards

FIT 1. FIT Computer

2. SYSMATE Ladder Pack (2 system disks, 1 data disk)

3. MS-DOS

4. GPC Communications Adapter (C500–IF001)

5. Peripheral Connecting Cable (3G2A2–CN221)

6. Power Cord and 3-pin/2-pin plug

7. Carrying Case

FIT10–SET11–E –––

Graphic Programming Console (GPC)

Name Specifications Model number Standards

GPC (LCD display) With battery; power supply: 32 kw, 100 to 120 VAC; with
comments;SystemMemoryCassetteorderedseparately.

3G2C5–GPC03–E

With battery; power supply: 32 kw, 200 to 240 VAC; with
comments;SystemMemoryCassetteorderedseparately.

3G2C5–GPC04–E

GPC Carrying Case With side pocket for accessories C500–CS001

GPC System Memory
Cassette

With comments 3G2C5–MP303–EV2 –––

Cassette Interface Unit Used to load programs in V8, M1R, M5R, POR, or S6
cassettes into the GPC and print them out through a
Printer Interface Unit.

3G2A5–CMT01–E

Appendix AStandard Models

163

Peripheral Devices

Name Specifications Model number Standards

Programming Console Vertical, with backlight 3G2A5–PRO13–E U, C

Horizontal, with backlight 3G2A6–PRO15–E –––

Hand-held, with backlight. The Programming Console
Adapter AP003 and connecting cable CN222/CN422 are
necessary. They are sold separately.

C200H–PR027–E U, C

Programming Console
Mounting Bracket

Used to attach Hand-held Programming Console to a
panel.

C200H–ATT01 –––

Programming Console For C20P/C28P/C40P/C60P only 1 m 3G2C7–CN122 –––

Connecting Cables 50 cm 3G2C7–CN512 –––

For Hand-held Programming Console 2 m C200H–CN222 U, C

4 m C200H–CN422 U, C

Programming Console
Adapter

Used with C200H–PRO27 and C200H–CN222 3G2A5–AP003 –––

Cassette Recorder
Connecting Cable

Used to connect Programming Console, GPC, or
Cassette Deck Interface Unit to a cassette deck;
length: 1 m.

SCYPOR–PLG01 –––

PROM Writer Used for all P–type PCs. 3G2A5–PRW06 –––

Printer Interface Unit Interface for X–Y plotter or printer; System Memory
Cassette ordered separately.

3G2A5–PRT01–E –––

Memory Pack When mounting P-type CPUs C20–MP009–EV3

Printer Connecting Cable 2 m (also used for X–Y plotter) SCY–CN201 –––

Floppy Disk Interface Unit C20P/C28P/C40P. With comment file; able to connect to
NEC floppy disk controller

3G2C5–FDI03–E –––

Peripheral Interface Unit To connect GPC or FIT to P–type PCs 3G2C7–IP002–V2

Connecting Cable Used to connect FIT or GPC to 2 m 3G2A2–CN221 –––

Peripheral Interface Unit and to 5 m 3G2A5–CN523

connect Programming Console 10 m 3G2A5–CN131

Adapter and Programming Console 20 m 3G2A5–CN231

Base. 30 m 3G2A5–CN331

40 m 3G2A5–CN431

50 m 3G2A5–CN531

165

Appendix B
Programming Instructions

A PC instruction is input either by inputting the corresponding Programming Console key(s) (e.g., LD, AND, OR, NOT) or by using func-
tion codes. To input an instruction via its function code, press FUN, the function code, and then WRITE.

Function code Name Mnemonic Page

–– AND AND 48

–– AND Load AND LD 49

–– AND NOT AND NOT 48

–– Counter CNT 64

–– Load LD 48

–– Load NOT LD NOT 48

–– OR OR 48

–– OR NOT OR NOT 48

–– OR Load OR LD 49

–– Output OUT 49

–– Output NOT OUT NOT 49

–– Timer TIM 57

00 No Operation NOP 56

01 End END 56

02 Interlock IL 53

03 Interlock Clear ILC 53

04 Jump JMP 55

05 Jump End JME 55

10 Shift Register SFT 78

11 Keep KEEP 51

12 Reversible Counter CNTR 67

13 Differentiate Up DIFU 50

14 Differentiate Down DIFD 50

15 High–speed Timer TIMH 61

16 Word Shift WSFT 80

20 Compare CMP 82

21 Move MOV 81

22 Move NOT MVN 82

23 BCD to Binary BIN 84

24 Binary to BCD BCD 85

30 BCD Add ADD 90

31 BCD Subtract SUB 92

40 Set Carry STC 93

41 Clear Carry CLC 93

76 4 to 16 Decoder MLPX 85

77 16 to 4 Encoder DMPX 87

98 High–speed Counter HDM 68

Programming Instructions Appendix B

166
Area IR SR HR TR TC DM #

Bits/Words 0000 to 1807 1808 to 1907 HR 000 to 915 TR 0 to 7 TC 00 to 47 DM 00 to DM 63 0000 to 9999
or 0000 to FFFF

Basic Instructions

Name
Mnemonic Symbol Function Operands

Load
LD

B

Used to start instruction line with status of des-
ignated bit.

B:
IR
SR
HR
AR
LR
TC
TR

Load NOT
LD NOT

B

Used to start instruction line with inverse of
designated bit.

B:
IR
SR
HR
AR
LR
TC

AND
AND B

Logically ANDs status of designated bit with
execution condition.

B:
IR
SR
HR
AR
LR
TC

AND NOT
AND NOT

B

Logically ANDs inverse of designated bit with
execution condition.

B:
IR
SR
HR
AR
LR
TC

OR
OR

B

Logically ORs status of designated bit with ex-
ecution condition.

B:
IR
SR
HR
AR
LR
TC

OR NOT
OR NOT

B

Logically ORs inverse of designated bit with
execution condition.

B:
IR
SR
HR
AR
LR
TC

Block AND
AND LD

Logically ANDs results of preceding blocks. None

Block OR
OR LD

Logically ORs results of preceding blocks. None

Appendix BProgramming Instructions

167

Name
Mnemonic OperandsFunctionSymbol

Output
OUT

B

Turns ON B for ON execution condition; turns
OFF B for OFF execution condition.

B:
IR
SR
HR
AR
LR
TR

Output
NOT
OUT NOT

B

Turns OFF B for ON execution condition; turns
ON B for OFF execution condition.

B:
IR
SR
HR
AR
LR

Timer
TIM

TIM N SV

ON–delay (decrementing) timer operation. Set
value: 999.9 s; accuracy: +0/–0.1 s. Same TC
bit cannot be assigned to more than one timer/
counter. The TC bit is input as a constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

Counter
CNT

CNT N

SV

CP

R

A decrementing counter. SV: 0 to 9999; CP:
count pulse; R: reset input. The TC bit is input
as a constant.

N:
TC

SV:
IR
HR
AR
LR
DM
#

Special Instructions

Name
Mnemonic Symbol Function Operands

End
END(01)

END(01)

Required at the end of the program. None

Interlock
IL(02)
Interlock
Clear
ILC(03)

IL(02)

ILC(03)

If interlock condition is OFF, all outputs are
turned OFF and all timer PVs reset be-
tween this IL(02) and the next ILC(03).
Other instructions are treated as NOP;
counter PVs are maintained.

None

Jump
JMP(04)
Jump End
JME(05)

JMP(04)

JME(05)

All instructions between JMP(04) and the
next JME(05) are ignored when execution
condition is OFF. No more than eight jumps
can be used.

None

Programming Instructions Appendix B

168
Area IR SR HR TR TC DM #

Bits/Words 0000 to 1807 1808 to 1907 HR 000 to 915 TR 0 to 7 TC 00 to 47 DM 00 to DM 63 0000 to 9999
or 0000 to FFFF

Name
Mnemonic OperandsFunctionSymbol

Shift
Register
SFT(10)

I

P

R

SFT(10)
St
E

Creates a bit shift register from the starting
word (St) through the ending word (E). I:
input bit; P: shift pulse; R: reset input. St
must be less than or equal to E and St and
E must be in the same data area.

