Variable speed drives Altivar 61

Catalogue September

For 3-phase asynchronous motors from 0.75 to 630 kW

Variable speed drives for asynchronous motors Altivar 61

Selection guide page

- Presentation page母
- Variable speed drives Altivar 61
- Characteristics page 8
- Operation. page 16
- References page 18
- Options
- Accessories page 2
- Dialogue. page 28
- I/O extension cards page 31
- Multi-pump cards page 35
- "Controller Inside" programmable card page 43
- Communication buses and networks. page 52
- Resistance braking units page 55
- Braking resistors page 57
\square Reduction of current harmonics
- DC chokes. page 65
- line chokes page 68
- passive filters page 70
- Additional EMC input filters page 76
- Output filters
- motor chokes. page 80
- sinus filters page 83
- Combinations of variable speed drives and options page 84
- Dimensions page 90
■ Schemes page 112
- Motor starters page 128
- Mounting recommendations page 138
- Functions page 148
- Function compatibility table page 176
■ PowerSuite software workshop page 180
■ Ethernet TCP/IP network. page 186
- Communication via Fipio bus page 190
- Communication via Modbus bus page 193
- Communication via Modbus Plus network page 198
- Communication via Uni-Telway bus page 201
- Communication gateways LUF P. page 203
- Communication gateway LA9 P307 page 205
■ Product reference index page 206

Variable speed drives for asynchronous motors

Speed control for asynchronous motors		
Building (HVAC) (1)	Industry	
Fans	Simple machines Pumps	Simple machines

0.75... 30	0.18...2.2	0.18... 15
-	0.18...0.75	-
-	0.18...2.2	0.18...2.2
-	0.18...2.2	-
0.75... 30	-	0.18... 15
0.75... 30	-	-
-	-	0.37..15
-	-	0.75... 15
0.5... 200 Hz	0.5... 200 Hz	$0.5 \ldots . .500 \mathrm{~Hz}$
Sensorless flux vector control, voltage/frequency ratio (2 or 5 points), energy saving ratio	Sensorless flux vector control	
-	-	
110% of the nominal motor torque	$150 . . .170 \%$ of the nominal motor torque	180% of the nominal motor torque for 2 seconds
50	26	50
8	4	16
1	1	3
3	4	6
1	-	1
-	1	-
2	1	2
Modbus	-	Modbus and CANopen
LONWORKS, METASYS N2, APOGEE FLN, BACnet	-	Ethernet TCP/IP, DeviceNet, Fipio, Profibus DP
-	-	-
EN 50178, IEC/EN61800-3 EN 55011, EN 55022: class A, class B with option card, C€, UL, C-Tick, N998	EN 50178, IEC/EN 61800-3 EN 55011, EN 55022: class B and class A gr. 1 (ϵ, UL, CSA, NOM 117, C-Tick	EN 50178, IEC/EN 61800-3 EN 55011, EN 55022: class A, class B with option card, C ϵ, UL, C-Tick, N998
ATV 21 A	ATV 11	ATV 31
Please consult the "Altivar 21 variable speed drives" catalogue	Please consult the "Soft starters and variable speed drives" catalogue	
(1) Heating Ventilation Air Cond	ning	

Complex, modular machines, high-power machines
Machines requiring high-performance torque and accuracy at very low speed as well as high dynamics

$0.37 \ldots 630$
-
$0.37 \ldots 5.5$
-
$0.75 \ldots 90$
$0.75 \ldots 630$
-
-

$0.5 \ldots 1000 \mathrm{~Hz}$ up to $37 \mathrm{~kW}, 0.5 \ldots 500 \mathrm{~Hz}$ from 45 kW to 630 kW
Sensorless flux vector control,
voltage/frequency ratio (2 or 5 points), energy saving ratio
$110 . . .120 \%$ of the nominal motor torque for 60 seconds

$\mathbf{0 . 3 7} \ldots 500$
-
$0.37 \ldots 5.5$
-
$0.37 \ldots 75$
$0.75 \ldots 500$
-
-

$0 \ldots 1000 \mathrm{~Hz}$ up to $37 \mathrm{~kW}, 0 \ldots 500 \mathrm{~Hz}$ from 45 kW to 500 kW
Flux vector control with or without sensor, voltage/frequency ratio (2 or 5 points),
ENA System

Vector control without speed feedback
220% of the nominal motor torque for 2 seconds
170% for 60 seconds

>150
16
$2 \ldots 4$
$6 \ldots 20$
$1 \ldots 3$
$0 \ldots 8$
$2 \ldots 4$

Modbus and CANopen

Ethernet TCP/IP, Fipio, Modbus Plus, InTERBus, Profibus DP,
Modbus/Uni-Telway, DeviceNet, LonWorks, METASYS N2,
APOGEE FLN, BACnet

I/O extension cards
"Controller Inside" programmable card, multi-pump cards

Ethernet TCP/IP, Fipio, Modbus Plus, InTERBus, Profibus DP, Modbus/Uni-Telway, DeviceNet

Encoder interface cards, I/O extension cards,
"Controller Inside" programmable card

IEC/EN 61800-5-1, IEC/EN 61800-3 (environments 1 and 2, C1 to C3), EN 55011, EN 55022, IEC/EN 61000-4-2/4-3/4-4/4-5/4-6/4-11 C $€$, UL, CSA, DNV, C-Tick, NOM 117, GOST

ATV 61

18 to 21

ATV 71

Please consult the "Altivar 71 variable speed drives" catalogue

Variable speed drives for asynchronous motors

Altivar 61

Ventilation application

Air conditioning application

Pumping application

Abstract

Applications The Altivar 61 drive is a frequency inverter for 3-phase asynchronous motors rated between 0.75 kW and 630 kW . The drive has been designed for state-of-the-art applications in heating, ventilation and air conditioning (HVAC) in industrial and commercial buildings: - Ventilation - Air conditioning - Pumping

The Altivar 61 can reduce operating costs in buildings by optimizing energy consumption whilst improving user comfort.
Its numerous integrated options enable it to be adapted to and incorporated into electrical installations, sophisticated control systems and building management systems.
The need for electromagnetic compatibility and a reduction in harmonics were taken into account at the outset of designing the drive.
Depending on its design characteristics, each type (UL Type 1/IP 20 and/or
UL Type 12/IP 54) either has built-in class A or class B EMC filters and DC chokes, or these items are available as optional accessories.

Functions

With its macro-configurations and "Simply Start" menu, the Altivar 61 drive can be used to start up your applications without delay and to make adjustments in virtually no time using user-friendly dialogue tools.

Functions designed specifically for pumping and ventilation applications

- Energy saving ratio, 2-point or 5-point quadratic ratio
- Automatic catching of a spinning load with speed detection
- Adaptation of current limiting according to speed
- Noise and resonance suppression by means of the switching frequency which, depending on the power rating, can be set to up to 16 kHz during operation, and random modulation.
■ Preset speeds
- Integrated PID regulator, with preset PID references and automatic/manual
("Auto/Man.") mode
■ Electricity and service hours meter
- Detection of absence of fluid, detection of zero flow rate, limiting of flow rate
- Sleep function, wake-up function

■ Customer settings with display of physical values: bar, $\mathrm{I} / \mathrm{s},{ }^{\circ} \mathrm{C}$, etc.

Protection functions

- Motor and drive thermal protection, PTC thermal probe management
- Protection against overloads and overcurrents in continuous operation
- Machine mechanical protection via jump frequency function, phase rotation
- Protection of the installation by means of underload, overload and zero flow detection
- Protection via multiple fault management and configurable alarm groups

Safety functions

■ Machine safety by means of the integrated "Power Removal" function
This function prevents the motor starting accidentally; it meets the requirements of machine safety standard EN 954-1, category 3 and those of operational safety standard IEC/EN 61508, SIL2 (safety control/signalling applied to processes and systems).
■ Installation safety by means of the function for forced operation with inhibition of faults, direction of operation and configurable references.

Flexibility and user-friendliness

The Altivar 61 has numerous configurable logic and analog inputs and outputs in order that it can be optimised for your applications.
It supports the Modbus and CANopen protocols as standard in order to increase the performance of your control systems. It also supports the industry's major communication buses and can be integrated easily into building management (HVAC) systems via option cards.
Furthermore, it features multi-pump cards, enabling it to provide flexible and user-friendly management of multiple pumps.

Variable speed drives for asynchronous motors Altivar 61

ATV 61HU75N4 flush-mounted

A comprehensive offer
 The Altivar 61 range of variable speed drives extends across a range of motor power ratings from 0.75 kW to 630 kW with three types of power supply:

■ 200... 240 V 3-phase, 0.75 kW to 90 kW , UL Type 1/IP 20, (ATV 61HeeeM3,
ATV 61HeeeM3X)
■ 380... 480 V 3 -phase, 0.75 kW to 630 kW , UL Type 1/IP 20,(ATV 61HeeeN4) ■ 380... 480 V 3-phase, 0.75 kW to 90 kW , UL Type 12/IP 54, (ATV 61WeeeN4, ATV 61WeeoN4C),

Altivar 61 UL Type 1/IP 20 drives can also be used in conjunction with motors rated between 0.37 kW and 5.5 kW on a single phase 200... 240 V supply (derating is required).

The Altivar 61 drive integrates the Modbus and CANopen protocols as standard as well as numerous functions. These functions can be extended using communication, I/O extension and multi-pump option cards and a "Controller Inside" programmable card (see page 7).

Other external options, such as braking resistors, resistance braking units and filters, are available to complement this offer (see page 7).

The entire range conforms to international standards IEC/EN 61800-5-1,
IEC/EN 61800-2, IEC/EN 61800-3, is UL, CSA, DNV, C-Tick, NOM 117 and GOST certified and has been developed to meet the requirements of the directives regarding protection of the environment (RoHS, WEEE, etc) as well of those of the European Directives governing the issuing of the $\subset \in$ marking.

The Altivar 61 drive can be inserted in an installation's safety system. It integrates the "Power Removal" safety function which prevents the motor from restarting unintentionally.

Electromagnetic compatibility EMC

The incorporation of EMC filters in ATV 61HeeeM3 and ATV 61eeeeN4 drives and the recognition of EMC requirements simplifies machine installation and provides a very economical means of meeting $(\epsilon$ marking requirements.

ATV 61WeeoN4C drives feature integrated class B EMC filters, enabling them to meet the requirements of the EN 55011 (class B group 1) and IEC/EN 61800-3 (category C1) standards.

ATV 61HeeeM3X drives have been designed without an EMC filter. Filters are available as an option and can be installed by the user to reduce emission levels, see pages 74 to 77 .

Installation

The Altivar 61 drive has been designed to optimize the size of enclosures (floor-standing, wall-mounted, etc):

- The power part, with IP 54 degree of protection, can be easily mounted outside the enclosure using the kit for flush-mounting in a dust and damp proof enclosure (VW3 A9 5ee, see page 23); this type of mounting can be used to limit the temperature rise inside the enclosure or to reduce the size of enclosure required.
- Ambient temperature inside the enclosure:
- $50^{\circ} \mathrm{C}$ without derating corresponding to the drive rating
- Up to $60^{\circ} \mathrm{C}$ using the control card fan kit VW3 A9 $4 \bullet \bullet$ corresponding to the drive rating and, if necessary, by derating the output current (see page 22)
- Mounting side-by-side (see pages 138, 140 and 144)

The Altivar 61 drive can also be wall-mounted in compliance with the requirements for UL Type 1 using kit VW3 A9 2ఱ0, and in compliance with the requirements for IP 21 or IP 31 using kit VW3 A9 100 (see pages 24 and 25).

Characteristics:	References:			Functions:				
pages 8 to 15					\quad	pages 18 to 21	Dimensions:	Schemes:
:---	:---	:---						

Variable speed drives for asynchronous motors

Altivar 61

Dialogue tools

The Altivar 61 drive 1 is supplied with a remote graphic display terminal 2:

- The navigation button provides a quick and easy means of accessing the drop-down menus.
- The graphic screen displays 8 lines of 24 characters of plain text.
- The advanced functions on the display unit provide access to the more complex drive functions.
- The display screens, menus and parameters can all be customized for the user or the machine.
- Online help screens are available.

■ Configurations can be stored and downloaded: four configuration files can be stored.
■ The drive can be connected to several other drives via a multidrop link.

- It can be located remotely on an enclosure door with IP 54 or IP 65 degree of protection, a standard feature of UL Type 12/IP54 drives.
■ It is supplied with 6 languages installed as standard (English, French, German, Italian, Spanish and Chinese). Other languages can be loaded to the flash memory.

Up to 45 kW at $200 \ldots 240 \mathrm{~V}$ and 75 kW at $380 \ldots 480 \mathrm{~V}$, the Altivar 61 drive can be controlled using an integrated 7-segment display terminal (see pages 18 and 19).

The PowerSuite software workshop 3 can be used to configure, adjust and debug the Altivar 61 in just the same way as all other Telemecanique speed drives and starters. It can be used via a direct, Ethernet, modem or wireless Bluetooth ${ }^{\circledR}$ connection.

Quick programming

Macro-configuration

The Altivar 61 offers quick and easy programming using macro-configurations corresponding to different applications or uses: start-stop, pumping and ventilation, general use, connection to communication networks, PID regulator.
Each of these configurations is still fully modifiable.

"Simply Start" menu

In just a few steps, the "Simply Start" menu can be used to ensure the application operates correctly, obtain maximum motor performance and ensure motor protection.

The architecture, the hierarchical parameter structure and the direct access functions all serve to make programming quick and easy, even for more complex functions.

Services

The Altivar 61 has numerous built-in maintenance, monitoring and diagnostic functions:
■ Drive test functions with diagnostic screen on the remote graphic display terminal

- I/O maps

■ Communication maps for the different ports

- Oscilloscope function that can be viewed using the PowerSuite software workshop

■ Management of the drive installed base via processors with flash memory

- Remote use of these functions by connecting the drive to a modem via the

Modbus port
■ Identification of all the drive's component parts as well as the software versions
■ Fault logs with display of the value of up to 16 variables on occurrence of a fault
■ Display terminal languages loaded in the flash memory

- A message of up to 5 lines of 24 characters can be stored in the drive.

Check the connection
and the motor insulation.

Perform the diagnostic test

Troubleshooting screen

Options

The Altivar 61 drive 1 can integrate up to two option cards simultaneously(1):

- I/O extension cards 2 (see pages 30 and 31)

■ Communication cards 2 for use in industrial applications or for HVAC
(see pages 44 to 53)

- Multi-pump cards 2 for the management of multiple pumps
(see pages 32 to 35)
■ "Controller Inside" programmable card 2. This card is used to adapt the drive to specific applications quickly and progressively, by decentralizing the control system functions (programming in IEC 61131-3 compliant languages)
(see pages 36 to 43).
External options can be associated with the Altivar 61:
■ Braking units and resistors, see pages 54 to 61
- DC chokes, line chokes and passive filters, to reduce current harmonics (see pages 62 to 73)
■ Additional EMC input filters (see pages 74 to 77)
- Motor chokes and sinus filters for long cable runs or to remove the need for shielding (see pages 78 to 83)
Note: Please refer to the compatibility summary tables to determine which options are available for individual drives (see pages 84 to 89).

Integration into control systems and building management systems

The Altivar 61 integrates a combined Modbus or CANopen port for adjustment, supervision and configuration. A second port is available for connecting a Magelis terminal for machine dialogue.