E St
15 150

IN
0

St/E:
IR
HR
AR
LR

Latching
Relay
KEEP(11) S

KEEP(11)
B

R

Defines a bit (B) as a latch controlled by
set (S) and reset (R) inputs.

B:
IR
HR
AR
LR

Reversible
Counter
CNTR (12)

II

DI

R
N

SV

CNTR(12)

Increases or decreases PV by one when-
ever the increment input (II) or decrement
input (DI) signals, respectively, go from
OFF to ON. SV: 0 to 9999; R: reset input.
Must not access the same TC bit as anoth-
er timer/counter. The TC bit is input as a
constant.

N:
TC

SV:
IR
SR
HR
AR
LR
DM
#

Differentiate
Up
DIFU(13)
Differentiate
Down
DIFD(14)

DIFU(13)

DIFD(14)

B

B

DIFU turns ON the designated bit (B) for
one scan on the rising edge of the input
signal; DIFD turns ON the bit for one scan
on the trailing edge.

B:
IR
HR
AR
LR

High–speed
Timer
TIMH(15)

TIMH
N

SV

A high-speed, ON-delay (decrementing)
timer. SV: 0.01 to 99.99 s; accuracy:
+0/–0.1 s. Must not be assigned the same
TC bit as another timer or couter. The TC
bit is input as a constant.

N:
TC

SV:
IR
SR
HR
AR
LR
HR
#

Word Shift
WSFT(16)

WSFT(16)

E
St

Left shifts data between starting (St) and
ending (E) words in word units, writing zer-
os into starting word. St must be less than
or equal to E and St and E must be in the
same data area.

St/E:
IR
HR
AR
LR
DM

Compare
CMP(20)

CMP(20)
Cp1
Cp2

Compares two sets of four–digit hexadeci-
mal data (Cp1 and Cp2) and outputs result
to GR, EQ, and LE.

Cp1/Cp2:
IR
SR
HR
AR
LR
TC
DM
#

Appendix BProgramming Instructions

169

Name
Mnemonic OperandsFunctionSymbol

Move
MOV(21)

MOV(21)
S
D

Transfers source data (S) (word or four–di-
git constant) to destination word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

Move NOT
MVN(22)

MVN(22)
S
D

Inverts source data (S) (word or four–digit
constant) and then transfers it to destina-
tion word (D).

S:
IR
SR
HR
AR
LR
TC
DM
#

D:
IR
HR
AR
LR
DM

BCD to
Binary
BIN(23) BIN(23)

S
R

Converts four–digit, BCD data in source
word (S) into 16–bit binary data, and out-
puts converted data to result word (R).

S R

x100

x101

x102

x103

x160

x161

x162

x163

(BCD) (BIN)

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

Binary to
BCD
BCD(24) BCD(24)

S
R

Converts binary data in source word (S)
into BCD, and outputs converted data to
result word (R).

x160

x161

x162

x163

x101

x102

x103

S R
(BIN) (BCD)

x100

S:
IR
SR
HR
AR
LR
DM

R:
IR
HR
AR
LR
DM

BCD Add
ADD(30)

ADD(30)
Au
Ad
R

CY CY

Adds two four–digit BCD values (Au and
Ad) and content of CY, and outputs result
to specified result word (R).

Au + Ad + R

Au/Ad:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

BCD
Subtract
SUB(31) SUB(31)

Mi
Su
R

Subtracts both four–digit BCD subtrahend
(Su) and content of CY from four–digit
BCD minuend (Mi) and outputs result to
specified result word (R).

CY CYMi – Su R

Mi/Su:
IR
SR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

Programming Instructions Appendix B

170
Area IR SR HR TR TC DM #

Bits/Words 0000 to 1807 1808 to 1907 HR 000 to 915 TR 0 to 7 TC 00 to 47 DM 00 to DM 63 0000 to 9999
or 0000 to FFFF

Name
Mnemonic OperandsFunctionSymbol

Set Carry
STC(40)

STC(40)

Sets carry flag (i.e., turns CY ON). None

Clear Carry
CLC(41)

CLC(41)

CLC clears carry flag (i.e, turns CY OFF). None

4-to-16
Decoder
MLPX(76) MLPX(76)

S
Di
R

Converts up to four hexadecimal digits in
source word (S) into decimal values from 0
to 15 and turns ON, in result word(s) (R),
bit(s) whose position corresponds to con-
verted value. Digits to be converted desig-
nated by Di (rightmost digit: indicates the
first digit; next digit to left: gives the num-
ber of digits minus 1).

S 0 to F

R

0015

S:
IR
SR
HR
AR
LR
TC
DM

Di:
IR
HR
AR
LR
TC
DM
#

R:
IR
HR
AR
LR
DM

16-to-4
Encoder
DMPX(77) DMPX(77)

S
R
Di

Determines position of highest ON bit in
source word(s) (starting word: S) and turns
ON corresponding bit(s) in result word (R).
Digits to receive converted value are desig-
nated by Di (rightmost digit: indicates the
first digit; next digit to left: gives number of
words to be converted minus 1).

S

15 00

0 to FR

S:
IR
SR
HR
AR
LR
TC
DM

R:
IR
HR
AR
LR
DM

Di:
IR
HR
AR
LR
TC
DM
#

High-speed
Counter
HDM(98) HDM(98)

D

Used to create and control a high-speed
(2-kHz) counter for IR 0000 with software
and hardware (IR 0001) resets.

D:
IR
HR
DM

171

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Appendix C
Programming Console Operations

System Operations

Operation/Description Modes* Key sequence

Password Input
Controls access to the PC’s
programming functions. To gain
access to the system once
“PASSWORD” has been
displayed, press CLR, MONTR,
and then CLR.

R M P
CLR MONTR CLR

Buzzer ON/OFF
The buzzer can be switched to
operate whenever
Programming Console keys are
pressed (as well as for the
normal error indication). BZ is
displayed in the upper right
corner when the buzzer is
operative. The buzzer can be
enabled by pressing SHIFT and
then 1 immediately after
entering the password or after
changing the mode.

R M P
SHIFT

B
1

Data Clear
Unless otherwise specified, this
operation will clear all erasable
memory in Program Memory
and IR, HR, DM, and TC areas.
To clear EEPROM memory the
write-enable switch must be
ON. The branch lines shown
are used only when performing
a partial memory clear, with
each of the memory areas
entered being retained.
Specifying an address will
result in the Program Memory
from that address on being
deleted. All memory up to that
address will be retained. When
installing a new program, all
memory areas should be
cleared.

P
CLR

PLAY

SET
NOT

REC

RESET
MONTR

HR

CNT

DM

[Address]
Partial
Clear

Retained
if
pressed

All Clear

Error Message Read
Displays error messages in
sequence with most severe
mes-sages displayed first.
Press monitor to access
remaining messages.

R P M
CLR FUN MONTR MONTR

Program Header Display
Displays the name of the
program, along with the
version number and the time
it was last revised (given in
year, month, day, hour, and
minute).

R P M

Programming Console Operations Appendix C

172

Programming Operations
Operation/Description Modes* Key sequence

Address Designation
Displays the specified address.
Can be used to start
programming from a non-zero
address or to access an
address for editing. Leading
zeros need not be entered. The
contents of the designated
address will not be dislayed
until the down key is pressed.
The up and down keys can then
be used to scroll through the
Program Memory.

R P M
CLR [Address]

Program Input
Used to enter or edit program
instructions. This operation
overwrites the contents of the
memory at the displayed
address. Input NOT for
differentiated instructions. Input
any operands and press
WRITE after each.

P
[Address
displayed]

[Instruction

word]

[Operand]

Program Read
Allows the user to scroll through
the program
address-by-address. If the
Program Memory is read in
RUN or MONITOR mode, the
ON/OFF status of each
displayed bit is also shown.