The Altivar 61 drive can also be connected to other communication networks using the communication cards (see pages 44 to 53). All communication protocols designed for use in industrial applications (Ethernet TCP/IP, Fipio, Modbus, Modbus Plus, Uni-Telway, Profibus DP, DeviceNet and InterBus) or in building management systems (LonWorks, METASYS N2, APOGEE FLN, BACnet) are available.

The option of powering the control part separately enables communication to be maintained (monitoring, diagnostics) even if there is no power supply to the power part.

The "Controller Inside" programmable card transforms the drive into an automation island:
■ The card integrates its own I/O; it can also manage those of the drive and an I/O extension card.
■ It contains onboard application programs developed in IEC 61131-3 compliant languages, which reduce the control system's response time.
■ Its CANopen master port enables control of other drives and dialogue with
I/O modules and sensors.

The two multi-pump cards enable the drive to be adapted for pump applications. The VW3 A3 $\mathbf{5 0 2}$ multi-pump card ensures the compatibility of pump applications developed for an Altivar 38 drive with an Altivar 61 drive.
The VW3 A3 503 multi-pump card enables all multi-pump applications to be supported.
Multi-pump cards feature their own I/O. They can manage I/O on the drive as well as those on I/O extension cards. They can also make use of drive parameters such as those for speed, current, torque, etc.
(1) The Altivar 61 cannot support more than one option card with the same reference. Please refer to the compatibility tables summarizing the possible combinations for drives, options and accessories on pages 84 to 89.

Example of a drive equipped with a communication card and a "Controller Inside" programmable card

Characteristics:	References:	Dimensions:	Schemes:	punctions:
pages 8 to 15				

Altivar 61

Environmental characteristics

Conformity to standards		Altivar 61 drives have been developed to conform to the strictest international standards and the recommendations relating to electrical industrial control devices (IEC, EN), in particular: low voltage, IEC/EN 61800-5-1, IEC/EN 61800-3 (conducted and radiated EMC immunity and emissions).
EMC immunity		IEC/EN 61800-3, environments 1 and 2 IEC/EN 61000-4-2 level 3 IEC/EN 61000-4-3 level 3 IEC/EN 61000-4-4 level 4 IEC/EN 61000-4-5 level 3 IEC/EN 61000-4-6 level 3 IEC/EN 61000-4-11 (1)
Conducted and radiated EMC em ATV 61H075M3, HU15M3 issions for drives ATV 61H075N4...HU40N4		IEC/EN 61800-3, environments 1 and 2, categories C1, C2, C3
		EN 55011 class A group 1, IEC/EN 61800-3 category C2 With additional EMC filter (2): - EN 55011 class B group 1, IEC/EN 61800-3 category C1
	ATV 61HU22M3...HU75M3 ATV 61HU55N4...HC63N4	EN 55011 class A group 2, IEC/EN 61800-3 category C3 With additional EMC filter (2): - EN 55011 class A group 1, IEC/EN 61800-3 category C2 - EN 55011 class B group 1, IEC/EN 61800-3 category C1
	ATV 61Hee@M3X	With additional EMC filter (2): EN 55011 class A group 1, IEC/EN 61800-3 category C2 EN 55011 class B group 1, IEC/EN 61800-3 category C1
	ATV 61W075N4...WD90N4	EN 55011 class A group 1, IEC/EN 61800-3 category C2
	ATV 61W075N4C...WD90N4C	EN 55011 class B group 1, IEC/EN 61800-3 category C1
C¢ marking		The drives have (ϵ marking in accordance with the European directives on low voltage (73/23/EEC and 93/68/EEC) and EMC (89/336/EEC).
Product certifications		UL, CSA, DNV, C-Tick, NOM 117 and GOST
Degree of protection		IEC/EN 61800-5-1, IEC/EN 60529
	ATV 61HoeoM3 ATV 61HD11M3X...HD45M3X ATV 61H075N4...HD75N4	IP 21 and IP 41 on upper part IP 20 without blanking plate on upper part of cover IP 21 with accessory VW3 A9 1••, UL Type 1 with accessory VW3 A9 2••, see pages 24 and 25
	ATV 61HD55M3X...HD90M3X ATV 61HD90N4...HC31N4	IP 00, IP 41 on the upper part and IP 30 on the front panel and side parts IP 31 with accessory VW3 A9 1••, UL Type 1 with accessory VW3 A9 2••, see pages 24 and 25
	ATV 61HC40N4...HC63N4	IP 00, IP 41 on the upper part and IP 30 on the front panel and side parts IP 31 with accessory VW3 A9 1•e, see page 25
	ATV 61W075N4...WD90N4 ATV 61W075N4C...WD90N4C	UL Type 12/IP 54
Vibration resistance	ATV 61HeeoM3 ATV 61HD11M3X...HD45M3X ATV 61H075N4...HD75N4 ATV 61W075N4...WD75N4 ATV 61W075N4C...WD75N4C	1.5 mm peak to peak from $3 \ldots 13 \mathrm{~Hz}, 1 \mathrm{gn}$ from $13 \ldots 200 \mathrm{~Hz}$, conforming to IEC/EN 60068-2-6
	ATV 61HD55M3X...HD90M3X ATV 61HD90N4...HC63N4 ATV 61WD90N4 ATV 61WD90N4C	1.5 mm peak to peak from $3 \ldots 10 \mathrm{~Hz}, 0.6 \mathrm{gn}$ from $10 \ldots 200 \mathrm{~Hz}$, conforming to IEC/EN 60068-2-6
Shock resistance	ATV 61HeeoM3 ATV 61HD11M3X...HD45M3X ATV 61H075N4...HD75N4 ATV 61W075N4...WD75N4 ATV 61W075N4C...WD75N4C	15 gn for 11 ms conforming to IEC/EN 60068-2-27
	ATV 61HD55M3X...HD90M3X ATV 61HD90N4...HC16N4 ATV 61WD90N4 ATV 61WD90N4C	7 gn for 11 ms conforming to IEC/EN 60068-2-27
	ATV 61HC22N4...HC63N4	4 gn for 11 ms conforming to IEC/EN 60068-2-27
		(1) Drive behaviour according to the drive configurations, see pages 166, 167, 173 and 174. (2) See table on page 74 to check permitted cable lengths.

Presentation:	References:	Dimensions:
pages 4 to 7	pages 18 to 21	pages 90 to 111

Environmental characteristics（continued）		
Maximum ambient ATV 61HeooM3 pollution ATV 61HD11M3X，HD15M3X ATV 61H075N4．．．HD18N4 ATV 61W075N4．．．WD15N4 ATV 61W075N4C．．．WD15N4C		Degree 2 conforming to IEC／EN 61800－5－1
ATV 61HD18M3X．．．HD90M3X ATV 61HD22N4．．．HC63N4 ATV 61WD18N4．．．WD90N4 ATV 61WD18N4C．．．WD90N4C		Degree 3 conforming to IEC／EN 61800－5－1
Environmental ATV 61HecoM3， conditions ATV 61HeoッM3X， ATV 610000N4， ATV 61W 000 N4C		IEC 60721－3－3 classes 3C1 and 3S2
ATV 61HeeeM3S337， ATV 61HD11M3X337．．．HD45M3X337， ATV 61HD55M3X．．．HD90M3X， ATV 61H075N4S337．．． HD75N4S337， ATV 61HD90N4．．．HC63N4， ATV 61WeoeN4337 ATV 61W•e॰N4C337		IEC 60721－3－3 class 3C2
Relative humidity		5．．．95\％without condensation or dripping water conforming to IEC 60068－2－3
Ambient temperature Operation around the unit	${ }^{\circ} \mathrm{C}$	For ATV $61 \mathrm{H} \bullet \bullet \bullet \bullet$ drives：$-10 \ldots+50$ without derating，depending on the rating． Up to $+60^{\circ} \mathrm{C}$ with derating（and with the VW3 A9 $4 \bullet \bullet$ control card fan kit，depending on the ratings）． For ATV 61Weeee๑ drives：－ $10 \ldots+40$ without derating． See derating curves on pages 138 to 145 ．
Storage	${ }^{\circ} \mathrm{C}$	－25．．． 70
Maximum operating altitude	m	1000 without derating 1000．．． 3000 derating the current by 1% per additional 100 m ．Limited to 2000 m for the＂Corner Grounded＂distribution network
Operating position Maximum permanent angle in relation to the normal vertical mounting position		

Presentation： pages 4 to 7	References： pages 18 to 21	Dimensions： pages 90 to 111
	（年）Telemecanique	Schemes： pages 112 to 127

Altivar 61

Drive characteristics

Output frequency range	ATV 61HeeoM3 ATV 61HD11M3X．．．HD37M3X ATV 61H075N4．．．HD37N4	Hz	0．5．．． 1000
	ATV 61HD45M3X．．．HD90M3X ATV 61HD45N4．．．HC63N4 ATV 61W075N4．．．WD90N4 ATV 61W075N4C．．．WD90N4C	Hz	0．5．．． 500
Configurable switching frequency	ATV 61HeゃゃM3， ATV 61HD11M3X．．．HD45M3X， ATV 61H075N4．．．HD75N4	kHz	Nominal switching frequency： 12 kHz without derating in continuous operation． Adjustable during operation from $1 . . .16 \mathrm{kHz}$ Above 12 kHz ，see derating curves on pages 138 and 139.
	ATV 61HD55M3X	kHz	Nominal switching frequency： 2.5 kHz without derating in continuous operation． Adjustable during operation from $2.5 \ldots 12 \mathrm{kHz}$ Above 2.5 kHz ，see derating curves on pages 140 and 141.
	ATV 61HD75M3X，HD90M3X	kHz	Nominal switching frequency： 2.5 kHz without derating in continuous operation． Adjustable during operation from 2.5 ．．． 8 kHz Above 2.5 kHz ，see derating curves on pages 140 and 141.
	ATV 61HD90N4	kHz	Nominal switching frequency： 4 kHz without derating in continuous operation． Adjustable during operation from $2 . . .8 \mathrm{kHz}$ Above 4 kHz ，see derating curves on pages 140 and 141 ．
	ATV 61HC11N4．．．HC63N4	kHz	Nominal switching frequency： 2.5 kHz without derating in continuous operation． Adjustable during operation from $2 . . .8 \mathrm{kHz}$ Above 2.5 kHz ，see derating curves on pages 140 to 143.
	ATV 61W075N4．．．WD15N4 ATV 61W075N4C．．．WD15N4C		Nominal switching frequency： 8 kHz without derating in continuous operation． Adjustable during operation from $2 . . .16 \mathrm{kHz}$ Above 8 kHz ，see derating curves on pages 144 and 145 ．
	ATV 61WD18N4．．．WD90N4 ATV 61WD18N4C．．．WD90N4C		Nominal switching frequency： 4 kHz without derating in continuous operation． Adjustable during operation from $2 \ldots 16 \mathrm{kHz}$ Above 4 kHz ，see derating curves on pages 144 and 145.
Speed range			$1 . . .100$ in open loop mode
Speed accuracy	For a torque variation of 0．2 Tn to Tn		$\pm 10 \%$ of nominal slip，without speed feedback
Torque accuracy			$\pm 15 \%$ in open loop mode
Transient overtorque			130% of the nominal motor torque（typical value at $\pm 10 \%$ ）for 60 s
Braking torque			30% of the nominal motor torque without braking resistor（typical value） Up to 130% with braking resistor installed as an option，see page 57
Maximum transient current	ATV 61HeoeM3 ATV 61HeeッM3X ATV 61HeeeN4		120% of the nominal drive current for 60 s （typical value）
	ATV 61WeeoN4 ATV 61WeoeN4C		110% of the nominal drive current for 60 s（typical value）
Motor control profile	Asynchronous motor		Sensorless Flux Vector Control（FVC）（voltage or current vector） Voltage／frequency ratio（2 or 5 points） Energy saving ratio
	Synchronous motor		Vector control without speed feedback
Frequency loop			PI regulator with adjustable structure for a speed response adapted to the machine （accuracy，speed）
Slip compensation			Automatic whatever the load．Can be suppressed or adjusted Not available in voltage／frequency ratio

Presentation：	References：	Dimensions：
pages 4 to 7	pages 18 to 21	pages 90 to 111

Electrical power characteristics			
Power	Voltage	V	200－15\％．．． $240+10 \%$ single phase for ATV 61H075M3．．．HU75M3 200－15\％．．． $240+10 \%$ 3－phase for ATV 61HeeゃM3 and ATV 61HeゃゃM3X $380-15 \% \ldots 480+10 \%$ 3－phase for ATV $61 \bullet \bullet \bullet \bullet N 4$ and ATV 61WeゃeN4C
	Frequency	Hz	$50-5 \% \ldots . .60+5 \%$
Signalling			1 red LED：LED lit indicates the presence of drive voltage
Output voltage			Maximum 3－phase voltage equal to line supply voltage
Drive noise level			Conforming to directive 86－188／EEC
	ATV 61H075M3，HU15M3 ATV 61H075N4．．．HU22N4 ATV 61W075N4．．．WU30N4 ATV 61W075N4C．．．WU30N4C	dBA	43
	ATV 61HU22M3．．．HU40M3 ATV 61HU30N4，HU40N4 ATV 61WU40N4，WU55N4 ATV 61WU40N4C，WU55N4C	dBA	54.5
	ATV 61HU55M3 ATV 61HU55N4，HU75N4 ATV 61WU75N4，WD11N4 ATV 61WU75N4C，WD11N4C	dBA	55.6
	ATV 61HU75M3 ATV 61HD11N4 ATV 61WD15N4 ATV 61WD15N4C	dBA	57.4
	ATV 61HD11M3X，HD15M3X ATV 61HD15N4，HD18N4 ATV 61WD18N4，WD22N4 ATV 61WD18N4C，WD22N4C	dBA	60.2
	ATV 61HD18M3X，HD22M3X ATV 61HD22N4 ATV 61WD30N4 ATV 61WD30N4C	dBA	59.9
	ATV 61HD30M3X．．．HD45M3X， ATV 61HD30N4，HD37N4 ATV 61WD37N4，WD45N4 ATV 61WD37N4C，WD45N4C	dBA	64
	ATV 61HD45N4．．．HD75N4 ATV 61WD55N4．．．WD90N4 ATV 61WD55N4C．．．WD90N4C	dBA	63.7
	ATV 61HD55M3X，HD75M3X ATV 61HD90N4，HC11N4	dBA	60.5
	ATV 61HD90M3X ATV 61HC13N4	dBA	69.5
	ATV 61HC16N4，HC22N4	dBA	66
	ATV 61HC25N4，HC31N4	dBA	68
	ATV 61HC40N4，HC50N4	dBA	70
	ATV 61HC63N4	dBA	71
Electrical isolation			Between power and control（inputs，outputs，power supplies）

Variable speed drives for asynchronous motors

Altivar 61

Connection cable characteristics

Cable type

 forMounting in an enclosure
Mounting in an enclosure with an IP 21 or IP 31 kit
Mounting in an enclosure with a UL Type 1 kit

Single-strand IEC cable, ambient temperature $45^{\circ} \mathrm{C}$, copper $90^{\circ} \mathrm{C}$ XLPE/EPR or copper $70^{\circ} \mathrm{C} \mathrm{PVC}$
3-strand IEC cable, ambient temperature $40^{\circ} \mathrm{C}$, copper $70^{\circ} \mathrm{C}$ PVC
3-strand UL 508 cable except for choke (2-strand UL 508 cable), ambient temperature $40^{\circ} \mathrm{C}$, copper $75^{\circ} \mathrm{C}$ PVC