R P M
Address
currently
dis-
played

Program Search
Allows the program to be
searched for occurrences of
any desiganted instruction or
data area address. To
designate a bit address, press
SHIFT, CONT/#, and then input
the address, including the data
area code if required. Finally,
press SRCH. Pressing SRCH
again will fnd the next
occurrence. For multiword
instructions, the up and down
keys can be used to scroll
through the words before
continuing the search. If the
Program Memory is in RUN or
MONITOR mode, the ON/OFF
status of each displayed bit will
also be displayed.

R P M
CLR SRCH SRCH

CLR SHIFT
CONT

#

SRCH SRCH

LR

HR

HRSHIFT

TIM

CNT

[Instruction]

[Address]

(AR)

Instruction Insert/Delete
The displayed instruction can
be deleted, or another
instruction can be inserted
before it. Care should be taken
to avoid inadvertant deletions
as there is no way of recovering
them. When an instruction is
deleted all subsequent
instruction addresses are
adjusted so that there are no
empty addresses.

P
INSLocate

position in
program
then
enter

DEL

Instruction
currently
displayed

[Enter new
instruction]

Appendix CProgramming Console Operations

173

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Operation/Description Key sequenceModes*

Program Check
Once a program has been
entered, it should be checked
for errors. The address where
the error was generated will
also be displayed.

P
CLR SRCH

A

0

B
1

C
2

SRCH SRCH

CLR

To check up to END(01)

To abort

(0, 1, 2: check level)

Programming Console Operations Appendix C

174

Monitoring and Data Changing Operations
Operation/Description Modes* Key sequence

Bit/Word Monitor
Up to six memory addresses,
with either words or bits, or a
combination of the two, can be
monitored at once. Only three,
however, can be displayed at
any one time. If operated in
RUN or MONITOR Mode, the
status of monitored bits will also
be displayed.
The operation can be started
from a cleared display by
entering the address of the first
word or bit to be monitored and
pressing MONTR, or from any
address in the program by
displaying the address of the bit
or word to be monitored and
pressing MONTR.

R P M

CLR SHIFT
CONT

#

LR

HR

SHIFT HR

LD

OUT

TIM

CNT

DM

MONTR

CLR

[Address]

(Monitor Clear)

SHIFT

3-word Monitor
Monitors three consecutive
words simultaneously. Specify
the lowest valued address of
the htree words, press MONTR,
and then press EXT to display
the data contents of the
specified word and the two
words that follow. Pressing CLR
will change the three-word
monitor operation into a
single-word display.

R P M

EXTBit/Hex
monitor in progress

Force Set/Reset
If a bit, timer, or counter
address is leftmost on the
screen during a bit/word
monitor operation, pressing
PLAY/SET will turn ON the bit,
start the timer, or increment the
counter. Pressing REC/RESET
will turn OFF the bit, or reset
the timer or counter. Timers will
not operate in PROGRAM
mode. SR bits are not affected
by this operation.

P M PLAY

SET

REC

RESET

Bit/Hex
monitor in progress

Appendix CProgramming Console Operations

175

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Operation/Description Key sequenceModes*

Hex/BCD Data Change
Used to edit the leftmost BCD
or hexadecimal value displayed
during a Bit/Word Monitor
operation. If a timer or counter
is leftmost on the display, the
PV will be the value displayed
and affected by this operation. It
can only be changed in
MONITOR mode and only while
the timer or counter is
operating. SR words cannot be
changed using this operation.

P M
CHG WRITE[New Data]Bit/Hex

monitor in progress

Binary Data Change
This operation is used to
change the value of 16-bit IR,
HR, AR, LR, or DM words
bit-by-bit. The cursor can be
moved left by using the up key,
and right using the down key.
The position of the cursor is the
bit that will be overwritten.
There are two types of
changes, tem-porary and
permanent. Temporary changes
result if 1 or 0 is entered.
Permanent changes are made
by pressing SHIFT and SET, or
SHIFT and RESET. (These are
only avail-able on the C200H
PC.) The former will result in an
S being displayed in that bit
position. Similarly, SHIFT and
RESET will produce an R in the
dis-play.
During operation of the PC, the
bits having 1 or 0 values will
change according to the
conditions. Bits with S or R will,
however, always be treated as
a 1 or 0, respectively. NOT
cancels S and R settings and
the bits will become 1 or 0,
respectively.
Pressing WRITE transfers the
changes made on the display to
the memory.

P M
CHG

B
1

A

0

WRITE
Binary monitor
in progress

SHIFT

REC

RESET

PLAY

SET

NOT

SHIFT

SV Change,
SV Reset
There are two ways of
modifying the SVs for timers
and counters. One method is to
enter a new value. The other is
to increment or decrement the
existing SV. In MONITOR mode
the SV can be changed while
the program is being executed.
Incrementing and decrementing
can only be carried out if the SV
has been entered as a
constant.

P M
M

CHG EXTTimer/Counter
currently displayed

WRITE[New SV]

Programming Console Operations Appendix C

176

Operation/Description Key sequenceModes*

3-word Change
This operation changes the
value of a word displayed
during a 3-word monitor
operation. The blinking cursor
indicates the word that will be
affected by the operation. The
cursor can be moved by using
the up and down keys. When
the cursor is at the desired
location, press CHG. After
entering the new data, pressing
WRITE causes the original data
to be overwritten.

P M

WRITECHG
3-word Monitor
in progress

[Data]

Scan Time Display
This operation should be
performed after all syntax errors
have been corrected. The scan
time can only be checked in
RUN or MONITOR mode and
while the program is being
executed. The scan time
displayed after pressing CLR
and MONTR is that for the
current scan. Pressing MONTR
again will display a new scan
time. The difference between
the displayed scan times is due
to the different execution
conditions that exist during
each scan.

R M
CLR MONTR MONTR

Hex–ASCII Display Change
Converts 4-digit hexadecimal
DM data to ASCII and
vice-versa.

R P M

TRWord currently
displayed

Binary Monitor
The contents of a monitored
word can be specified to be
displayed in binary by pressing
SHIFT and MONTR after
entering the word address.
Words can be scrolled by
pressing the up and down keys
to increment and decrement the
displayed address. To terminate
the binary display, press CLR.

R P M
[Word Address]

Binary monitor
clear

All monitor
clear

Appendix CProgramming Console Operations

177

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Operation/Description Key sequenceModes*

Program Read Protect/Clear R P M
WRITE

REC

RESET
[Mode changed] [4–digit number] Cleared

PLAY

SET
WRITE Protected

Clear Forced Set/Reset
Simultaneously clears all forced
bits within the word currently
displayed.

P M
CLR

REC

RESET

PLAY

SET
NOT

Programming Console Operations Appendix C

178

Cassette Tape Operations

Operation/Description Modes* Key sequence

Program Memory Save
This operation copies data from
the Program Memory to tape.
The file no. refers to an
identifying address for the
information within the tape. For
ease of information retrieval,
the file number and data
information should be written
clearly on the tape. File
numbers should not be used
more than once on one tape. If
only a part of the Program
Memory is to be stored, the
appropriate start and stop
addresses must be entered.
Due to limited memory capacity,
each C60 tape can only store
apporximately 16K words on
each side of the tape. When the
start address is entered, the
maximum stop address is set
as the default. Do not set a stop
address past this one. If you
wish to record past this address
the additional information will
need to be recorded either on
the flip side of the tape or on a
separate tape. After starting the
tape recorder, wait about 5
seconds before pressing
REC/RESET to allow the leader
tape to pass before the data
transmission starts.

P
EXT

A

0 WRITECLR

WRITE Start recording with
the tape recorder.

SHIFT
REC

RESET

[File no.] [Start address]

[Stop address]

After about 5 seconds
(Cancel with the CLR key.)

Program Memory Restore
To read Program Memory data
which has been recorded on a
cassette tape, the keystrokes
are as given here. The file no.
should be the same as the one
entered when the data was
recorded. The read operation
will proceed from the specified
start address up to the end of
the tape, unless halted by a
CLR command. The instruction
must be completed before the
leader tape has been played,
i.e., before the data is reached
on the tape.

P

PLAY

SET

EXT
A

0 WRITECLR

SHIFTStart tape recorder
playback.

[File no.] [Start address]

Within about 5 seconds

Program Memory Compare
The procedure to compare
Program Memory data on a
tape with the Program Memory
in the Program Memory area is
the same as that for reading it
(see above), except that after
starting the tape playback, VER
should be pressed instead of
SHIFT and PLAY/SET.

P

VER

EXT
A

0 WRITECLR

Start tape recorder
playback.

[File no.] [Start address]

Within about 5 seconds

Appendix CProgramming Console Operations

179

*Modes in which the given instruction is applicable: R = RUN, M = MONITOR, P = PROGRAM

Operation/Description Key sequenceModes*

DM Data Save, Restore,
Compare
The procedures for transferring
DM area data to and from tape,
and for comparing it, are
basically the same as for the
Program Memory, given above.
The exceptions are that start
and stop addresses are not
required, and the DM area is
specified instead of the
Program Memory. Each
operation will continue through
to the end of the tape unless
cancelled by pressing clear.

P
EXTCLR

[File no.]

VER

B
1

Start tape recorder
playback.

SHIFT

SHIFT

REC

RESET

PLAY

SET

Start tape recorder re-
cording.

5 second leader tape

PROM Writer Operations

Operation/Description Modes* Key sequence

PC to PROM Writer
Outputs Program Memory to
the RS–232C interface for
writing to a commercial PROM
writer.

P
Start PROM writer
reception

PROM Writer to PC
Read Program Memory data
from a commercial PROM
writer into the PC via the
RS–232C interface.

P
Start PROM writer
transmission

181

Appendix D
Error and Arithmetic Flag Operation

The following table shows which instructions affect the ER, CY, GT, LT and EQ flags. In general, ER indicates
that operand data is not within requirements. CY indicates arithmetic or data shift results. GT indicates that a
compared value is larger than some standard, LT that it is smaller; and EQ, that it is the same. EQ also indi-
cates a result of zero for arithmetic operations. Refer to subsections of Section 5 Instruction Set for details.

Vertical arrows in the table indicate the flags that are turned ON and OFF according to the result of the in-
struction.

Although TIM, CNT, and CNTR are executed when ER is ON, other instructions with a vertical arrow under
the Er column are not executed if ER is ON. All of the other flags in the following table will also not operate
when ER is ON.

Instructions not shown do not affect any of the flags in the table.

Instructions SR 1907 (LE) SR 1906 (EQ) SR 1905 (GR) SR 1904 (CY) SR 1903 (ER)

END(01) OFF OFF OFF OFF OFF

TIM

TIMH(15)

CNT

CNTR(12)

WSFT(16)

CMP(20)

MOV(21)

MVN(22)

BIN(23)

BCD(24)

ADD(30)

SUB(31)

MUL(32)

DIV(33)

STC(40) ON ON

CLC(41) OFF OFF

MLPX(76)

DMPX(77)

SFTR(84)

SBS(91)

Note: means that the flag is affected by the result of instruction execution.

183

Appendix E
Binary–Hexadecimal–Decimal Table

Decimal BCD Hex Binary

00 00000000 00 00000000

01 00000001 01 00000001

02 00000010 02 00000010

03 00000011 03 00000011

04 00000100 04 00000100

05 00000101 05 00000101

06 00000110 06 00000110

07 00000111 07 00000111

08 00001000 08 00001000

09 00001001 09 00001001

10 00010000 0A 00001010

11 00010001 0B 00001011

12 00010010 0C 00001100

13 00010011 0D 00001101

14 00010100 0E 00001110

15 00010101 0F 00001111

16 00010110 10 00010000

17 00010111 11 00010001

18 00011000 12 00010010

19 00011001 13 00010011

20 00100000 14 00010100

21 00100001 15 00010101

22 00100010 16 00010110

23 00100011 17 00010111

24 00100100 18 00011000

25 00100101 19 00011001

26 00100110 1A 00011010

27 00100111 1B 00011011

28 00101000 1C 00011100

29 00101001 1D 00011101

30 00110000 1E 00011110

31 00110001 1F 00011111

32 00110010 20 00100000

185

Appendix F
Word Assignment Recording Sheets

This appendix contains sheets that can be copied by the programmer to record I/O bit allocations and terminal
assignments on the Racks, as well as details of work bits, data storage areas, timers, and counters.

186

Programmer:
Program:
Date: Page:

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Word: Unit:

Bit Field device Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

I/O Bits

187

Programmer:
Program:
Date: Page:

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Area: Word:

Bit Usage Notes

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

Work Bits

188

Programmer:
Program:
Date:
Page:

Word Contents Notes Word Contents Notes

Data Storage

189

Programmer:
Program:
Date: Page:

TC
address

T or
C

Set value Notes TC
address

T or
C

Set value Notes

Timers and Counters

191

Appendix G
Program Coding Sheet

The following page can be copied for use in coding ladder diagram programs. It is designed for flexibility, allowing
the user to input all required addresses and instructions.

When coding programs, be sure to specify all function codes for instructions and data areas (or # for constant) for
operands. These will be necessary when inputting programs though a Programming Console or other Peripheral
Device.

Program Coding Sheet

192

Programmer:
Program:
Date: Page:

Address Instruction Operand(s) Address Instruction Operand(s) Address Instruction Operand(s)

193

Glossary

address The location in memory where data is stored. For data areas, an address
consists of a two-letter data area designation and a number that designate
the word and/or bit location. For the UM area, an address designates the in-
struction location (UM area); for the FM area, the block location (FM area),
etc.

allocation The process by which the PC assigns certain bits or words in memory for
various functions. This includes pairing I/O bits to I/O points on Units.

Analog Input Unit A Special I/O Unit that converts external analog input signals to digital input
signals for the PC. The analog signals can be voltages or amperages.

Analog I/O Unit A collective term for Analog Input Unit and Analog Output Unit.

Analog Output Unit A Special I/O Unit that converts digital output signals from the PC to analog
output signals for field devices. The analog signals can be voltages or am-
perages.

Analog Timer Unit A dedicated timer that interfaces through analog signal externally and digital
signals internally.

AND A logic operation whereby the result is true if and only if both premises are
true. In ladder-diagram programming the premises are usually ON/OFF
states of bits or the logical combination of such states called execution condi-
tions.

BCD Short for binary-coded decimal.

BCD calculation An arithmetic calculation that uses numbers expressed in binary-coded deci-
mal.

binary A number system where all numbers are expressed to the base 2. Although
in a PC all data is ultimately stored in binary form, binary is used to refer to
data that is numerically equivalent to the binary value. It is not used to refer
to binary-coded decimal. Each four binary bits is equivalent to one hexadeci-
mal digit.

binary-coded decimal A system used to represent numbers so that each four binary bits is numeri-
cally equivalent to one decimal digit.

bit The smallest unit of storage in a PC. The status of a bit is either ON or OFF.
Four bits equal one digit; sixteen bits, one word. Different bits are allocated to
special purposes, such as holding the status input from external devices,
while other bits are available for general use in programming.

bit address The location in memory where a bit of data is stored. A bit address must
specify (sometimes by default) the data area and word that is being ad-
dressed as well as the number of the bit.

bit designator An operand that is used to designate the bit or bits of a word to be used by
an instruction.

Glossary

194

bit number A number that indicates the location of a bit within a word. Bit 00 is the right-
most (least significant) bit; bit 15 is the leftmost (most significant) bit.

buffer A temporary storage space for data in a computerized device.

bus bar The line leading down the left and sometimes right side of a ladder diagram.
Instruction execution follows down the bus bar, which is the starting point for
all instruction lines.

call A process by which instruction execution shifts from the main program to a
subroutine. The subroutine may be called by an instruction or by an interrupt.

carry flag A flag that is used with arithmetic operations to hold a carry from an addition
or multiplication operation or to indicate that the result is negative in a sub-
traction operation. The carry flag is also used with certain types of shift oper-
ation.

clock pulse A pulse available at a certain bit in memory for use in timing operations. Vari-
ous clock pulses are available with different pulse widths.

clock pulse bit A bit in memory that supplies a pulse that can be used to time operations.
Various clock pulse bit are available with different pulse widths.

condition An ‘instruction’ placed along an instruction line to determine how terminal
instruction on the right side are to be executed. Each condition is assigned to
a bit in memory that determines its status. The status of the bit assigned to
each condition determines, in turn, the execution condition for each instruc-
tion up to a terminal instruction on the right side of the ladder diagram.

constant An operand for which the actual numeric value is input directly and in place
of a data memory address would hold the value to be used.

control bit A bit in a memory area that is set either from the program or from a Program-
ming Device to achieve a specific purpose, e.g., a Restart bit is turned ON
and OFF to restart a Unit.