Connection characteristics (terminals for the power supply, the motor, the DC bus and the braking resistor)
Drive terminals

tightening

torque
L1/R, L2/S, L3/T, U/T1, V/T2, W/T3 PC/-, PO, PA/+ PA, PB

ATV 61H075M3...HU40M3 ATV 61H075N4...HU40N4	$\begin{aligned} & 4 \mathrm{~mm}^{2}, \text { AWG } 8 \\ & 1.4 \mathrm{Nm}, 12.3 \mathrm{lb} . \mathrm{in} \end{aligned}$		
ATV 61HU55M3 ATV 61HU55N4, HU75N4	$6 \mathrm{~mm}^{2}$, AWG 6 $3 \mathrm{Nm}, 26.5 \mathrm{lb} . \mathrm{in}$ $3 \mathrm{Nm}, 26.5 \mathrm{lb} . \mathrm{in}$		
ATV 61HU75M3 ATV 61HD11N4	16 mm2, AWG 4 $3 \mathrm{Nm}, 26.5 \mathrm{lb} . \mathrm{in}$		
ATV 61HD11M3X, HD15M3X ATV 61HD15N4, HD18N4	$35 \mathrm{~mm}^{2}$, AWG 2 $5.4 \mathrm{Nm}, 47.7 \mathrm{lb} . \mathrm{in}$		
ATV 61HD18M3X, HD22M3X ATV 61HD22N4	$50 \mathrm{~mm}^{2}$, AWG $1 / 0$ $24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in}$		
ATV 61HD30N4, HD37N4	$\begin{aligned} & \hline 50 \mathrm{~mm}^{2}, \text { AWG } 1 / 0 \\ & 24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$		
ATV 61HD30M3X, ATV 61HD45N4	$150 \mathrm{~mm}^{2}, 300 \mathrm{kcmil}$ $41 \mathrm{Nm}, 360 \mathrm{lb}$. in		
ATV 61HD37M3X, ATV 61HD55N4	$150 \mathrm{~mm}^{2}, 300 \mathrm{kcmil}$ $41 \mathrm{Nm}, 360 \mathrm{lb} . i n$		
ATV 61HD45M3X, ATV 61HD75N4	$150 \mathrm{~mm}^{2}, 300 \mathrm{kcmil}$ $41 \mathrm{Nm}, 360 \mathrm{lb}$.in		
ATV 61HD55M3X, HD75M3X	$\begin{aligned} & 2 \times 100 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \text { M10, } 24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 100 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$60 \mathrm{~mm}^{2}, 250 \mathrm{MCM}$ M8, $12 \mathrm{Nm}, 106 \mathrm{lb} . \mathrm{in}$
ATV 61HD90M3X	$\begin{aligned} & 2 \times 100 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \mathrm{M} 10,24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 150 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \end{aligned}$	$60 \mathrm{~mm}^{2}, 250 \mathrm{MCM}$ M8, $12 \mathrm{Nm}, 106 \mathrm{lb} . \mathrm{in}$
ATV 61HD90N4, HC11N4	$\begin{aligned} & 2 \times 100 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \text { M10, } 24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 100 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$60 \mathrm{~mm}^{2}, 250 \mathrm{MCM}$ M8, $12 \mathrm{Nm}, 106 \mathrm{lb} . \mathrm{in}$
ATV 61HC13N4	$\begin{aligned} & \hline 2 \times 100 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \mathrm{M} 10,24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$2 \times 150 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM}$ M12, $41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$	$60 \mathrm{~mm}^{2}, 250 \mathrm{MCM}$ M8, $12 \mathrm{Nm}, 106 \mathrm{lb} . \mathrm{in}$
ATV 61HC16N4	$\begin{aligned} & 2 \times 120 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \mathrm{M} 10,24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 120 \mathrm{~mm}^{2}, 2 \times 250 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$120 \mathrm{~mm}^{2}, 250 \mathrm{MCM}$ M10, $24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in}$
ATV 61HC22N4	$\begin{aligned} & 2 \times 150 \mathrm{~mm}^{2}, 2 \times 350 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \times 150 \mathrm{~mm}^{2}, 2 \times 350 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$120 \mathrm{~mm}^{2}, 250 \mathrm{MCM}$ M10, $24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in}$
ATV 61HC25N4	$\begin{aligned} & 4 \times 185 \mathrm{~mm}^{2}, 3 \times 350 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \times 185 \mathrm{~mm}^{2}, 3 \times 350 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	-
ATV 61HC31N4	$\begin{aligned} & 4 \times 185 \mathrm{~mm}^{2}, 3 \times 350 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$\begin{aligned} & 4 \times 185 \mathrm{~mm}^{2}, 3 \times 350 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	-
ATV 61HC40N4	$\begin{aligned} & 4 \times 185 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM} \\ & \text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \\ & \hline \end{aligned}$	$8 \times 185 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$ $\text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$	-
ATV 61HC50N4	L1/R, L2/S, L3/T	$8 \times 185 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$ M12, $41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$	-
	$2 \times 2 \times 185 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$ M12, $41 \mathrm{Nm}, 360 \mathrm{lb} . i n$		
	U/T1, V/T2, W/T3		
	$4 \times 185 \mathrm{~mm}^{2}, 4 \times 500 \mathrm{MCM}$ $\text { M12, } 41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$		
ATV 61HC63N4	L1/R, L2/S, L3/T	$\begin{aligned} & 8 \times 185 \mathrm{~mm}^{2}, 5 \times 500 \mathrm{MCM} \\ & \mathrm{M} 12,41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in} \end{aligned}$	-
	$2 \times 4 \times 185 \mathrm{~mm}^{2}, 5 \times 500 \mathrm{MCM}$ M12, $41 \mathrm{Nm}, 360 \mathrm{lb}$.in		
	U/T1, V/T2, W/T3		
	$6 \times 185 \mathrm{~mm}^{2}, 5 \times 500 \mathrm{MCM}$ M12, $41 \mathrm{Nm}, 360 \mathrm{lb} . i n$		
ATV 61W075N4...WU55N4 ATV 61W075N4C...WU55N4C	$\begin{aligned} & 4 \mathrm{~mm}^{2}, \text { AWG } 8 \\ & 1.4 \mathrm{Nm}, 12.3 \mathrm{lb} . \mathrm{in} \end{aligned}$		
ATV 61WU75N4, WD11N4 ATV 61WU75N4C, WD11N4C	$6 \mathrm{~mm}^{2}$, AWG 6 $3 \mathrm{Nm}, 26.5 \mathrm{lb} . \mathrm{in}$		
ATV 61WD15N4 ATV 61WD15N4C	$16 \mathrm{~mm}^{2}$, AWG 4 $3 \mathrm{Nm}, 26.5 \mathrm{lb} . \mathrm{in}$		
ATV 61WD18N4, WD22N4 ATV 61WD18N4C, WD22N4C	$\begin{aligned} & 35 \mathrm{~mm}^{2}, \text { AWG 2 } \\ & 5.4 \mathrm{Nm}, 47.7 \mathrm{lb} . \mathrm{in} \end{aligned}$		
ATV 61WD30N4 ATV 61WD30N4C	$50 \mathrm{~mm}^{2}$, AWG $1 / 0$ $24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in}$		
ATV 61WD37N4, WD45N4 ATV 61WD37N4C, WD45N4C	$\begin{aligned} & 50 \mathrm{~mm}^{2}, \text { AWG } 1 / 0 \\ & 24 \mathrm{Nm}, 212 \mathrm{lb} . \mathrm{in} \end{aligned}$		
ATV 61WD55N4 ATV 61WD55N4C	$150 \mathrm{~mm}^{2}, 300 \mathrm{kcmil}$ $41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$		
ATV 61WD75N4 ATV 61WD75N4C	$150 \mathrm{~mm}^{2}, 300 \mathrm{kcmil}$ $41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$		
ATV 61WD90N4 ATV 61WD90N4C	$150 \mathrm{~mm}^{2}, 300 \mathrm{kcmil}$ $41 \mathrm{Nm}, 360 \mathrm{lb} . \mathrm{in}$		

Electrical control characteristics

Internal supplies available		Short-circuit and overload protection: $1 \times 10.5 \mathrm{~V}= \pm 5 \%$ supply for the reference potentiometer (1 to $10 \mathrm{k} \Omega$), maximum current 10 mA $1 \times 24 \mathrm{~V}=$ supply (min. 21 V , max. 27 V), maximum current 200 mA .
External + 24 V power supply (1) (not supplied)		$24 \mathrm{~V}=-(\min .19 \mathrm{~V}, \max .30 \mathrm{~V})$ Power 30 W
Analog inputs	Al1-/Al1+	1 bipolar differential analog input $\pm 10 \mathrm{~V}=-$ (maximum safe voltage 24 V) Max. sampling time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Resolution: 11 bits +1 sign bit Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.15 \%$ of the maximum value
	Al2	1 software-configurable current or voltage analog input: - voltage analog input $0 \ldots 10 \mathrm{~V} \ldots$, impedance $30 \mathrm{k} \Omega$ (max. safe voltage 24 V) - current analog input $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y from 0 to 20 mA , with im pedance 242Ω Max. sampling time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Resolution: 11 bits Accuracy: $\pm 0.6 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.15 \%$ of the maximum value
	Other inputs	See option cards
Configurable voltage and current analog outputs	AO1	1 analog output configurable for voltage or current: ■ voltage analog output $0 \ldots 10 \mathrm{~V}=-$, minimum load impedance 470Ω - current analog output $\mathrm{X}-\mathrm{Y} \mathrm{mA}$ by programming X and Y from 0 to 20 mA , maxim um load impedance 500Ω Max. sampling time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Resolution: 10 bits Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.2 \%$
	Other outputs	See option cards
Configurable relay outputs	R1A, R1B, R1C	1 relay logic output, one " N / C " contact and one " N / O " contact with common point Minimum switching capacity: 3 mA for $24 \mathrm{~V}=$ Maximum switching capacity: ■ on resistive load ($\cos \varphi=1$): 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=$ on inductive load ($\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ Max. response time: $7 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Electrical service life: 100,000 operations
	R2A, R2B	1 relay logic output, one "N/O" contact Minimum switching capacity: 3 mA for $24 \mathrm{~V}=-$ Maximum switching capacity: - on resistive load ($\cos \varphi=1$): 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ on inductive load ($\cos \varphi=0.4$ and $\mathrm{L} / \mathrm{R}=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ Max. response time: $7 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Electrical service life: 100,000 operations
	Other outputs	See option cards
Logic inputs LI	LI1...LI5	5 programmable logic inputs, $24 \mathrm{~V}=$.-- , compatible with level 1 PLC, IEC 65A-68 standard Impedance: $3.5 \mathrm{k} \Omega$ Maximum voltage: 30 V Max. sampling time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$ Multiple assignment makes it possible to configure several functions on one input (example: LI1 assigned to forward and preset speed 2, LI3 assigned to reverse and preset speed 3)
	LI6	1 logic input, configurable by a switch as a logic input or as an input for PTC probes Logic input, characteristics identical to inputs LI1...LI5 Input for a maximum of 6 PTC probes mounted in series: - nominal value $<1.5 \mathrm{k} \Omega$ - trip resistance $3 \mathrm{k} \Omega$, reset value $1.8 \mathrm{k} \Omega$ - short-circuit protection < 50Ω
	Positive logic (Source)	State 0 if $\leqslant 5 \mathrm{~V}$ or logic input not wired, state 1 if $\geqslant 11 \mathrm{~V}$
	Negative logic (Sink)	State 0 if $\geqslant 16 \mathrm{~V}$ or logic input not wired, state 1 if $\leqslant 10 \mathrm{~V}$
	Other inputs	See option cards
Safety input	PWR	1 input for the Power Removal safety function: - Power supply: $24 \mathrm{~V}=$ =- (max. 30 V) - Impedance: $1.5 \mathrm{k} \Omega$ - State 0 if $<2 \mathrm{~V}$, state 1 if $>17 \mathrm{~V}$
Maximum I/O wire size and tightening torque		$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (AWG 14) } \\ & 0.6 \mathrm{Nm} \end{aligned}$

(1) Please consult our specialist catalogue "Power supplies, splitter blocks and interfaces".

Presentation:	References:	Dimensions:
pages 4 to 7	pages 18 to 21	pages 90 to 111

Electrical control characteristics (continued)

Acceleration and deceleration ramps		Ramp profiles: - linear, can be adjusted separately from 0.01 to 9000 s - S, U or customized Automatic adaptation of deceleration ramp time if braking capacities exceeded, possible inhibition of this adaptation (use of braking resistor).
Braking to a standstill		By DC injection: by a command on a programmable logic input automatically as soon as the estimated output frequency drops to $<0.1 \mathrm{~Hz}$, period adjustable from 0 to 60 s or continuous, current adjustable from 0 to $1.2 \ln$ (in open loop mode only).
Main drive protection and safety features		Thermal protection: - against overheating - of the power stage Protection against: - short-circuits between motor phases - input phase breaks - overcurrents between output phases and earth - overvoltages on the DC bus - a break on the control circuit exceeding the limit speed Safety function for: - line supply overvoltage and undervoltage - input phase loss, in 3-phase
Motor protection (see page 172)		Thermal protection integrated in drive via continuous calculation of $\mathrm{I}^{2} \mathrm{t}$ taking speed into account: - The motor thermal state is saved when the drive is powered down. - Function can be modified via operator dialogue terminals, depending on the type of motor (force-cooled or self-cooled). Protection against motor phase breaks Protection with PTC probes
$\begin{array}{ll}\text { Dielectric strength } & \text { ATV 61000M3 } \\ & \text { ATV } 61 \bullet 0 \bullet \mathrm{M} 3 \mathrm{X}\end{array}$		Between earth and power terminals: 2830 V --Between control and power terminals: $4230 \mathrm{~V}=-$
ATV 61•000N4 ATV 61WeeoN4C		Between earth and power terminals: $3535 \mathrm{~V}=-$ Between control and power terminals: $5092 \mathrm{~V}=-$
Insulation resistance to earth		> $1 \mathrm{M} \Omega$ (electrical isolation) 500 V --- for 1 minute
Frequency resolution	Hz	0.1
	Hz	$0.024 / 50 \mathrm{~Hz}$ (11 bits)
Operational safety characteristics		
ProtectionOf the machine		Power Removal (PWR) safety function which forces stopping and/or prevents the m otor from restarting unintentionally, conforming to EN 954-1 category 3 and draft standard IEC/EN 61800-5-2.
		Power Removal (PWR) safety function which forces stopping and/or prevents the m otor from restarting unintentionally, conforming to IEC/EN 61508 level SIL2 and draft standard IEC/EN 61800-5-2.