Control System All of the hardware and software components used to control other devices.
A Control System includes the PC System, the PC programs, and all I/O de-
vices that are used to control or obtain feedback from the controlled system.

controlled system The devices that are being controlled by a PC System.

control signal A signal sent from the PC to affect the operation of the controlled system.

counter Either a dedicated number of digits or words in memory used to count the
number of times a specific process has occurred or a location in memory ac-
cessed through a TC bit and used to count the number of times the status of
a bit or an execution condition has changed from OFF to ON.

CPU An acronym for central processing unit. In a PC System, the CPU executes
the program, processes I/O signals, communicates with external devices,
etc.

CPU Unit The CPU Unit contains the CPU and provides a certain number of I/O points.

Glossary

195

data area An area in the PC’s memory that is designed to hold a specific type of data,
e.g., the SR area is designed to hold flags and control bits. Memory areas
that hold programs are not considered data areas.

data area boundary The highest address available in a data area. When designating an operand
that requires multiple words, it is necessary that the highest address in the
data area is not exceeded.

debug A process by which a draft program is corrected until it operates as intended.
Debugging includes both removal of syntax errors as well as fine-tuning of
timing and coordination of control operations.

decimal A number system where all numbers are expressed to the base 10. Although
in a PC all data is ultimately stored in binary form, four binary bits are often
used to represent one decimal digit, a system called binary-coded decimal.

decrement Decreasing a numeric value by 1.

default A value assumed and automatically set by the PC when a specific value is
not input by the user.

definer A number used as an operand for an instruction but that serves to define the
instruction itself rather that the data on which the instruction is to operate.
Definers include jump numbers, subroutine numbers, etc.

delay In tracing, a value that specifies where tracing to begin in relationship to the
trigger. A delay can be either positive or negative, i.e., can designate an off-
set on either side of the trigger.

destination The location where data of some sort in an instruction is to be placed as op-
posed to the location from which data is to be taken for use in the instruction.
The location from which data is to be taken is called the source.

differentiation instruction An instruction used to ensure that the operand bit is never turned ON for
more than one scan after the execution condition goes either from OFF to
ON for a Differentiate Up instruction or from ON to OFF for a Differentiate
Down instruction.

digit A unit of storage in memory that consists of four bits.

digit designator An operand that is used to designate the digit or digits of a word to be used
by an instruction.

distributed control An automation concept in which control of each portion of an automated sys-
tem is located near the devices actually being controlled, i.e., control is de-
centralized and ‘distributed’ over the system. Distributed control is a concept
basic to PC Systems.

DM area A data area used to hold word data. A word in the DM area cannot be ac-
cessed by bit.

download The process of transferring a program or data from a higher-level computer
to a lower-level computer or PC.

electrical noise Electrical ‘static’ that can disturb electronic communications. The ‘snow’ that
can appear on a TV screen is an example of the effects of electrical noise.

Glossary

196

error code A numeric code output to indicate the existence of and something about the
nature of an error. Some error codes are generated by the system; other are
defined in the program by the operator.

exection condition The ON or OFF status under which an instruction is executed. The execution
condition is determined by the logical combination of conditions on the same
instruction line and up to the instruction being executed.

execution time The time required for the CPU to execute either an individual instruction or
an entire program.

Expansion I/O Unit An Expansion I/O Unit is connected to increase the number of I/O points
available.

extended counter A counter created in a program that count higher that any of the standard
counters provided by the individual instructions.

extented timer A timer created in a program that times longer that any of the standard timers
provided by the individual instructions.

Factory Intelligent Terminal A Programming Device provided with advanced programming and debugging
capabilities to facilitate PC operation. The Factory Intelligent Terminal also
provides various interfaces for external devices, such as floppy disk drives.

fatal error An error that will stop PC operation and require correction before operation
can be continued.

FIT Short for Factory Intelligent Terminal.

flag A dedicated bit in memory that is set by the system to indicate some type of
operating status. Some flags, such as the carry flag, can also be set by the
operator or program.

flicker bit A bit that is programmed to turn ON and OFF at a specific interval.

force reset The process of artificially turning OFF a bit from a Programming Device. Bits
are usually turned OFF as a result of program execution.

force set The process of artificially turning ON a bit from a Programming Device. Bits
are usually turned ON as a result of program execution.

function code A two-digit number used to input an instruction into the PC.

GPC Short for Graphic Programming Console.

A Programming Device provided with advanced programming and debugging
capabilities to facilitate PC operation. A Graphic Programming Console is
provided with a large display onto which ladder-diagram programs can be
written directly in ladder-diagram symbols for input into the PC without con-
version to mnemonic form.

hardware error An error originating in the hardware structure of the PC, as opposed to a soft-
ware error, which ordinates in software (i.e., programs).

hexadecimal A number system where all numbers are expressed to the base 16. Although
in a PC all data is ultimately stored in binary form, displays on and inputs
through Programming Devices are often expressed in hexadecimal to facili-
tate operation. Each four binary bits is numerically equivalent to one hexade-
cimal digit.

Graphic Programming
Console

Glossary

197

Host Link System One or more host computers connected to one or more PCs through Host
Link Units so that the host computer can be used to transfer data to and re-
ceive data from the PC(s). Host Link Systems enable centralized manage-
ment and control of a PC System.

Host Link Unit An interface used to connect a PC to a host computer in a Host Link System.

host computer A computer that is used to transfer data or programs to or receive data or
programs from a PC in a Host Link System. The host computer is used for
data management and overall system control. Host computers are generally
small personal or business computers.

HR area A data area used to store and manipulate data and to preserve data when
power to the PC is turned OFF.

I/O capacity The number of inputs and outputs that a PC is able to handle. This number
ranges from around one-hundred for smaller PCs to two-thousand for the
largest ones.

I/O devices The devices to which terminals on I/O Units, Special I/O Units, or Intelligent
I/O Units are connected. I/O devices may be either part of the Control Sys-
tem, if they function to help control other devices, or they may be part of the
controlled system.

I/O Link Created in an Optical Remote I/O System to enable input/output of one or
two IR words directly between PCs. The words are input/output between the
PC controlling the Master and a PC connected to the Remote I/O System
through an I/O Link Unit or an I/O Link Rack.

I/O Link Unit A Unit used with certain PCs to create an I/O Link in an Optical Remote I/O
System.

I/O point The place at which an input signal enters the PC System or an output signal
leaves the PC System. In physical terms, an I/O point corresponds to termi-
nals or connector pins on a Unit; in terms of programming, an I/O point corre-
sponds to an I/O bit in the IR area.

I/O response time The time required for an output signal to be sent from the PC in response to
and input signal received from an external device.

I/O Unit The most basic type of Unit mounted to a backplane to create a Rack. I/O
Units include Input Units and Output Units, each of which is available in a
range of specifications. I/O Units do not include Special I/O Units, Link Units,
etc.

I/O word A word in the IR area that is allocated to a Unit in the PC System.

increment Increasing a numeric value by 1.

initialization error An error that occurs either in hardware or software before the PC System
has actually begun operation, i.e., during initialization.

initialize Part of the startup process whereby some memory areas are cleared, system
setup is checked, and default values are set.

Glossary

198

input The signal coming from an external device into the PC. Input often is used
abstractly or collectively to refer to incoming signals.

input bit A bit in the IR area that is allocated to hold the status of an input.

input device An external device that sends signal(s) into the PC System.

input point The point at which an input enters the PC System. An input point physically
corresponds to terminals or connector pin(s).

input signal A change in the status of a connection entering the PC. Generally an input
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

instruction A direction given in the program that tells the PC an action to be carried out
and the data to be used in carrying out the action. Instructions can simply
turn a bit ON or OFF, or they can perform much more complex actions, such
as converting and/or transferring large blocks of data.

instruction block A group of instructions that is logically related in a ladder-diagram program.
Although any logically related group of instructions could be called an instruc-
tion block, the term is generally used to refer to blocks of instructions called
logic blocks that require logic block instructions to relate them to other in-
structions or logic blocks.

instruction execution time The time required to execution an instruction. The execution time for any one
instruction can vary with the execution condition for the instruction and the
operands used in it.

instruction line A group of conditions that lie together on the same horizontal line of a ladder
diagram. Instruction lines can branch apart or join together to form instruction
blocks.

interface An interface is the conceptual boundary between systems or devices and
usually involves changes in the way the communicated data is represented.
Interface devices perform operations as changing the coding, format, or
speed of the data.

interlock A programming method used to treat a number of instructions as a group so
that the entire group can be reset together when individual execution is not
required. An interlocked program section is executed normally for an ON ex-
ecution condition and partially reset for an OFF execution condition.

inverse condition A condition that produces an ON execution condition when the bit assigned
to it is OFF and an OFF execution condition when the bit assigned to it is
ON.

IR area A data area whose principal function is to hold the status of inputs coming
into the system and outputs that are to be set out of the system. Bits and
words in the IR are that are used this way are called I/O bits and I/O words.
The remaining bits in the IR area are work bits.

jump A type of programming where execution moves directly from one point in a
program to a separate point in the program without sequentially executing
the instruction in between. Jumps are usually conditional on an execution
condition.

Glossary

199

jump number A definer used with a jump that defines the points from which and to which a
jump is to be made.

ladder diagram (program) A form of program arising out of relay-based control systems that uses cir-
cuit-type diagrams to represent the logic flow of programming instructions.
The appearance of the program suggests a ladder, and thus the name.

ladder diagram symbol A symbol used in a ladder-diagram program.

ladder instruction An instruction that represents the ‘rung’ portion of a ladder-diagram program.
The other instructions in a ladder diagram fall along the right side of the dia-
gram and are called terminal instructions.

leftmost (bit/word) The highest numbered bits of a group of bits, generally of an entire word, or
the highest numbered words of a group of words. These bits/words are often
called most significant bits/words.

link A hardware or software connection formed between two Units. “Link” can
refer either to a part of the physical connection between two Units or a soft-
ware connection created to data existing at another location (I/O Links).

load The processes of copying data either from an external device or from a stor-
age area to an active portion of the system such as a display buffer. Also, an
output device connected to the PC is called a load.

logic block A group of instructions that is logically related in a ladder-diagram program
and that requires logic block instructions to relate it to other instructions or
logic blocks.

logic block instruction An instruction used to locally combine the execution condition resulting from
a logic block with a current execution condition. The current execution condi-
tion could be the result of a single condition or of another logic block. AND
Load and OR Load are the two logic block instructions.

LR area A data area that is used in a PC Link System so that data can be transferred
between two or more PCs. If a PC Link System is not used, the LR area is
available for use as work bits.

Master Short for Remote I/O Master Unit.

main program All of a program except for the subroutines.

memory area Any of the areas in the PC used to hold data or programs.

mnemonic code A form of a ladder-diagram program that consists of a sequential list of the
instructions without using a ladder diagram. Mnemonic code is required to
input a program into a PC when using a Programming Console.

MONITOR mode A mode of PC operation in which normal program execution is possible but in
which modification of data held in memory is still possible. Used for monitor-
ing or debugging the PC.

NC input An input that is normally closed, i.e., the input signal is considered to be
present when the circuit connected to the input opens.

Glossary

200

nest Programming one jump within another jump, programming a call to a subrou-
tine from within another subroutine, etc.

NO input An input that is normally open, i.e., the input signal is considered to be pres-
ent when the circuit connected to the input closes.

noise interference Disturbances in signals caused by electrical noise.

nonfatal error A hardware or software error that produces a warning but does not stop the
PC from operating.

normal condition A condition that produces an ON execution condition when the bit assigned
to it is ON and an OFF execution condition when the bit assigned to it is OFF.

NOT A logic operation which inverts the status of the operand. For example, AND
NOT indicates an AND with the opposite of the actual status of the operand
bit.

OFF The status of an input or output when a signal is said not to be present. The
OFF state is generally low voltage or non-conductivity, but can be defined as
the opposite of either.

OFF delay The delay produced between the time turning OFF a signal is initiated (e.g.,
by an input device or PC) and the time the signal reaches a state readable as
an OFF signal (i.e., as no signal) by a receiving party (e.g., output device or
PC).

ON The status of an input or output when a signal is said to be present. The ON
state is generally high voltage or conductivity, but can be defined as the op-
posite of either.

ON delay The delay produced between the time a signal is initiated (e.g., by an input
device or PC) and the the time the signal reaches a state readable as an ON
signal by a receiving party (e.g., output device or PC).

one-shot bit A bit that is turned ON or OFF for a specified interval of time longer than one
scan.

operand A bit(s) or word(s) designated as the data to be used for an instruction. An
operand can be input as a constant expressing the actual numeric value to
be used or as an address to express the location in memory of the data to be
used.

operand bit A bit designated as an operand for an instruction.

operand word A word designated as an operand for an instruction.

operating error An error that occurs during actual PC operation as opposed to an initializa-
tion error, which occurs before actual operations can begin.

Optical Slave Rack A Slave Rack connected through an Optical Remote I/O Slave Unit.

OR A logic operation whereby the result is true if either one or both of the prem-
ises is true. In ladder-diagram programming the premises are usually ON/
OFF states of bits or the logical combination of such states called execution
conditions.

Glossary

201

output The signal sent from the PC to an external device. Output often is used ab-
stractly or collectively to refer to outgoing signals.

output bit A bit in the IR area that is allocated to hold the status to be sent to an output
device.

output device An external device that receives a signal(s) from the PC System.

output point The point at which an output leaves the PC System. An output point physical-
ly corresponds to terminals or connector pin(s).

output signal A change in the status of a connection leaving the PC. Generally an output
signal is said to exist when, for example, a connection point goes from low to
high voltage or from a nonconductive to a conductive state.

overseeing Part of the processing performed by the CPU that includes general tasks re-
quired to operate the PC.

overwrite Changing the content of a memory location so that the previous content is
lost.

PC An acronym for Programmable Controller.

PC System All of the Units connected to the CPU Unit up to, but not including the I/O de-
vices. The limits of the PC System on the upper end is the PC and the pro-
gram in its CPU and on the lower end, I/O Units, an I/O Link Unit, etc.

PCB An acronym for printed circuit board.

Peripheral Device Devices connected to a PC System to aid in system operation. Peripheral
devices include printers, programming devices, external storage media, etc.

present value The current time left on a timer or the current count of a counter. Present val-
ue is abbreviated PV.

printed circuit board A board onto which electrical circuits are printed for mounting into a comput-
er or electrical device.

program The list of instructions that tells the PC the sequence of control actions to be
carried out.

Programmable Controller A computerized device that can accept inputs from external devices and gen-
erate outputs to external devices according to a program held in memory.
Programmable Controllers are used to automate control of external devices.

programmed alarm An alarm given as a result of execution of an instruction designed to gener-
ate the alarm in the program as opposed to one generated by the system.

programmed error An error arising as a result of execution of an instruction designed to gener-
ate the error in the program as opposed to one generated by the system.

programmed message A message generated as a result of execution of an instruction designed to
generate the message in the program as opposed to one generated by the
system.

Glossary

202

Programming Console The simplest form or Programming Device available for a PC. Programming
Consoles are available both as hand-held models and as CPU-mounting
models.