Presentation: pages 4 to 7	References: pages 18 to 21	Dimensions: pages 90 to 111	Schemes: pages 112 to 127	Functions: pages 148 to 175

Communication port characteristics			
Modbus protocol			
Type of connection		Modbus RJ45 terminal port	Modbus RJ45 network port
Structure	Physical interface	2-wire RS 485	
	Transmission mode	RTU	
	Transmission speed	Configurable via the display terminal or the PowerSuite software workshop: 9600 bps or 19200 bps	Configurable via the display terminal or the PowerSuite software workshop: 4800 bps, 9600 bps, 19200 bps or 38.4 Kbps
	Format	Fixed $=8$ bits, even parity, 1 stop	Configurable via the display terminal or the PowerSuite software workshop: - 8 bits, odd parity, 1 stop - 8 bits, even parity, 1 stop - 8 bits, no parity, 1 stop - 8 bits, no parity, 2 stop
	Polarization	No polarization impedances These should be provided by the wiring system (for example, in the master)	
	Address	1 to 247, configurable via the terminal or the PowerSuite software workshop. 3 addresses can be configured in order to access the data of the drive, the "Controller Inside" programmable card, the multi-pump card and the communication card respectively. These 3 addresses are identical for the terminal and network ports.	
Services	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control". I/O profile	
	Messaging	Read Holding Registers (03) 63 words maximum Write Single Register (06) Write Multiple Registers (16) 61 words maximum Read/Write Multiple Registers (23) 63/59 words maximum Read Device Identification (43) Diagnostics (08)	
	Communication monitoring	Can be inhibited. "Time out", which can be set between 0.1 s and 30 s	
Diagnostics	Via LED on ATV 61HeeッM3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4...HD75N4	An activity LED on integrated 7-segment display terminal. One LED for each port.	
	With graphic display terminal	One activity LED Control word received Reference received For each port: - Number of frames received - Number of incorrect frames.	
CANopen protocol			
Structure	Connector	9-way male SUB-D connector on CANopen adapter. This connects to the RJ45 Modbus network port.	
	Network management	Slave	
	Transmission speed	20 Kbps , 50 Kbps , $125 \mathrm{Kbps}, 250 \mathrm{Kbps}$, 500 Kbps or 1 Mbps	
	Address (Node ID)	1 to 127, configurable via the terminal or the PowerSuite software workshop.	
Services	Number of PDOs	3 receive and 3 transmit (PDO1, PDO2 and PDO3)	
	PDO modes	Event-triggered, Time-triggered, Remotely-requested, Sync (cyclic), Sync (acyclic)	
	PDO linking	Yes	
	PDO mapping	Configurable (PDO1 and PDO2)	
	Number of SDOs	1 server	
	Emergency	Yes	
	CANopen application layer	CiA DS 301, V 4.02	
	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control". I/O profile	
	Communication monitoring	Node Guarding, Heartbeat	
Diagnostics	Via LED on ATV 61HeoeM3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4...HD75N4	2 LEDs: "RUN" and "ERROR" on integrated 7-segment display terminal	
	With graphic display terminal and PowerSuite software workshop	2 LEDs: "RUN" and "ERROR" Control word received Reference received Display of received PDOs Display of transmitted PDOs State of NMT chart Received PDOs counter Transmitted PDOs counter Reception error counter Transmission error counter	
Description file		A single eds file is supplied for the whole range on the CD-ROM containing the documentation or on the website: www.telemecanique.com. It contains the description of the drive parameters.	

Presentation:	References:	Dimensions:	Schemes:
pages 4 to 7	pages 18 to 21	pages 90 to 111	pages 112 to 127

Variable speed drives for asynchronous motors
 Altivar 61

Open loop applications

Torque characteristics (typical curves)

The curves opposite define the available continuous torque and transient overtorque for both force-cooled and self-cooled motors. The only difference is in the ability of the motor to provide a high continuous torque at less than half the nominal speed.

Open loop applications

1 Self-cooled motor: continuous useful torque (1)
2 Force-cooled motor: continuous useful torque
3 Overtorque for 60 seconds maximum for ATV 61Weeeee (UL Type 12/IP 54 drives)
4 Overtorque for 60 seconds maximum for ATV 61Heeeee (UL Type 1/IP 20 drives)
5 Torque in overspeed at constant power (2)

Motor thermal protection

Altivar 61 drives feature thermal protection designed specifically for self-cooled or force-cooled variable speed motors. The drive calculates the motor thermal state even when it is switched off.

This motor thermal protection is designed for a maximum ambient temperature of $40^{\circ} \mathrm{C}$ around the motor. If the temperature around the motor exceeds $40^{\circ} \mathrm{C}$, thermal protection should be provided directly by thermistor probes (PTC) integrated in the motor. The probes are managed directly by the drive.

[^0]| Presentation: | References: | Dimensions: | Schemes: | Functions: |
| :--- | :--- | :--- | :--- | :--- |
| pages 4 to 7 175 | pages 18 to 21 | pages 90 to 111 | pages 112 to 127 | pages 148 to 175 |

Variable speed drives for asynchronous motors Altivar 61

Connecting motors in parallel

KM1: Output contactor
t1: deceleration without ramp (freewheel)
t2: acceleration with ramp
N : Speed
Example of loss of output contactor

Special uses

Using Altivar 61 drives with synchronous motors

Altivar 61 drives are also suitable for powering synchronous motors (sinusoidal electromotive force) in open loop mode and are used to achieve performance levels comparable to those associated with an asynchronous motor in sensorless flux vector control.
This drive/motor combination makes it possible to obtain remarkable speed accuracy and maximum torque even at zero speed. The design and construction of synchronous motors are such that they offer enhanced power density and highspeed performance in a compact unit. Drive control for synchronous motors does not cause stalling.

Connecting motors in parallel

The nominal current of the drive must be greater than or equal to the sum of the currents of the motors to be controlled.
In this case, provide external thermal protection for each motor using probes or thermal overload relays. For cable runs over a certain length, taking account of all the tap links, it is advisable either to install an output filter between the drive and the motors or to use the overvoltage limitation function.

If several motors are used in parallel, there are 2 possible scenarios:

- The motors have equal power ratings, in which case the torque characteristics will remain optimized after the drive has been configured
■ The motors have different power ratings, in which case the torque characteristics will not be optimized for all the motors.

Switching the motor at the drive output

The drive can be switched when locked or unlocked. If the drive is switched on-the-fly (drive unlocked), the motor is controlled and accelerates until it reaches the reference speed smoothly following the acceleration ramp. This use requires configuration of the automatic catching a spinning load ("catch on the fly") and the motor phase loss on output cut functions.

Typical applications: loss of safety circuit at drive output, bypass function, switching of motors connected in parallel.
On new installations, it is recommended that the Power Removal safety function is used.

Test on a low power motor or without a motor

In a testing or maintenance environment the drive can be checked without having to switch to a motor with the same rating as the drive (particularly useful in the case of high power drives). This use requires deactivation of motor phase loss function.

Presentation:	References:	Dimensions:
pages 4 to 7	pages 18 to 21	pages 90 to 111

Variable speed drives for asynchronous motors

Altivar 61
Supply voltage 200...240V 50/60 Hz

	UL Type 1/IP 20 drives									
	Motor Power indicated on plate (1)		Line supply				Altivar 61			
				current	Apparent power	Maximum prospective line Isc	Max. continuous current (1)	Max. transient current for 60 s	Reference (3)	Weight
			200 V	240 V	240 V		230 V			
	kW	HP	A	A	kVA	kA	A	A		kg
(Single phase supply voltage: $200 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
	0.37	0.5	6.9	5.8	1.4	5	3.6	5.7	ATV 61H075M3 (4)	3.000
	0.75	1	12	9.9	2.4	5	9.6	9.6	ATV 61HU15M3 (4)	3.000
	1.5	2	18.2	15.7	3.7	5	13.2	13.2	ATV 61HU22M3 (4)	3.000
	2.2	3	25.9	22.1	5.3	5	16.4	16.4	ATV 61HU30M3 (4)	4.000
	3	-	25.9	22	5.3	5	21	21	ATV 61HU40M3 (4) (5)	4.000
	4	5	34.9	29.9	7	5	33	33	ATV 61HU55M3 (4) (5)	5.500
	5.5	7.5	47.3	40.1	9.5	22	39.6	39.6	ATV 61HU75M3 (4) (5)	5.500
	Three phase supply voltage: $200 . . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
ATV 61HU22M3Z	0.75	1	6.1	5.3	2.2	5	4.8	5.7	ATV 61H075M3 (4)	3.000
	1.5	2	11.3	9.6	4	5	8	9.6	ATV 61HU15M3 (4)	3.000
	2.2	3	15	12.8	5.3	5	11	13.2	ATV 61HU22M3 (4)	4.000
	3	-	19.3	16.4	6.8	5	13.7	16.4	ATV 61HU30M3 (4)	4.000
	4	5	25.8	22.9	9.5	5	17.5	21	ATV 61HU40M3 (4)	4.000
	5.5	7.5	35	30.8	12.8	22	27.5	33	ATV 61HU55M3 (4)	5.500
	7.5	10	45	39.4	16.4	22	33	39.6	ATV 61HU75M3 (4)	7.000
	11	15	53.3	45.8	19	22	54	64.8	ATV 61HD11M3X (4) (6)	9.000
	15	20	71.7	61.6	25.6	22	66	79.2	ATV 61HD15M3X (4) (6)	9.000
	18.5	25	77	69	28.7	22	75	90	ATV 61HD18M3X (4) (6)	19.000
	22	30	88	80	33.3	22	88	105.6	ATV 61HD22M3X (4) (6)	19.000
	30	40	124	110	45.7	22	120	144	ATV 61HD30M3X (4) (6)	39.000
	37	50	141	127	52.8	22	144	172.8	ATV 61HD37M3X (4) (6)	39.000
	45	60	167	147	61.1	22	176	211.2	ATV 61HD45M3X (4) (6)	39.000
	55	75	200	173	71.9	35	221	265.2	ATV 61HD55M3X (6) (7) (8)	59.000
	75	100	271	232	96.4	35	285	313.5	ATV 61HD75M3X (6) (7) (8)	72.000
	90	125	336	288	119.7	35	359	394.9	ATV 61HD90M3X (6) (7) (8)	72.000

These values are for a nominal switching frequency of 12 kHz up to ATV 61HD45M3X or of 2.5 kHz for ATV 61HD55M3X...HD90M3X drives for use in continuous operation.
The switching frequency is adjustable from $1 \ldots 16 \mathrm{kHz}$ up to ATV 61HD45M3X, from $2.5 \ldots 12 \mathrm{kHz}$ for ATV 61HD55M3X and from 2.5... 8 kHz for ATV 61HD75M3X, HD90M3X drives.
Above 2.5 or 12 kHz , depending on the rating, the drive reduces the switching frequency itself in the event of an excessive temperature rise. For continuous operation above the nominal switching frequency, derate the nominal drive current, see derating curves on pages 138 to 141.
(2) Typical value for the indicated motor power and for the maximum prospective line Isc.
(3) The ATV 61HD55M3X...HD90M3X drives come in a reinforced version as standard, enabling them to operate in particular environmental conditions; see the enviromental conditions on page 9.
To order the reinforced version of the ATV 61HoooM3 and ATV 61HD11M3X...HD45M3X drives, add at the end of the reference:

- S337 for ATV 61HoooM3. Example: ATV 61H075M3 becomes ATV 61H075M3S337.
- 337 for ATV 61HocoM3X. Example: ATV 61HD11M3X becomes ATV 61HD11M3X337.

If a reinforced version of the drive is supplied for particular environmental conditions, it must come with a remote graphic display terminal.
(4) All drives come with a remote graphic display terminal. The ATV 61HoooM3 and ATV 61HD11M3X...ATV 61HD45M3X drives can be ordered without a graphic display terminal. In this case, add a \boldsymbol{Z} at the end of the reference. They will then come equipped with an integrated 7 -segment display terminal.
Example: ATV 61H075M3 without a graphic display terminal becomes ATV 61H075M3Z.
(5) A line choke must be used, see page 68.
(6) Drive supplied without EMC filter. EMC filters are available as an option, see page 76.
(7) Drive supplied as standard with a DC choke, which must be used when connecting the drive to the 3-phase supply. For connections to the DC bus, the drive can be ordered without a DC choke by adding D at the end of the reference. Example: ATV 61HD55M3X becomes ATV 61HD55M3XD
(8) Drive supplied without plate for EMC mounting. It is included in the UL Type 1 or IP 31 conformity kits, to be ordered separately, see pages 24 and 25.

Note: Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 84 to 87.

Presentation:	Characteristics:	Dimensions:
pages 4 to 7	pages 8 to 15	pages 90 to 95

Variable speed drives for asynchronous motors

Altivar 61
Supply voltage 380...480V 50/60 Hz

(1) These values are for a nominal switching frequency of 12 kHz up to ATV 61HD75N4, of 4 kHz for ATV 61HD90N4 or of 2.5 kHz for ATV 61HD11N4...HC63N4 drives for use in continuous operation.
The switching frequency is adjustable from $1 \ldots 16 \mathrm{kHz}$ up to ATV 61HD75N4 and from $2 \ldots 8 \mathrm{kHz}$ for
ATV 61HD90N4...ATV 61HC63N4 drives.
Above 2.5, 4 or 12 kHz , depending on the rating, the drive reduces the switching frequency itself in the event of an excessive temperature rise. For continuous operation above the nominal switching frequency, derate the nominal drive current, see derating curves on pages 138 to 143.
(2) Typical value for the indicated motor power and for the maximum prospective line Isc.
(3) The ATV 61HD90N4...HC63N4 drives come in a reinforced versions as standard, enabling them to operate in particular environmental conditions; see the environmental conditions on page 9.
To order the reinforced version of the ATV 61H075N4...HD75N4 drives, add S337 at the end of the reference. Example: ATV 61H075N4 becomes ATV 61H075N4S337.
If a reinforced version of the drive is supplied for particular environmental conditions, it must come with a remote graphic display terminal.
The ATV 61HD90N4...HC63N4 drives come in the reinforced version as standard.
(4) All drives come with a remote graphic display terminal. The ATV 61H075N4...ATV 61HD75N4 drives can be ordered without a graphic display terminal. In this case, add a \boldsymbol{Z} at the end of the reference. They will then come equipped with an integrated 7 -segment display terminal.
Example: ATV 61H075N4 without a graphic display terminal becomes ATV 61H075N4Z.
(5) Drive supplied as standard with a DC choke, which must be used when connecting the drive to the 3-phase supply.

For connections to the $D C$ bus, the drive can be ordered without a DC choke by adding D at the end of the reference. Example: ATV 61HD90N4 becomes ATV 61HD90N4D.
(6) Drive supplied without plate for EMC mounting. Depending on the rating, the plate is included in the UL Type 1 conformity kit and/or in the IP 31 conformity kit, to be ordered separately:

- for ATV 61HD90N4...ATV 61HC31N4 drives, order the UL Type 1 or IP 31 conformity kit, see pages 24 and 25,
for ATV 61HC40N4...HC63N4 drives, order the IP 31 conformity kit, see page 25.
Note: Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 84 to 87 .

Presentation: pages 4 to 7	Characteristics: pages 8 to 15	Dimensions:	Schemes: pages 90 to 95	pages 112 to 127

Variable speed drives for asynchronous motors

Altivar 61

Supply voltage $380 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

ATV 61W075N4

Motor Power indicated on plate (1)		Line supply				Altivar 61				
		Line (2)	current	Apparent power	Maximum prospective line Isc	Max. contin curre	uous (1)	Max. transient current for 60 s	Reference (3) (4) (5)	Weight
		380 V	480 V	380 V		380 V	460 V			
kW	HP	A	A	kVA	kA	A	A	A		kg
Thr	phas	supp	y volta	ge: 380...	480 V 50/60					
0.75	1	1.8	1.5	1.2	5	2.3	2.1	2.5	ATV 61W075N4	13.000
1.5	2	3.5	3	2.3	5	4.1	3.4	4.5	ATV 61WU15N4	13.000
2.2	3	5	4.1	3.3	5	5.1	4.8	5.6	ATV 61WU22N4	13.000
3	-	6.7	5.6	4.4	5	7.2	6.2	7.9	ATV 61WU30N4	14.000
4	5	8.8	7.4	5.8	5	9.1	7.6	10	ATV 61WU40N4	16.000
5.5	7.5	11.4	9.2	7.5	22	12	11	13.2	ATV 61WU55N4	16.000
7.5	10	15.8	13.3	10.4	22	16	14	17.6	ATV 61WU75N4	22.000
11	15	21.9	17.8	14.4	22	22.5	21	24.7	ATV 61WD11N4	22.000
15	20	30.5	25.8	20	22	30.5	27	33.5	ATV 61WD15N4	28.000
18.5	25	37.5	32.3	24.7	22	37	34	40.7	ATV 61WD18N4	36.000
22	30	43.6	36.6	28.7	22	43.5	40	47.8	ATV 61WD22N4	36.000
30	40	56.7	46.2	37.3	22	58.5	52	64.3	ATV 61WD30N4	51.000
37	50	69.5	56.8	45.7	22	71.5	65	78.6	ATV 61WD37N4	64.000
45	60	85.1	69.6	56	22	85	77	93.5	ATV 61WD45N4	65.000
55	75	104.8	87	69	35	103	96	113.3	ATV 61WD55N4	92.000
75	100	140.3	113.8	92.3	35	137	124	150.7	ATV 61WD75N4	92.000
90	125	171.8	140.9	113	35	163	156	179.3	ATV 61WD90N4	92.000

(1) These values are given for the nominal frequency switching of 8 kHz up to ATV 61WD15N4, or of 4 kHz for ATV 61WD18N4...WD90N4 drives for use in continuous operation.
The switching frequency is adjustable from $2 \ldots 16 \mathrm{kHz}$ for all ratings.
Above 4 or 8 kHz , depending on the rating, the drive will reduce the switching frequency itself in the event of an excessive temperature rise. For continuous operation above the nominal switching frequency, derate the nominal drive current, see derating curves on pages 144 and 145.
(2) Typical value for the indicated motor power and for the maximum prospective line Isc.
(3) These drives can be ordered in a reinforced version, enabling them to operate in particular environmental conditions; see environmental conditions on page 9. In this case, add 337 at the end of the reference. Example: ATV 61W075N4 becomes ATV 61W075N4337.
(4) Drives supplied with 2 EMC plates:

- 1 for UL Type 12 conformity, to be installed by yourself,
- 1 for IP 54 conformity, already installed.
(5) These drives can be ordered with a $24 V$... power supply, allowing an additional consumption of 250 mA . In this case, add A24 at the end of the reference.
Example: ATV 61W075N4 becomes ATV 61 W075N4A24.
Note: Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 88 and 89.

Presentation:	Characteristics:	Dimensions:
pages 4 to 7	pages 8 to 15	page 94

Variable speed drives for asynchronous motors

Altivar 61
Supply voltage 380... $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

ATV 61WD30N4C

UL Type 12/IP 54 drives with an integrated class B EMC filter

Mot		Line supply				Altivar 61				
Power indicated on plate (1)		Line current(2)		Apparent power	Maximum prospective line Isc	Max. continuous current (1)		Max. transient current for 60 s	Reference (3) (4) (5)	Weight
		380 V	480 V	380 V		380 V	460 V			
kW	HP	A	A	kVA	kA	A	A	A		kg
	phas	supp	volt	e: 380...	480 V 50/60					
0.75	1	1.8	1.5	1.2	5	2.3	2.1	2.5	ATV 61W075N4C	19.000
1.5	2	3.5	3	2.3	5	4.1	3.4	4.5	ATV 61WU15N4C	19.000
2.2	3	5	4.1	3.3	5	5.1	4.8	5.6	ATV 61WU22N4C	20.000
3	-	6.7	5.6	4.4	5	7.2	6.2	7.9	ATV 61WU30N4C	20.000
4	5	8.8	7.4	5.8	5	9.1	7.6	10	ATV 61WU40N4C	23.000
5.5	7.5	11.4	9.2	7.5	22	12	11	13.2	ATV 61WU55N4C	23.000
7.5	10	15.8	13.3	10.4	22	16	14	17.6	ATV 61WU75N4C	32.000
11	15	21.9	17.8	14.4	22	22.5	21	24.7	ATV 61WD11N4C	32.000
15	20	30.5	25.8	20	22	30.5	27	33.5	ATV 61WD15N4C	40.000
18.5	25	37.5	32.3	24.7	22	37	34	40.7	ATV 61WD18N4C	51.000
22	30	43.6	36.6	28.7	22	43.5	40	47.8	ATV 61WD22N4C	50.000
30	40	56.7	46.2	37.3	22	58.5	52	64.3	ATV 61WD30N4C	68.000
37	50	69.5	56.8	45.7	22	71.5	65	78.6	ATV 61WD37N4C	85.000
45	60	85.1	69.6	56	22	85	77	93.5	ATV 61WD45N4C	85.000
55	75	104.8	87	69	35	103	96	113.3	ATV 61WD55N4C	119.000
75	100	140.3	113.8	92.3	35	137	124	150.7	ATV 61WD75N4C	119.000
90	125	171.8	140.9	113	35	163	156	179.3	ATV 61WD90N4C	119.000

(1) These values are given for the nominal frequency switching of 8 kHz up to ATV 61WD15N4C, or of 4 kHz for ATV 61WD18N4C...WD90N4C drives for use in continuous operation.
The switching frequency is adjustable from $2 \ldots 16 \mathrm{kHz}$ for all ratings.
Above 4 or 8 kHz , depending on the rating, the drive will reduce the switching frequency itself in the event of an excessive temperature rise. For continuous operation above the nominal switching frequency, derate the nominal drive current, see derating curves on pages 144 and 145.
(2) Typical value for the indicated motor power and for the maximum prospective line Isc.
(3) These drives can be ordered in a reinforced version, enabling them to operate in particular environmental conditions; see environmental conditions on page 9. In this case, add 337 at the end of the reference.
Example: ATV 61W075N4C becomes ATV 61W075N4C337.
(4) Drives supplied with 2 EMC plates:

- 1 for UL Type 12 conformity, to be installed by yourself,
- 1 for IP 54 conformity, already installed.
(5) These drives can be ordered with a $24 V$ =- power supply, allowing an additional consumption of 250 mA . In this case, add 24 at the end of the reference.
Example: ATV 61W075N4C becomes ATV 61W075N4C24.
Note: Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 88 and 89.

Presentation:	Characteristics:	Dimensions:	Schemes:
pages 4 to 7	pages 8 to 15	page 94	pages 112 to 127

Variable speed drives

Adapter for 115 V ~ logic inputs

This adapter is used to connect $115 \mathrm{~V} \sim$ logic signals to the logic inputs on the drive or an I/O extension card.

7 logic inputs with capacitive impedance at 60 Hz of $0.22 \mu \mathrm{~F}$ are available for connecting the logic signals:
■ Max. current: 200 mA

- Response time: 5 ms to change from state 0 to state $1,20 \mathrm{~ms}$ to change from state 1 to state 0
■ Logic state 0 for a voltage below 20 V , logic state 1 for a voltage between 70 V and 132 V
The power supply must be provided by a 115 V ~ external power supply (min. 70 V , max. 132 V).

References		
Description	Reference	Weight kg
Adapter for 115 V ~ logic inputs	VW3 A3 101	-

Control card fan kit

Control card fan kit

This kit is required for ATV 61HD18M3X...HD45M3X and ATV 61HD22N4...HD75N4 drives.
It enables the drive to operate at an ambient temperature of $50^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, for example, if it is mounted in an IP 54 enclosure. The circulation of air around the electronic cards prevents the formation of hot spots.
Check the derating to be applied to the drive nominal current, see derating curves on pages 138 to 143.

The kit 1 is mounted on the upper part of the drive. It is powered by the drive. It consists of:

- A fan subassembly
- Fixing accessories
- A manual

References	Reference	Weight kg
For drives	VW3 A9 404	-
ATV 61HD18M3X, HD22M3X	VW3 A9 405	-
ATV 61HD32N4	- HD37N4	VW3 A9 406
ATV 61HD30M3X...HD45M3X	VW3 A9 407	-
ATV 61HD45N4...HD75N4		-

Dimensi

Variable speed drives for asynchronous motors

Altivar 61

Option: accessories

ATV 61HU75N4 flush-mounted

Kit for flush-mounting in a dust and damp-proof enclosure
This kit can be used to mount the power part of the drive outside the enclosure (IP 54 degree of protection), which reduces the power dissipated into the enclosure, see page 146 .
It is available for ATV 61HeeeM3, ATV 61HeeeM3X,
ATV 61HD55M3XD...ATV 61HD90M3XD, ATV 61HD90N4...HC31N4 and ATV 61HD90N4D...ATV 61HC31N4D drives.

With this type of mounting, the maximum internal temperature in the enclosure can then reach $60^{\circ} \mathrm{C}$ without it being necessary to derate the drive current.
Between $50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, a control card fan kit must be used for the
ATV 61HD18M3X...HD45M3X and ATV 61HD22N4...HD75N4 drives to prevent hot spots, see page 22.

The back of the enclosure must be drilled and cut out for this type of mounting.
The kit consists of:

- A metal frame of the right size for the drive rating
- Corner pieces
- Seals
- A fan support. This can be used to move the fans so that they can be accessed from the front of the enclosure
- Fixing accessories
- A cutting and drilling template
- A manual.

References			
For drives		Reference	Weight kg
ATV 61H075M3...HU15M3 ATV 61H075N4...HU22N4		VW3 A9 501	2.700
ATV 61HU22M3...HU40M3 ATV 61HU30N4, HU40N4		VW3 A9 502	3.100
ATV 61HU55M3 ATV 61HU55N4, HU75N4		VW3 A9 503	3.700
ATV 61HU75M3 ATV 61HD11N4		VW3 A9 504	4.600
ATV 61HD11M3X, HD15M3X ATV 61HD15N4, HD18N4		VW3 A9 505	4.900
ATV 61HD18M3X, HD22M3X ATV 61HD22N4		VW3 A9 506	3.900
ATV 61HD30N4, HD37N4		VW3 A9 507	4.200
ATV 61HD30M3X...HD45M3X		VW3 A9 508	4.900
ATV 61HD45N4...HD75N4		VW3 A9 509	5.200
ATV 61HD55M3X, HD75M3X ATV 61HD55M3XD, HD75M3X ATV 61HD90N4, HC11N4, ATV 61HD90N4D, HC11N4D		VW3 A9 510 (1)	5.100
ATV 61HD90M3X ATV 61HD90M3XD ATV 61HC13N4 ATV 61HC13N4D		VW3 A9 511 (1)	3.600
ATV 61HC16N4 ATV 61HC16N4D		VW3 A9 512 (1)	4.300
ATV 61HC22N4 ATV 61HC22N4D		VW3 A9 513 (1)	4.700
ATV 61HC25N4, HC31N4	Without braking unit	VW3 A9 514 (1)	4.700
ATV 61HC25N4D, HC31N4D	With braking unit	VW3 A9 515 (1)	4.700

(1) The procedure for cutting out and drilling the enclosure varies depending on whether the DC choke is present or not:

- Drives supplied with DC choke: ATV 61HD55M3X...HD90M3X, ATV 61HD90N4...HC31N4,
- Drives supplied without DC choke: ATV 61HD55M3XD...HD90M3XD,

ATV 61HD90N4D...HC31N4D.
See pages 97 and 98.

Variable speed drives for asynchronous motors

Altivar 61
Option: accessories

UL Type 1 conformity kits

Kit for UL Type 1 conformity (mounting outside the enclosure)
When the drive is mounted directly on a wall outside the enclosure, this kit can be used to ensure UL Type 1 conformity when connecting the cables with a tube. The shielding is connected inside the kit.

For ATV 61HeeゃM3, ATV 61HD11M3X...HD45M3X and ATV 61H075N4...HD75N4 drives, the kit consists of:

- All the mechanical parts 1 including a pre-cut plate 2 for connecting the tubes 3

■ Fixing accessories

- A manual.

For ATV 61HD55M3X...HD90M3X and ATV 61HD90N4...HC31N4 drives, the kit consists of:

- An IP 54 casing 4 used to maintain the IP 54 degree of protection for the power part
- An EMC plate 5
- A UL Type 1 cover 7
- A pre-drilled plate 6 for connecting the tubes 3
- Fixing accessories
- A manual.

References			
For drives		Reference	Weight kg
ATV 61H075M3...HU15M3 ATV 61H075N4...HU22N4		VW3 A9 201	1.300
ATV 61HU22M3...HU40M3 ATV 61HU30N4, HU40N4		VW3 A9 202	1.500
ATV 61HU55M3 ATV 61HU55N4, HU75N4		VW3 A9 203	1.800
ATV 61HU75M3 ATV 61HD11N4		VW3 A9 204	2.000
ATV 61HD11M3X, HD15M3X ATV 61HD15N4, HD18N4		VW3 A9 205	2.800
ATV 61HD18M3X, HD22M3X ATV 61HD22N4		VW3 A9 206	4.000
ATV 61HD30N4, HD37N4		VW3 A9 207	5.000
ATV 61HD30M3X...HD45M3X		VW3 A9 217	7.000
ATV 61HD45N4...HD75N4		VW3 A9 208	7.000
ATV 61HD55M3X, HD75M3X ATV 61HD90N4, HC11N4		VW3 A9 209	9.400
ATV 61HD90M3X ATV 61HC13N4		VW3 A9 210	11.800
ATV 61HC16N4		VW3 A9 211	11.600
ATV 61HC22N4		VW3 A9 212	14.600
ATV 61HC25N4, HC31N4	Without braking unit	VW3 A9 213	19.500
	With braking unit	VW3 A9 214	19.500

[^1]pages 99 and 100

Variable speed drives for asynchronous motors

Altivar 61

Option: accessories

IP 21 or IP 31 conformity kits

Kits for IP 21 or IP 31 conformity (mounting outside the enclosure) When the drive is mounted directly on a wall outside the enclosure, this kit can be used to ensure conformity with IP 21 or IP 31 degree of protection when connecting the cables with a cable gland.
The shielding is connected inside the kit.
For ATV 61HeeeM3, ATV 61HD11M3X...HD45M3X and ATV 61H075N4...HD75N4 drives, the kit conforms to IP 21 degree of protection.
It consists of:

- All the mechanical parts 1 including a drilled plate 2 for attaching the cable glands 3
- Fixing accessories
- A manual.

For ATV 61HD55M3X...HD90M3X and ATV 61HD90N4...HC63N4 drives, the kit conforms to IP 31 degree of protection.
It consists of:

- An IP 54 casing 4 used to maintain the IP 54 degree of protection for the power part
- An EMC plate with cable clips 5
- An IP 31 cover 6
- Fixing accessories
- A manual.