Programming Device A peripheral device used to input a program into a PC or to alter or monitor a
program already held in the PC. There are dedicated programming devices,
such as Programming Consoles, and there are non-dedicated devices, such
as a host computer.

PROGRAM mode A mode of operation that allows for inputting and debugging programs but
that does not permit normal execution of the program.

PROM Writer A Peripheral Device used to write programs and other data into a ROM for
permanent storage and application.

prompt A message or symbol that appears on a display to request input from the op-
erator.

PV Short for present value.

refresh The process of updating output status sent to external devices so that it
agrees with the status of output bits held in memory and of updating input
bits in memory so that they agree with the status of inputs from external de-
vices.

relay-based control The forerunner of PCs. In relay-based control, groups of relays are wired to
each other to form control circuits. In a PC, these are replaced by program-
mable circuits.

Remote I/O Master Unit The Unit in a Remote I/O System through which signals are sent to all other
Remote I/O Units. The Remote I/O Master Unit is mounted either to a
C200H, C500, C1000H, or C2000H CPU Rack or an Expansion I/O Rack
connected to the CPU Rack. Remote I/O Master Unit is generally abbreviated
to simply “Master.”

Remote I/O Slave Unit A Unit mounted to a C200H, C500, C1000H, or C2000H Backplane to form a
Slave Rack. Remote I/O Slave Unit is generally abbreviated to simply
“Slave.”

Remote I/O System A C200H, C500, C1000H, or C2000H system in which remote I/O points are
controlled through a Master mounted to a CPU Rack or an Expansion I/O
Rack connected to the CPU Rack. K-type PCs can be connected to Remote
I/O Systems through I/O Link Units.

Remote I/O Unit Any of the Units in a Remote I/O System. Remote I/O Units include Masters,
Slaves, Optical I/O Units, I/O Link Units, and Remote Terminals.

reset The process of turning a bit or signal OFF or of changing the present value of
a timer or counter to its set value or to zero.

return The process by which instruction execution shifts from a subroutine back to
the point from which the subroutine was called. A return is automatic upon
completion of the subroutine and the return is always to .

reversible counter A counter that can be both incremented and decrement depending on a spe-
cified condition(s).

Glossary

203

reversible shift register A shift register that can shift data in either direction depending on a specified
condition(s).

right-hand instruction Another term for terminal instruction.

rightmost (bit/word) The lowest numbered bits of a group of bits, generally of an entire word, or
the lowest numbered words of a group of words. These bits/words are often
called least significant bits/words.

RUN mode The operating mode used by the PC for normal control operations.

scan The process used to execute a ladder-diagram program. The program is ex-
amined sequentially from start to finish and each instruction is executed in
turn based on execution conditions.

scan time The time required for a single scan of the ladder-diagram program.

self diagnosis A process whereby the system checks its own operation and generates a
warning or error if an abnormality is discovered.

self-maintaining bit A bit that is programmed to maintain either an OFF or ON status until set or
reset by a specific condition(s) different from the one that originally caused
the bit to turn OFF or ON.

servicing The process whereby the PC provides data to or receives data from external
devices or remote I/O or otherwise handles data transactions for Link Sys-
tems.

set The process of turning a bit or signal ON.

set value The count from which a counter starts counting down (or, in the case of a
reversible counter, the maximum count) or the time from which a timer starts
timing. Set value is abbreviated SV.

shift register One or more words in which data is shifted in bit, digit, or word units a speci-
fied number of units to the right or left.

Slave Short for Remote I/O Slave Unit.

Slave Rack A C200H, C500, C1000H, or C2000H Rack containing a Remote I/O Slave
Unit and controlled through a Remote I/O Master Unit. Slave Racks are gen-
erally located away from the CPU Rack.

software error An error that occurs in the execution of a program.

software protects A software means of protecting data from being changed as opposed to a
physical switch or other hardware setting.

source The location from which data is taken for use in an instruction as opposed to
the location to which the result of an instruction is to be written. The location
to which the result of an instruction is to be written is called the destination.

SR area A data area in a PC used mainly for flags, control bits, and other information
provided about PC operation. The status of only certain SR bits may be con-
trolled by the operator, i.e., most SR bits can only be read.

Glossary

204

subroutine A group of instructions placed after the main program and executed only if
called from the main program or activated by an interrupt.

subroutine number A definer used to identify the subroutine that a subroutine call or interrupt
activates.

SV Short for set value.

switching capacity The voltage/current that a relay can switch on and off.

syntax error An error in the way in which a program is written. Syntax errors can include
‘spelling’ mistakes (i.e., a function code that does not exit), mistakes in speci-
fying operands within acceptable parameters (e.g., specifying unwritable SR
bits as a destination), and mistakes in actual application of instructions (e.g.,
a call to a subroutine that does not exist).

system error An error generated by the system as opposed to one resulting from execu-
tion of an instruction designed to generate an error.

system error message An error message generated by the system as opposed to one resulting from
execution of an instruction designed to generate a message.

TC area A data area that can be used only for timers and counters. Each bit in the TC
area serves as the access point for the SV, PV, and Completion flag for the
timer or counter defined with that bit.

TC number A definer that corresponds to a bit in the TC area and used to define the bit
as either a timer or a counter.

terminal instruction An instruction placed on the right side of a ladder diagram that uses the final
execution condition on an instruction line(s).

timer A location in memory accessed through a TC bit and used to time down from
the timer’s set value. Timers are turned ON and reset according to their ex-
ecution conditions.

TM area A memory area used to store the results of a trace.

transmission distance The distance that a signal can be transmitted.

TR area A data area used to store execution conditions so that they can be reloaded
later for use with other instructions.

transfer The process of moving data from one location to another within the PC or
between the PC and external devices. When data is transferred, generally a
copy of the data is sent to the destination, i.e., the content of the source of
the transfer is not changed.

UM area The memory area used to hold the active program, i.e., the program that is
being currently executed.

Unit In OMRON PC terminology, the word Unit is capitalized to indicate any prod-
uct sold for a PC System. Though most of the names of these products end
with the word Unit, not all do, e.g., a Remote Terminal is referred to in a col-
lective sense as a Unit. Context generally makes any limitations of this word
clear.

Glossary

205

unit number A number assigned to some Link Units and Special I/O Units to assign words
and sometimes other operating parameters to it.

watchdog timer A timer within the system that ensures that the scan time stays within speci-
fied limits. When limits are reached, either warnings are given or PC opera-
tion is stopped depending on the particular limit that is reached. Although a
default value of 130 ms is automatically set for the basic time limit, this value
can be extended by the program.

Wired Slave Rack A Slave Rack connected through a Wired Remote I/O Slave Unit.

word A unit of storage in memory that consists of 16 bits. All data areas consists of
words. Some data areas can be accessed by words; others, by either words
or bits.

word address The location in memory where a word of data is stored. A word address must
specify (sometimes by default) the data area and the number of the word that
is being addressed.

work bit A bit in a work word.

work word A word that can be used for data calculation or other manipulation in pro-
gramming, i.e., a ‘work space’ in memory. A large portion of the IR area is
always reserved for work words. Parts of other areas not required for special
purposes may also be used as work words, e.g., I/O words not allocated to
I/O Units.