References			
For drives	Degree of protection	Reference	Weight kg
ATV 61H075M3...HU15M3 ATV 61H075N4...HU22N4	IP 21	VW3 A9 101	1.300
ATV 61HU22M3...HU40M3 ATV 61HU30N4, HU40N4	IP 21	VW3 A9 102	1.500
ATV 61HU55M3 ATV 61HU55N4, HU75N4	IP 21	VW3 A9 103	1.800
ATV 61HU75M3 ATV 61HD11N4	IP 21	VW3 A9 104	2.000
ATV 61HD11M3X, HD15M3X ATV 61HD15N4, HD18N4	IP 21	VW3 A9 105	2.800
ATV 61HD18M3X, HD22M3X ATV 61HD22N4	IP 21	VW3 A9 106	4.000
ATV 61HD30N4, HD37N4	IP 21	VW3 A9 107	5.000
ATV 61HD30M3X...HD45M3X	IP 21	VW3 A9 117	7.000
ATV 61HD45N4...HD75N4	IP 21	VW3 A9 108	7.000
ATV 61HD55M3X, HD75M3X ATV 61HD90N4, HC11N4	IP 31	VW3 A9 109	9.400
ATV 61HD90M3X ATV 61HC13N4	IP 31	VW3 A9 110	11.800
ATV 61HC16N4	IP 31	VW3 A9 111	11.600
ATV 61HC22N4	IP 31	VW3 A9 112	14.600
ATV 61HC25N4, HC31N4 Without braking unit	IP 31	VW3 A9 113	19.500
With braking unit	IP 31	VW3 A9 114	19.500
ATV 61HC40N4, HC50N4	IP 31	VW3 A9 115	25.000
ATV 61HC63N4	IP 31	VW3 A9 116	35.000

Variable speed drives

 for asynchronous motorsAltivar 61
Option: accessories

	Substitution kit for Altivar 38 drives					
	This kit 1 is used to install an Altivar 61 drive in place of an Altivar 38 drive using the same fixing holes. It includes the mechanical adapters required for mounting.					
	References					
	Old drive	Moto		Replaced by	Reference	Weight
	Power					
1		kW	HP			kg
	Replacing an Altivar 38 drive with an integrated EMC filter Three phase supply voltage: $380 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$					
	ATV 38HU18N4	0.75	1	ATV 61H075N4	VW3 A9 302	-
	ATV 38HU29N4	1.5	2	ATV 61HU15N4	VW3 A9 302	-
	ATV 38HU41N4	2.2	3	ATV 61HU22N4	VW3 A9 303	-
$\xrightarrow{\longrightarrow}$	ATV 38HU54N4	3	-	ATV 61HU30N4	VW3 A9 304	-
	ATV 38HU72N4	4	5	ATV 61HU40N4	VW3 A9 304	-
	ATV 38HU90N4	5.5	7.5	ATV 61HU55N4	VW3 A9 305	-
	ATV 38HD12N4	7.5	10	ATV 61HU75N4	VW3 A9 306	-
2 8 , 20	ATV 38HD16N4	11	15	ATV 61HD11N4	VW3 A9 307	-
,	ATV 38HD23N4	15	20	ATV 61HD15N4	VW3 A9 308	-
	ATV 38HD25N4	18.5	25	ATV 61HD18N4	VW3 A9 309	-
	ATV 38HD28N4	22	30	ATV 61HD22N4	VW3 A9 310	-
	ATV 38HD33N4	30	40	ATV 61HD30N4	VW3 A9 311	-
	ATV 38HD46N4	37	50	ATV 61HD37N4	VW3 A9 311	-
VW3 A9 304	ATV 38HD54N4	45	60	ATV 61HD45N4	VW3 A9 315	-
	ATV 38HD64N4	55	75	ATV 61HD55N4	VW3 A9 315	-
	ATV 38HD79N4	75	100	ATV 61HD75N4	VW3 A9 315	-

VW3 A9 315

References (continued)							
Old drive	Moto		Replaced by	Reference	Weight		
	Power						
					kg		
Replacing an Altivar 38 drive without an integrated EMC filter Three phase supply voltage: $380 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$							
ATV 38HD25N4X	18.5	25			ATV 61HD18N4	VW3 A9 309	-
ATV 38HD28N4X	22	30	ATV 61HD22N4	VW3 A9 310	-		
ATV 38HD33N4X	30	40	ATV 61HD30N4	VW3 A9 311	-		
ATV 38HD46N4X	37	50	ATV 61HD37N4	VW3 A9 311	-		
ATV 38HD54N4X	45	60	ATV 61HD45N4	VW3 A9 315	-		
ATV 38HD64N4X	55	75	ATV 61HD55N4	VW3 A9 315	-		
ATV 38HD79N4X	75	100	ATV 61HD75N4	VW3 A9 315	-		

Variable speed drives for asynchronous motors

Altivar 61

Options: dialogue

Remote graphic display terminal

(this display terminal can be supplied with the drive or ordered separately)
This display terminal is attached to the front of the drive. In the case of drives supplied without a graphic display terminal, it covers the integrated 7-segment display terminal.
It can be:

- Used remotely in conjunction with the appropriate accessories (see below)

■ Connected to several drives using multidrop link components (see page 29)
It is used:

- To control, adjust and configure the drive

■ To display the current values (motor, input/output values, etc.)

- To save and download configurations; 4 configuration files can be saved.

The terminal's maximum operating temperature is $60^{\circ} \mathrm{C}$ and it features IP 54 protection.

Description

1 Graphic display:

- 8 lines, 240×160 pixels
- Large digits that can be read from 5 m away
- Supports display of bar charts

2 Assignable function keys F1, F2, F3, F4:

- Dialogue functions: direct access, help screens, navigation
- Application functions: "Local Remote", preset speed

3 "STOP/RESET": local control of motor stop/fault reset
4 "RUN": local control of motor operation
5 Navigation button:

- Press: saves the current value (ENT)
- Turn \pm : increases or decreases the value, takes you to the next or previous line.
6 "FWD/REV": reverses the direction of rotation of the motor
7 "ESC": aborts a value, a parameter or a menu to return to the previous selection
Note: Keys 3, 4 and 6 can be used to control the drive directly.

| References | Code | Reference | Weight
 kg |
| :--- | :--- | :--- | :--- | ---: |
| Description | 1 | VW3 A1 101 | 0.145 |

Graphic display terminal accessories

The available accessories are:

- A remote mounting kit for mounting on an enclosure door with IP 54 degree of protection. It includes:
- All the mechanical fittings
- The screws and bolts

■ A transparent door which attaches to the remote mechanics to achieve IP 65 degree of protection

- A cable equipped with two RJ45 connectors so that the graphic display terminal can be connected to the Altivar 61 drive ($1,3,5$ or 10 m lengths available)
■ An RJ45 female/female adapter for connecting the VW3 A1 101 graphic display terminal to the VW3 A1 104 Reee remote cable

References Description	Code	Length \mathbf{m}	Degree of protection	Reference	Weight $\mathbf{k g}$
Remote mounting kit (1)	2	-	IP 54	VW3 A1 102	0.150
Door (2)	3	-	IP 65	VW3 A1 103	0.040
Remote cables	4	1	-	VW3 A1 104 R10	0.050
Equipped with 2 RJ45 connectors	4	3	-	VW3 A1 104 R30	0.150
	4	5	-	VW3 A1 104 R50	0.250
	4	10	-	VW3 A1 104 R100	0.500
RJ45 female/female	5	-	-	VW3 A1 105	0.010

adaptor

(1) In this case, use a VW3 A1 104 Re0 remote connecting cable, which must be ordered separately (see above).
(2) To be mounted on remote mounting kit VW3 A1 102 (for mounting on an enclosure door), which must be ordered separately (see above).

Variable speed drives for asynchronous motors

Altivar 61
Options: dialogue

Example of connection via multidrop link

PowerSuite software workshop

Multidrop link components

These components enable a graphic display terminal to be connected to several drives via a multidrop link. This multidrop link is connected to the Modbus terminal port on the front of the drive.

Connection accessories				
Description	Code	Sold in lots of	Unit reference	Weight kg
Modbus splitter box 10 RJ45 connectors and 1 screw terminal	1	-	LU9 GC3	0.500
Modbus T- With integrated junction 0.3 m cable	2	-	VW3 A8 306 TF03	-
$\begin{array}{ll}\text { boxes } & \begin{array}{ll}\text { With integrated } \\ & 1 \mathrm{~m} \text { cable }\end{array}\end{array}$	2	-	VW3 A8 306 TF10	-
Modbus For $\mathrm{R}=120 \Omega$ line RJ45 $\mathrm{C}=1 \mathrm{nF}$ terminator connector 	3	2	VW3 A8 306 RC	0.010
Remote For the VW3 A1 101 mounting kit graphic display terminal	4	-	VW3 A1 102	0.150
Connecting cables (equipped with 2 RJ45 connectors)				
Used with	Code	Length m	Reference	Weight kg
For remote operation of the Altivar 61 and the VW3 A1 101 graphic display terminal	5	1	VW3 A1 $104 \mathrm{R10}$	0.050
		3	VW3 A1 104 R30	0.150
		5	VW3 A1 104 R50	0.250
		10	VW3 A1 104 R100	0.500
Modbus bus	6	0.3	VW3 A8 306 R03	0.025
		1	VW3 A8 306 R10	0.060
		3	VW3 A8 306 R30	0.130

PowerSuite software workshop

The PowerSuite software workshop offers the following benefits:

- Messages can be displayed in plain text in several languages (English, French, German, Italian and Spanish)
- Work can be prepared in the design office without having to connect the drive to the PC
■ Configurations and settings can be saved to floppy disk or hard disk and downloaded to the drive
- Print facility
- Altivar 38 files can be converted for transfer to an Altivar 61 drive
- Oscillograms can be displayed

See pages 178 to 181 .

Variable speed drives for asynchronous motors

Altivar 61

Options: I/O extension cards

Presentation

VW3 A3 202

Altivar 61 drives can be specially adapted to particular application areas by installing I/O extension cards.

Two models are available:
■ Card with logic l/O featuring:

- 1 relay logic output ("C/O" contact)
$\square 4 \times 24 \mathrm{~V}=-$ positive or negative logic inputs
$\square 2 \times 24 \mathrm{~V}=$ open collector positive or negative logic outputs
- 1 input for PTC probes

■ Card with extended I/O featuring:

- 1 differential current analog input ($0 \ldots .20 \mathrm{~mA}$)
- 1 software-configurable voltage ($0 \ldots 10 \mathrm{~V}=-$) or current $(0 \ldots 20 \mathrm{~mA})$ analog input - 2 software-configurable voltage ($\pm 10 \mathrm{~V}=, 0 \ldots 10 \mathrm{~V}$) or current ($0 \ldots .20 \mathrm{~mA}$) analog outputs
- 1 relay logic output
- $4 \times 24 \mathrm{~V}=-$ positive or negative logic inputs
$\square 2 \times 24 \mathrm{~V}=$ open collector positive or negative logic outputs
- 1 input for PTC probes
- 1 frequency control input

Characteristics

Logic I/O card VW3 A3 201
Internal supplies available
Short-circuit and overload protection:

- $1 \times 24 \mathrm{~V}=$-- supply (min .21 V , max. 27 V), maximum current 200 mA for the complete drive and I/O extension card assembly
■ $1 \times 10.5 \mathrm{~V}=$-- supply ($\pm 5 \%$) for the reference potentiometer (1 to $10 \mathrm{k} \Omega$), max. current 10 mA

Configurable relay output	R3A, R3B, R3C	1 relay logic output, one " N / C " contact and one " N / O " contact with common point. Minimum switching capacity: 3 mA for $24 \mathrm{~V}=-$ Maximum switching capacity: - on resistive load ($\cos \varphi=1$): 5 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ on inductive load ($\cos \varphi=0.4$ and L/R $=7 \mathrm{~ms}$): 2 A for $250 \mathrm{~V} \sim$ or $30 \mathrm{~V}=-$ Electrical service life: 100,000 operations Maximum response time: $7 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$
Logic inputs	LI7...LI10	4 programmable logic inputs, $24 \mathrm{~V}=-$ - , compatible with level 1 PLC, IEC 65A-68 standard Impedance $3.5 \mathrm{k} \Omega$ Maximum voltage: 30 V Multiple assignment makes it possible to configure several functions on one input Maximum sampling time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$
	Positive logic (Source)	State 0 if $\leqslant 5 \mathrm{~V}$ or logic input not wired, state $1 \mathrm{if} \geqslant 11 \mathrm{~V}$
	Negative logic (Sink)	State 0 if $\geqslant 16 \mathrm{~V}$ or logic input not wired, state 1 if $\leqslant 10 \mathrm{~V}$
Logic outputs	LO1, LO2	$2 \times 24 \mathrm{~V}=-$ assignable open collector positive logic (Source) or negative logic (Sink) outputs, compatible with level 1 PLC, IEC 65A-68 standard $24 \mathrm{~V}=-\mathrm{i}$ internal or $24 \mathrm{~V}=-$ e external power supply (min. 12 V , max. 30 V) Maximum current: 200 mA Logic output common (CLO) isolated from other signals Maximum sampling time: $2 \mathrm{~ms} \pm 0.5 \mathrm{~ms}$. The active state is software-configurable as is a delay for each switching operation
Input for PTC probes	TH1+/TH1-	1 input for a maximum of 6 PTC probes mounted in series: - nominal value $<1.5 \mathrm{k} \Omega$ - trip resistance $3 \mathrm{k} \Omega$, reset value $1.8 \mathrm{k} \Omega$ - short-circuit protection $<50 \Omega$
Maximum I/O connection capacity and tightening torque		$\begin{aligned} & 1.5 \mathrm{~mm}^{2} \text { (AWG 16) } \\ & 0.25 \mathrm{Nm} \end{aligned}$

Schemes

Variable speed drives for asynchronous motors
 Altivar 61
 Options: I/O extension cards

(1) The Altivar 61 cannot support more than one I/O card with the same reference. Please refer to the compatibility tables summarizing the possible combinations for drives, options and accessories on pages 84 to 89 .

Variable speed drives for asynchronous motors
 Altivar 61
 Option: Multi-pump cards

Presentation

Multi-pump cards are used to adapt the drive for pump applications.
Various predefined configurable applications are sold by Schneider Electric and its partners.
In order to protect our know-how, it is not possible to transfer the program from the card to the PC.
A single multi-pump card can be fitted in the Altivar 61 drive. It can be combined with another option card (I/O extension or communication). Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 84 to 89.

Each multi-pump card consists of:

- 10 logic inputs, 2 of which can be used for 2 counters
- 2 analog inputs
- 6 logic outputs
- 2 analog outputs
- A master port for the CANopen bus.

If the power consumption table does not exceed 200 mA , this card can be powered by the ATV 61 H 0000 drives.
Otherwise, an external 24 V =- power supply must be used.
The ATV 61WeeoN4A24 and ATV 61WeeoN4C24 variable speed drives
incorporate a $24 \mathrm{~V}=$-_ power supply and allow an additional consumption of 250 mA .
Multi-pump cards can also use:
■ The drive I/O

- The I/O extension card I/O

■ The drive parameters (speed, current, torque, etc.).
The Altivar 61 drive:
■ Incorporates all the application functions for managing your pumps:
sleep, wake-up, zero flow detection, fluid absence detection, underload detection,
overload detection, PID regulator with preset PID references
■ Is used to adjust your pumps' operating points:
2/5-point quadratic ratio, energy saving ratio

- Protects your pumps:
motor thermal protection, PTC management, low speed detection and time delay.

Description

1 9-way male SUB-D connector for connection to the CANopen bus.
2 Connector with removable screw terminals, 6 contacts at intervals of 3.81 for the $24 \mathrm{~V}=-$ power supply and 4 logic inputs.

33 connectors with removable screw terminals, 6 contacts at intervals of 3.81 for 6 logic inputs, 6 logic outputs, 2 analog inputs, 2 analog outputs and 2 commons.

45 LEDs, comprising:

- 1 to indicate the presence of the $24 \mathrm{~V}=$ power supply
- 1 to indicate a program execution fault
- 2 to indicate the CANopen bus communication status

■ 1 controlled by the application program.

Operation:		
pages 33 and 34	Characteristics:	References:

Variable speed drives for asynchronous motors

Altivar 61
Option: Multi-pump cards

Single variable mode

Single variable mode with auxiliary pump

Operation

Multi-pump cards have the following basic operating modes:

Single variable

The same variable pump is always used.
Fixed flow pumps are started in ascending order of the logic outputs.
Fixed flow pumps are stopped in descending order of the logic outputs.

Multiple variable

All the pumps can be variable. The variable pump is chosen according to its operating time. The pump with the shortest operating time is selected. Fixed pumps are started and stopped in ascending and descending order of the logic outputs respectively.

Switching the auxiliary pumps

You start by selecting the pump with the shortest operating time.
You stop a pump by selecting the pump with the longest operating time.

Limiting the operating time between pumps

A relative operating time differential between each pump can be programmed to ensure better distribution of operating times, thereby limiting pump wear. If the total operating time differential between an operating auxiliary pump and one which is off exceeds the programmed differential, the first pump is stopped and replaced by the second one.

Continuity of service for your installation

If a pump is faulty (information on the Lix logic input) it is not taken into consideration and the start and stop conditions are determined by the other pumps.
It is possible for each pump to:

- Display the operating time
- Reset the counter

■ Save the operating times.

Presentation:	Characteristics:	References:
page 32	page 35	page 35

Variable speed drives for asynchronous motors
 Altivar 61
 Option: Multi-pump cards

VW3 A3 502 multi-pump card

The VW3 A3 502 multi-pump card ensures the compatibility of pump applications developed for an Altivar 38 drive with an Altivar 61 drive.

The card's 9 operating modes are as follows:
■ OFF: no function is activated; this mode is used in particular during the
installation's maintenance
■ Single variable

- Multiple variable

■ Single variable with changeover of auxiliary pumps
■ Multiple variable with changeover of auxiliary pumps
■ Single variable with limited operating time
■ Multiple variable with limited operating time

- Single variable with changeover of auxiliary pumps and limited operating time

■ Multiple variable with changeover of auxiliary pumps and limited operating time.

VW3 A3 503 multi-pump card

The VW3 A3 503 multi-pump card is used to support all multi-pump applications.

In addition to the existing operating modes, it is possible to develop new applications: booster station, irrigation, etc.

Power supply	Voltage	V	$24-$--- (min. 19, max. 30)			
Power consumption	Maximum	A	2			
Current	No-load	mA	80			
	Per logic output	mA	200 maximum (1)			
Analog inputs	Al51, Al52		2 current analog inputs $0 \ldots 20 \mathrm{~mA}$, impedance 250Ω Resolution: 10 bits Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.2 \%$ of the maximum value Common point for all the card I/O (2)			
Analog outputs	AO51, AO52		2 current analog outputs $0 \ldots 20 \mathrm{~mA}$, impedance 500Ω Resolution: 10 bits Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.2 \%$ of the maximum value Common point for all the card I/O (2)			
Logic inputs	LI51...LI60		Ten 24 V =- logic inputs, compatible with leve1 1 PLC, IEC 65A-68 standard, 2 of which can be used for 2 counters or 4 of which can be used for 2 incremental encoders Impedance: $4.4 \mathrm{k} \Omega$ Maximum voltage: 30 V =- Switching thresholds: State 0 if $\leqslant 5 \mathrm{~V}$ or logic input not wired State 1 if $\geqslant 11 \mathrm{~V}$ Common point for all the card I/O (2)			
Logic outputs	LO51...LO56		Six 24 V --- logic outputs, positive logic open collector type (source), compatible with level 1 PLC, standard IEC 65A-68 Maximum switching voltage: 30 V Maximum current: 200 mA Common point for all the card I/O (2)			
Connection of I/O	Type of contact		Screw, at intervals of $3.81 \mathrm{~mm}^{2}$			
	Maximum wire	mm ${ }^{2}$	1.5 (AWG 16)			
	Tightening torque	Nm	0.25			
Lithium battery	Life		8 years approx.			
References						
		Description		Use	Reference	Weight kg
		Multi-pump cards (3) equipped with one 9 -way male SUB-D connector		This card ensures compati with an ATV 61 drive of applications developed fo ATV 38 drive	VW3 A3 502	0.320
				This card can be used to support all multi-pump applications	$\text { VW3 A3 } 503$	0.320

(1) If the power consumption table does not exceed 200 mA , this card can be powered by the drive. Otherwise, an external $24 \mathrm{~V}=-\mathrm{power}$ supply must be used.
(2) This common point is also the drive 0 V .
(3) The Altivar 61 drive cannot support more than one multi-pump card. Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 84 to 89.

Variable speed drives for asynchronous motors
 Altivar 61
 Option: "Controller Inside" programmable card

Presentation

The "Controller Inside" programmable card is used to adapt the variable speed drive to specific applications by integrating control system functions.

Various predefined configurable applications are sold by Schneider Electric and its partners.
The PS 1131 software workshop for PC is used for programming and debugging new applications, quickly and in an open-ended manner (see page 39).
It is not possible to transfer the program from the card to the PC, which enables us to protect our know-how.

A single "Controller Inside" programmable card can be installed in the Altivar 61 drive. It can be combined with another option card (I/O extension or communication). Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 84 to 89 .

The "Controller Inside" programmable card has:

- 10 logic inputs, 2 of which can be used for 2 counters or 4 of which can be used
for 2 incremental encoders
- 2 analog inputs
- 6 logic outputs
- 2 analog outputs
- A master port for the CANopen bus
- A PC port for programming with the PS 1131 software workshop

If the power consumption table does not exceed 200 mA , this card can be powered by the drive. Otherwise, an external 24 V =-- power supply must be used.

The ATV 61WeeoN4A24 and ATV 61WeeoN4C24 variable speed drives incorporate a 24 V =-- power supply and allow an additional consumption of 250 mA .

The "Controller Inside" programmable card can also use:
■ The drive I/O
■ The I/O extension card I/O

- The encoder interface card points counter

■ The drive parameters (speed, current, torque, etc.).

Description

1 RJ45 connector for connecting the PS 1131 software workshop via an RS 485 serial link.
Connection to the PC is via a cable and an RS 232/RS 485 connector included in the VW3 A8 106 PowerSuite for PC connection kit.

2 9-way male SUB-D connector for connection to the CANopen bus.
3 Connector with removable screw terminals, 6 contacts at intervals of 3.81 for the $24 \mathrm{~V}=-\mathrm{power}$ supply and 4 logic inputs.

43 connectors with removable screw terminals, 6 contacts at intervals of 3.81 for 6 logic inputs, 6 logic outputs, 2 analog inputs, 2 analog outputs and 2 commons.

55 LEDs, comprising:

- 1 to indicate the presence of the $24 \mathrm{~V}=$ power supply
- 1 to indicate a program execution fault
- 2 to indicate the CANopen bus communication status
- 1 controlled by the application program

Characteristics:	Functions:	Schemes:
page 38	pages 39 to 42	Rage 121

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

Independent machine with multiwire system

Independent machine with CANopen bus

Modular machine with Ethernet TCP/IP network

Dialogue

Human-machine dialogue with the application programmed in the "Controller Inside" programmable card is possible using:

- The Altivar 61 graphic display terminal
- A Magelis industrial HMI terminal connected to the drive Modbus port

■ A Magelis industrial HMI terminal connected to the Ethernet TCP/IP network (if the drive is equipped with an Ethernet TCP/IP communication card)

A graphic terminal menu is dedicated to the "Controller Inside" programmable card. This menu can be customized by the card program according to the application.

Any industrial HMI terminal which supports the Modbus protocol can be used to display and modify the "Controller Inside" programmable card parameters. The Modbus server provides access to 2 Kwords (\% MW, etc) in the card.

Master CANopen communication

The master CANopen port on the "Controller Inside" programmable card can be used to extend the I/O capacity and to control other CANopen slave devices.

Communication with a PLC

The Altivar 61 drive equipped with a "Controller Inside" programmable card fits easily into complex architectures.
Regardless of which bus or network is being used (Ethernet TCP/IP, Modbus/UniTelway, FIPIO, Modbus Plus, Profibus DP, InterBus, etc.), the PLC can communicate with the "Controller Inside" programmable card and the drive. The periodic variables can still be configured as required.

Clock

A clock backed up by a lithium battery makes it possible to have a log of events that have occurred. When the "Controller Inside" programmable card is installed in the drive, the drive faults are automatically time and date-stamped without special programming.

Characteristics:	Functions:	Schemes:
page 38	pages 39 to 42	page 121

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

Electrical characteristics			
Power supply	Voltage	V	24 --- (min. 19, max. 30)
Power consumption Current	Maximum	A	2
	No-load	mA	80
	Per logic output	mA	200 maximum (1)
Analog inputs	Al51, Al52		2 current analog inputs $0 \ldots 20 \mathrm{~mA}$, impedance 250Ω Resolution: 10 bits Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.2 \%$ of the maximum value Common point for all the card I/O (2)
Analog outputs	AO51, AO52		2 current analog outputs $0 \ldots 20 \mathrm{~mA}$, impedance 500Ω Resolution: 10 bits Accuracy: $\pm 1 \%$ for a temperature variation of $60^{\circ} \mathrm{C}$ Linearity: $\pm 0.2 \%$ of the maximum value Common point for all the card I/O (2)
Logic inputs	LI51...LI60		Ten 24 V --- logic inputs, compatible with level 1 PLC, IEC 65A-68 standard, 2 of which can be used for 2 counters or 4 of which can be used for 2 incremental encoders Impedance: $4.4 \mathrm{k} \Omega$ Maximum voltage: $30 \mathrm{~V}=-$ Switching thresholds: State 0 if $\leqslant 5 \mathrm{~V}$ or logic input not wired State 1 if $\geqslant 11 \mathrm{~V}$ Common point for all the card I/O (2)
Logic outputs	LO51...LO56		Six 24 V =- logic outputs, positive logic open collector type (source), compatible with level 1 PLC, standard IEC 65A-68 Maximum switching voltage: 30 V Maximum current: 200 mA Common point for all the card I/O (2)
Connection of I/O	Type of contact		Screw, at intervals of $3.81 \mathrm{~mm}^{2}$
	Maximum wire	mm^{2}	1.5 (AWG 16)
	Tightening torque	Nm	0.25
Lithium battery	Life		8 years approx.
Characteristics of the application program			
Compiled program (saved in "flash" memory)	Maximum size	Kb	320
Data	Maximum size	Kwords	64
	Saved size (NVRAM)	Kwords	4
	Size accessible by Modbus	Kwords	2
Characteristics of the CANopen communication port			
Structure	Connector	One 9-way male SUB-D connector	
	Network management	Master	
	Transmission speed	Configurable via the program: $50 \mathrm{Kbps}, 125 \mathrm{Kbps}, 250 \mathrm{Kbps}, 500 \mathrm{Kbps}$ or 1 Mbps	
	Address (Node ID)	32 slaves maximum	
Services	CANopen application layer	DS 301 V4.02	
	Functional profile	DSP 405	
	PDO	10 receive and transmit PDOs in total for each slave	
	SDO	2 client SDOs per slave (1 read and 1 write). Block transfer	
	Error check	Node Guarding, producer and consumer Heartbeat	
	Other services	Emergency, Boot-up, Sync	
Diagnostics	Using LEDs	2 LEDs: "RUN" and "ERROR", conforming to CIA DR303 version 1.0	
		(1) If the pow Otherw (2) This com	ower consumption table does not exceed 200 mA , this card can be powered by the drive. ise, an external $24 V$ =-. power supply must be used. mmon point is also the drive 0 V .

Presentation:	Functions:	Schemes:
page 36	pages 39 to 42	page 121

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

PS 1131 software workshop

The PS 1131 software workshop conforms to international standard IEC 61131-3, and includes all the functions for programming and setting up the "Controller Inside" programmable card.
It includes the configurator for CANopen.
It is designed for Microsoft Windows ${ }^{\circledR} 98$, Microsoft Windows ${ }^{\circledR}$ NT 4.0, Microsoft Windows ${ }^{\circledR}$ Millennium, Microsoft Windows ${ }^{\circledR} 2000$ Professional and Microsoft Windows ${ }^{\circledR}$ XP operating systems.

It benefits from the user-friendly interface associated with these operating systems:

- Pop-up menus
- Function blocks
- Online help.

The PS 1131 software workshop is available in both English and German.
The programming and debugging tools are accessible via the application browser. This provides the user with an overview of the program and rapid access to all the application components:
■ Program editor

- Function block editor
- Variables editor
- Animation tables editor
- Runtime screens editor.

Modular structured programming

The PS 1131 software workshop is used to structure an application into function modules consisting of sections (program code), animation tables and runtime screens. Each program section has a name and is programmed in one of the six available languages. To protect know-how or prevent any accidental modification, each section can be write-protected or read/write-protected.

Exporting/importing function modules

It is possible to export all or part of the tree structure in function modules.

Program structure and execution of an application

The program structure is single-task. It consists of several subroutines.
Exchanges with the drive are performed by a function block available in the standard library.
Cycle execution can be either cyclic or periodic. A software watchdog, which can be configured between 100 and 800 ms by the user, monitors the cycle time.
A task can be synchronized with the drive's main task to improve repeat accuracy in motion control applications.

Cyclic execution

Once each cycle ends, execution of a new cycle begins. The cycle execution must last for at least 5 ms .

Periodic execution

The program is executed periodically, and the period can be set by the user between 5 and 100 ms . Cycle execution must last for less than the defined period. Drive response in the event of the cycle time being exceeded can be managed by the program.

Example of cycle execution for the "Controller Inside" programmable card connected on a CANopen bus

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

Example of Ladder language programming

Example of Structured Text language programming

[^2]
Programming languages

6 programming languages are available:
■ Ladder language (LD)
■ Structured Text language (ST)

- Grafcet language (SFC)

■ Instruction List language (IL)
■ Function block diagram (FBD)
■ Continuous Flow Chart (CFC)

Ladder Diagram (LD)

A Ladder language program consists of a set of rungs executed sequentially.
A rung consists of several lines.
A line consists of several contacts and a coil.
The language objects can be entered and displayed as symbols or tags as required. The Ladder language editor enables the immediate call of entry help functions such as access to function libraries and access to the variables editor.

Structured Text (ST)

Structured Text language is a sophisticated algorithmic type language which is particularly well-suited to programming complex arithmetical functions, manipulating tables, message handling, etc.
Structured Text language enables direct transcription of an analysis based on a flow chart, and is organized in statements.

Grafcet language (SFC)

Grafcet language is used to describe the sequential part of the control system in a simple, graphic way. It corresponds to the "Sequential Function Chart" (SFC) language described in standard IEC 61131-3.
Programs written in Grafcet (SFC) language consist of:

- Macro-steps which are the grouping of a set of steps and transitions

■ Steps with which the actions to be performed can be associated

- Transitions with which the conditions are associated (transition conditions)
- Directed links connecting the steps and transitions

Presentation:	Characteristics:	Schemes:
page 36	page 38	Rage 121

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

Example of Instruction List language programming

Example of a function block:
sending the speed reference to the drive

Programming languages (continued)

Instruction List language (IL)

Instruction List language can be used to write Boolean equations and use all the functions available in the language. It can be used to represent the equivalent of a ladder diagram in text form.
Each instruction consists of an instruction code and a bit or word type operand. As in Ladder language, instructions are organized in sequences of instructions called statements (equivalent to a rung).