207

Index

A
ADD(30). See instruction set
analog timer unit. See instruction set
AND. See instruction set
and inverse − AND NOT. See instruction set
AND LD. See instruction set
AND load. See instruction set
AND NOT. See instruction set
arithmetic operation flags. See data areas

B
backup. See cassette tape operation
battery alarm flag. See data areas
BCD add calculation − ADD(30). See instruction set
BCD subtract calculation − SUB(31). See instruction set
BCD to binary conversion − BIN(23). See instruction set
BCD(24). See instruction set
BIN(23). See instruction set

binary table, 183
Binary to BCD conversion − BCD(24). See instruction
set

bits
force set/reset, 148
monitor, 145
self maintaining, 42

branching. See ladder diagram

C
carry flag. See data areas
cassette tape operation, 140�142
comparing program memory data, 141
error messages, 140
restoring program memory data, 141
saving program memory data, 140

CLC(41). See instruction set
clear carry − CLC(41). See instruction set
clock pulse bits. See data areas
CMP(20). See instruction set
CNTR(12). See instruction set
compare − CMP(20). See instruction set
comparing program/memory data. See cassette tape op�
eration

control bits, usage, 12
control system, definition of, 3
correction3, 2 , 6 , 7 , 12 , 43 , 50 , 82 , 83 , 85 , 86 , 87 ,
102 , 103 , 145

counter − CNT. See instruction set
cpu indicators, 10

D
data areas
components, 12
data memory area, 26
holding relay area, 26
internal relay area
I/O bits available
in CPUs, 17
in expansion I/O units, 18 , 19

word allocation, 16
special relay area
arithmetic flags, 25
operation, 181

battery alarm flag, 24
clock pulse bits, 24
error flag, 25
operation, 181

first scan flag, 25
high speed drum/counter reset, 24
normally OFF/ON flags, 25
scan time error flag, 24
usage, 24

structure, 12
temporary relay area, 27
timer/counter area, 26

data decoder (4 to 16) − MLPX(76). See instruction set
data encoder − DMPX(77). See instruction set
data memory area. See data areas
digit, monitor, 145
DM area. See data areas
DMPX(77). See instruction set

E
end − END(01). See instruction set
END(01). See instruction set
equal flag. See data areas
error flag. See data areas
errors
cassette tape operations, 140
fatal, 155
message tables, 154
non−fatal, 154
reading and clearing messages, 154
SR area flags, 156

F
factory intelligent terminal. See peripheral devices
first scan flag. See instruction set
FIT. See peripheral devices
flags
execution affect, 47
usage, 12

Index

208

floppy disk interface unit. See peripheral devices

G
GPC. See peripheral devices
graphic programming console. See peripheral devices
greater than flag. See data areas

H
HDM(61). See instruction set
high speed counter − HDM(61). See instruction set
high speed drum counter reset. See data areas
high speed timer − TIMH(15). See instruction set
holding relay area. See data areas
HR area. See data areas

I
I/O bits available
in CPUs, 17
in expansion I/O units, 18 , 19

I/O response time, 102
I/O units. See units
IL(02). See instruction set
ILC(03). See instruction set
input bit, definition of, 3
input devices, definition of, 3
input point, definition of, 3
input signal, definition of, 3
instruction set
ADD(30), 90
analog timer unit, 61
AND, 48
combining with OR, 33
use in ladder diagrams, 32

AND LD, 49
combining with OR LD, 109
use in logic blocks, 34 , 108

AND NOT, 48
use in ladder diagrams, 32

BCD(24), 85
BIN(23), 84
CLC(41), 93
CMP(20), 82
CNT, 64
changing set value, 151

CNTR(12), 67
DIFD(14)
as a bit control instruction, 50
use in interlocks, 53

DIFU(13)
as a bit control instruction, 50
use in interlocks, 53

DMPX(77), 87
END(01), 42 , 56 , 121
HDM(61), 68
IL(02), 53
converting to mnemonic code, 120
use in branching, 37

ILC(03), 53
converting to mnemonic code, 120
use in branching, 37

JME(05), 55
JMP(04), 55
KEEP(11)
as a bit control instruction, 51
controlling bit status, 41

LD, 48
use in ladder diagrams, 32

LD NOT, 48
use in ladder diagrams, 32

MLPX(76), 85
MOV(21), 81
MVN(22), 82
NOP(00), 56
NOT, 31
OR, 48
combining with AND, 33
use in ladder diagrams, 33

OR LD, 49
combining with AND LD, 109
use in logic blocks, 34 , 108

OR NOT, 48
use in ladder diagrams, 33

OUT, 49
using to control bit status, 40

OUT NOT, 49
using to control bit status, 40

SFT(10), 77 , 78 , 80
STC(40), 93
SUB(31), 92
TIM, 57
changing set value, 151

TIMH(15), 61
interlock − IL(02). See instruction set
interlock clear − ILC(03). See instruction set
internal relay area. See data areas
inverse condition. See instruction set
IR area. See data areas

J
JME(05). See instruction set
JMP(04). See instruction set
jump − JMP(04). See instruction set
jump end − JME(05). See instruction set

K
KEEP(11). See instruction set

L
ladder diagram
branching
use of, 34
using IL(02) and ILC(03), 37
using JMP(04) and JME(05), 39
using TR bits, 35

converting to mnemonic code, 106

Index

209

instructions, 106
combining
AND and OR, 33
AND LD and OR LD, 109

controlling bit status
using DIFU(13) and DIFD(14), 50
using KEEP(11), 41 , 51
using OUT and OUT NOT, 40 , 49

format, 46
function of, 30
notation, 46

operands, function of, 30
structure of, 30
using logic blocks, 33

ladder support software. See peripheral devices
LD. See instruction set
LD NOT. See instruction set
LEDs. See cpu indicators
leftmost, definition, 13
less than flag. See data areas
link units. See units
load − LD. See instruction set
load inverse − LD NOT. See instruction set
logic blocks. See ladder diagram
LSS. See peripheral devices

M
memory areas
data areas. See data areas
definition of, 12
program memory. See program memory

MLPX(76). See instruction set
MOV(21). See instruction set
move − MOV(21). See instruction set
move inverse − MVN(22). See instruction set
MVN(22). See instruction set

N
no operation − NOP(00). See instruction set
NOP(00). See instruction set
normally ON/OFF flags. See data areas
NOT. See instruction set

O
OR. See instruction set
OR inverse − OR NOT. See instruction set
OR LD. See instruction set
OR load. See instruction set
OR NOT. See instruction set
output bit, definition of, 3
output devices, definition of, 3
output points, definition of, 3
output signal, definition of, 3

P
p−rom writer. See peripheral devices
peripheral devices, 6
factory intelligent terminal (FIT), 6
standard models, 162

floppy disk interface unit, 6
graphic programming console (GPC), 6
standard models, 162

ladder support software (LSS), 6
P−ROM writer, 6
printer interface unit, 6
programming console, 6 , 121
clearing memory, 126
modes of, 123
operation of, 124
the keyboard, 121

standard models, 163
precautions, general, vii
printer interface unit. See peripheral devices
program execution, 44
program memory, 12
See also memory areas

programming
converting to mnemonic code, 106
debugging, 143
displaying and clearing error messages, 143
inputting, modifying and checking, 128
inserting and deleting instructions, 136
instructions. See Instruction set
method, 4
overwriting existing programs, 129
precautions, 43
searching the program, 134
setting and reading from memory address, 128

programming console. See peripheral devices

R
restore. See cassette tape operation
reversible counter − CNTR(12). See instruction set
rightmost, definition, 13

S
scan time
calculating, 98
components, 97
displaying, 133
for instruction execution, 100
long duration, 98

scan time error flag. See data areas
set carry − STC(40). See instruction set
SFT(10). See instruction set
shift register − SFT(10). See instruction set
special I/O units. See units
special relay area. See data areas
SR area. See data areas

Index

210

standard models
DIN units, 162
factory intelligent terminal, 162
graphic programming console, 162
I/O units, 159
P−Type CPUs, 158
peripheral devices, 163
special units, 161

status indicators. See cpu indicators
STC(40). See instruction set
SUB(31). See instruction set

T
TC area. See data areas
temporary relay area. See data areas
TIM. See instruction set
timer/counter area. See data areas
TIMH(15). See instruction set
TR area. See data areas

TR bits
converting to mnemonic code, 119
use in branching, 35

U
UM area. See program memory
units
definition of, 4
I/O units, definition of, 4
link units, definition of, 4
special I/O units, definition of, 4

W
words, I/O, 15
work bits, usage, 12
work words, usage, 12
writing a program
See also programming
steps, 30

	TABLE OF CONTENTS
	PRECAUTIONS
	SECTION 1
	SECTION 2
	SECTION 3
	SECTION 4
	SECTION 5
	SECTION 6
	SECTION 7
	SECTION 8
	Appendix
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix F
	Appendix G

	Glossary
	Index