Function block diagram (FBD)

FBD is a graphic language. It consists of function blocks connected by a rung.
The program is executed sequentially.
Each block can be a logical or arithmetical expression, a call to another function block, a jump or a return instruction.

Continuous Flow Chart (CFC)

Continuous Flow Chart programming is a graphic language. The rung connecting the various function blocks on the page is not necessarily sequential. The output of a function block may be looped back on its input or on the input of a block already inserted in the rung.

Function blocks

The PS 1131 software workshop has pre-programmed function blocks (standard library) and offers users the option of creating their own function blocks (user library).

Standard library

The standard library contains:
■ Logic functions (AND, OR, etc.)

- Mathematical functions (Cos, Sin, Exp, etc.)
- Function blocks dedicated to drives which simplify data exchanges between the drive and the "Controller Inside" programmable card (e.g. sending the speed reference)
■ Function blocks for managing the CANopen bus
- Graphic terminal display function blocks.

User library

Users have the option of creating their own function blocks in order to structure their applications. This is also a means of protecting the know-how contained in the algorithms, as it is possible to lock access to the user function blocks program.

Presentation:	Characteristics:	Schemes:	References:
page 36	page 38	page 121	page 43

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

Example of runtime screen

Debugging

The PS 1131 software workshop offers a complete set of tools for debugging the application.

Program execution for debugging

The main debugging functions are:

- Use of breakpoints

■ Step-by-step program execution

- Execution of a single cycle

■ Direct access to the subroutines that have been called (call stack).

Realtime program animation

The main functions of realtime animation of the program are

- Animation of part of the program in any language
- Automatic display of a variables window relating to this part of the program

Animation tables

Tables containing variables for the application to be monitored can be created and saved.
In both these tools, in addition to animating the data, it is possible to:

- Modify and force the value of data of any type

■ Change the display format (binary, hexadecimal, etc.).

Oscilloscope

The PS 1131 software workshop Oscilloscope function can be used to monitor up to 20 variables in the form of curves.

Runtime screens

A tool integrated in the PS 1131 software workshop can be used to design and use runtime screens for the application:

- Creation of screen backgrounds
- Animation of graphic objects associated with variables
- Display of messages

Simulation

The PS 1131 software workshop Simulation function can be used to test the program without having to set up the drive.

Presentation:	Characteristics:	Schemes:
page 36	page 38	page 121

Variable speed drives for asynchronous motors

Altivar 61

Option: "Controller Inside" programmable card

References		
Card	Reference	Weight
Description	VW3 A3 501	0.320
"Controller Inside" programmable card (1) equipped with one 9-way male SUB-D connector		
Connection accessories	Reference	Weight
Description	TSX CAN KCDF 180T	kg
CANopen connector 9-way female SUB-D with line terminator that can be disabled		

Cables			
Description	Length (m)	Reference	Weight kg
CANopen cables Standard cable.	50	TSX CAN CA 50	
Low smoke emission, halogen-free. Flame retardant (IEC 60332-1).	100	TSX CAN CA 100	-
	300	TSX CAN CA 300	-
CANopen cables UL certification	50	TSX CAN CB 50	-
Flame retardant (IEC 60332-2).	100	TSX CAN CB 100	-
	300	TSX CAN CB 300	-
CANopen cables Cable for harsh environments (2) or mobile installation. Low smoke emission, halogen-free. Flame retardant (IEC 60332-1).	50	TSX CAN CD 50	-
			-
	300	TSX CAN CD 300	-

PS 1131 software workshop		Reference
Description		Weight kg
PS 1131		

PS 1131 software workshop (3)

Connection kit for PC serial port
including various accessories such as:

- $1 \times 3 \mathrm{~m}$ cable with 2 RJ45 connectors
- 1 RS 232/RS 485 converter with one 9-way female SUB-D connector and 1 RJ45 connector
(1) The Altivar 61 drive can only take one "Controller Inside" programmable card. Consult the tables summarizing the possible combinations: drives, options and accessories, see pages 84 to 89
(2) Harsh environments:
- resistance to hydrocarbons, industrial oils, detergents, solder splashes
relative humidity up to 100\%
- saline atmosphere
- significant temperature variations
operating temperature between $-10^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$.
(3) The product reference is provided during the "Controller Inside" programmable card training course. Please consult your Regional Sales Office.

Presentation:	Characteristics:	Functions:	Schemes:
page 36	page 38	pages 39 to 42	page 121

Variable speed drives for asynchronous motors

Altivar 61

Communication buses and networks

Example of configuration on the CANopen bus

Presentation

The Altivar 61 drive is designed to suit all configurations found in communicating industrial installations.

It includes Modbus and CANopen communication protocols as standard.
The Modbus protocol can be accessed directly by means of 2 integrated communication ports (for characteristics, see page 15):

- One RJ45 Modbus terminal port 1, located on the drive front panel, for connecting:
- The remote graphic display terminal
- A Magelis industrial HMI terminal
- The PowerSuite software workshop

■ One RJ45 Modbus network port 2, located on the drive control terminals. It is dedicated to control and signalling by a PLC or other type of controller. It can also be used to connect a terminal or the PowerSuite software workshop.

The CANopen protocol can be accessed from the Modbus network port via the CANopen adapter 3 (for characteristics, see page 15). In this case, terminal port 1 must be used to access the Modbus protocol.

By means of the addition of one of the 11 optional communication cards, the Altivar 61 drive can also be connected to other communication buses and networks used in different fields, for example in industrial applications or in building management systems (HVAC) (1).

Communication cards for industrial applications:

- Ethernet TCP/IP
- Modbus/Uni-Telway: This card provides access to additional functions to complement those of the integrated, Modbus ASCII and 4-wire RS 485 ports
■ Fipio
■ Modbus Plus
- Profibus DP

■ DeviceNet

- InterBus

Communication cards for building management systems (HVAC):
■ LonWorks,

- METASYS N2
- APOGEE FLN
- BACnet

The option of powering the control part separately enables communication to be maintained (monitoring, diagnostics) even if there is no power supply to the power part.

The main Altivar 38 drive communication functions are compatible with the Altivar 61 drive (2):

- Connection
- Communication services
- Drive behaviour (profile)
- Control and monitoring parameters
- Standard adjustment parameters

The PowerSuite software workshop can be used to port configurations from the Altivar 38 drive to the Altivar 61 drive.
(1) Heating Ventilation Air Conditioning
(2) Consult the ATV 38/ATV 61 substitution guide supplied on the documentation CD-ROM.

Functions:	Characteristics:	References:
page 45	pages 46 to 51	pages 52 and 53

Variable speed drives for asynchronous motors

Altivar 61
Communication buses and networks

Functions

All the drive functions can be accessed via the network:

- Control
- Monitoring
- Adjustment
- Configuration

If the drive is equipped with a "Controller Inside" programmable card or a multi-pump card, its variables (\% MW, etc.) can be accessed using the Modbus message handling services via the integrated communication ports or the Ethernet TCP/IP communication card.

The speed command and reference may come from different control sources:

- I/O terminals
- Communication network
- "Controller Inside" programmable card
- Multi-pump cards
- Remote graphic display terminal

The advanced functions of the Altivar 61 drive can be used to manage switching of these drive control sources according to the application requirements.

It is possible to choose the assignment of the communication periodic variables using:

- The network configuration software (Sycon, etc.)
- The Altivar 61 drive communication scanner function

For the integrated Modbus and CANopen ports and for the communication cards for industrial applications, the Altivar 61 drive can be controlled:

- According to the CiA DSP 402 (Drivecom) profile
- According to the I/O profile where control is as simple and adaptable as control via the I/O terminals
The DeviceNet card also supports the ODVA AC Drive and Allen-Bradley drive profiles.

Communication is monitored according to criteria specific to each protocol. However, regardless of the protocol, it is possible to configure how the drive responds to a communication fault:

- Freewheel stop, stop on ramp, fast stop or braked stop
- Maintain the last command received
- Fallback position at a predefined speed
- Ignore the fault

A command from the CANopen bus is processed with the same priority as one of the drive terminal inputs. This results in excellent response times on the network port via the CANopen adaptor.

Variable speed drives for asynchronous motors

Altivar 61
Communication buses and networks

Characteristics of the VW3 A3 310 Ethernet TCP/IP card (1)

Structure	Connector	One RJ45 connector
	Transmission speed	10/100 Mbps, half duplex and full duplex
	IP addressing	- Manual assignment via the display terminal or the PowerSuite software workshop - BOOTP (IP address dynamic server depending on the IEEE address) - DHCP (address dynamic server depending on the Device Name) with automatic reiteration
	Physical	Ethernet 2
	Link	LLC: IEEE 802.2 MAC: IEEE 802.3
	Network	IP (RFC791) ICMP client for supporting certain IP services such as the "ping" command
	Transport	TCP (RFC793), UDP The maximum number of connections is 8 (port 502)
Services	Transparent Ready (2) class	C20
	Web server	Simultaneous access via 3 Web browsers (more, according to the number of connections used) Server factory-configured and modifiable The memory available for the application is approximately 1 MB The factory-configured server contains the following pages: - Altivar viewer: displays the drive status and the state of its I/O, the main measurements (speed, current, etc) - Data editor: access to the drive parameters for configuration, adjustment and signalling - Altivar chart: simplified oscilloscope function - Security: configuration of passwords to access viewing and modification - FDR Agent: configuration of the "Faulty Device Replacement" parameters - IO Scanner: configuration of periodic variables for controlling and monitoring the drive via the PLC, etc. - Ethernet statistics: drive identification (IP addresses, version, etc.) from the Ethernet transmission statistics
	Messaging	Read Holding Registers (03), 63 words maximum Read Input Registers (04), 63 words maximum Write Single Register (06) Write Multiple Registers (16), 63 words maximum Read/Write Multiple Registers (23) Read Device Identification (43) Diagnostics (08)
	Periodic variables	I/O scanning service (can be inhibited): 10 control variables which can be assigned by the PowerSuite software workshop or the standard Web server 10 monitoring variables which can be assigned by the PowerSuite software workshop or the standard Web server The Global Data service is not supported
	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control" I/O profile
	Network management	SNMP
	File transfer	FTP for Web server and TFTP for FDR
	FDR (Faulty Device Replacement)	Yes
	Communication monitoring	Can be inhibited Time out can be set between 0.5 and 60 s via the terminal, the PowerSuite software workshop or the standard Web server
Diagnostics	Using LEDs	5 LEDs on the card: "RX" (reception), "TX" (transmission), "FLT" (Ethernet fault), "STS" (IP address) and "10/100" Mbps (speed)
	Using the graphic display terminal	Control word received Reference received
	Via the Web server	Number of frames received Number of incorrect frames
		(1) For Ethernet TCP/IP network, see pages 182 to 187. (2) Please consult our "Ethernet TCP/IP Transparent Ready" catalogue.

Presentation:	Functions:	References:
page 44	page 45	pages 52 and 53

Variable speed drives for asynchronous motors

Altivar 61

Communication buses and networks

Characteristics of the VW3 A3 303 Modbus/Uni-Telway card

Structure	Connector	One 9-way female SUB-D connector
	Transmission speed	Configurable via the display terminal or the PowerSuite software workshop: - 4800 bps - 9600 bps - 19200 bps
	Polarization	Type of polarization can be configured using switches on the card: - No polarization impedances (supplied by the wiring system, for example, in the master) - Two $4.7 \mathrm{k} \Omega$ polarization resistors
	Selection of the protocol	Via the display terminal or the PowerSuite software workshop: - Modbus RTU - Modbus ASCII - Uni-Telway
Services	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control" I/O profile
	Communication monitoring	Can be inhibited Fixed time out: 10 s
Diagnostics	Using LEDs	2 LEDs on the card: "RUN" (status) and "ERR" (fault)
	Using the graphic display terminal	Control word received Reference received
Characteristics of the Modbus protocol (1)		
Structure	Physical interface	2-wire RS 485, 4-wire RS 485
	Transmission mode	RTU, ASCII
	Format	Configurable via the display terminal or the PowerSuite software workshop: In RTU mode only: - 8 bits, odd parity, 1 stop - 8 bits, no parity, 1 stop - 8 bits, even parity, 1 stop - 8 bits, no parity, 2 stop In RTU and ASCII modes: - 7 bits, even parity, 1 stop - 7 bits, odd parity, 1 stop - 7 bits, even parity, 2 stop - 7 bits, odd parity, 2 stop
	Address	1 to 247 , configurable using switches on the card.
Service	Messaging	Read Holding Registers (03), 63 words maximum Read Input Registers (04), 63 words maximum Write Single Register (06) Write Multiple Registers (16), 61 words maximum Read/Write Multiple Registers (23) Read Device Identification (43) Diagnostics (08)
Characteristics of the Uni-Telway protocol (2)		
Structure	Physical interface	2-wire RS 485
	Format	8 bits, odd parity, 1 stop
	Address	1 to 147, configurable using switches on the card.
Service	Messaging	Read word (04h) Write word (14h) Read object (36h), 63 words maximum Write object (37h), 60 words maximum Identification (OFh) Protocol version (30h) Mirror (FAh) Read error counters (A2h) Reset counters (A4h)
		(1) For the Modbus bus, see pages 192 to 195. (2) For the Uni-Telway bus, see pages 200 and 201.

Presentation:	Functions:	References:
page 44	page 45	pages 52 and

Variable speed drives for asynchronous motors

Altivar 61
Communication buses and networks

Characteristics of the VW3 A3 311 Fipio card (1)

Structure	Connector	One 9-way male SUB-D connector
	Transmission speed	1 Mbps
	Address	1 to 62, configurable using switches on the card
Services	Adjustment using PLC software (Unity, PL7)	No
	Periodic variables	8 control variables which can be assigned by communication scanner 8 monitoring variables which can be assigned by communication scanner PKW indexed periodic variable (settings)
	Communication profile	FED C 32
	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control" I/O profile
	Communication monitoring	Can be inhibited Fixed time out: 256 ms
Diagnostics	Using LEDs	4 LEDs on the card: "RUN" (status), "ERROR" (fault), "COM" (data exchange) and "I/O" (initialization)
	Using the graphic display terminal	Control word received Reference received Periodic variables (communication scanner)
Characteristics of the VW3 A3 302 Modbus Plus card (2)		
Structure	Connector	One 9-way female SUB-D connector
	Transmission speed	1 Mbps
	Address	1 to 64, configurable using switches on the card
Services	Messaging	Yes (Modbus)
	Periodic variables	"Peer Cop": 8 control variables which can be assigned by communication scanner "Global data": 8 monitoring variables which can be assigned by communication scanner
	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control" I/O profile
	Communication monitoring	Can be inhibited Time out can be set between 0.1 and 60 s via the terminal or the PowerSuite software workshop.
Diagnostics	Using LEDs	1 LEDs on the card: "MB+" (status)
	Using the graphic display terminal	Control word received Reference received Periodic variables (communication scanner)
		(1) For the Fipio bus, see pages 188 to 191. (2) For the Modbus Plus network, see pages 196 to 199.

Presentation:	Functions:	
page 44	Rege 45	Refences:

Variable speed drives for asynchronous motors

Altivar 61

Communication buses and networks

Characteristics of the VW3 A3 307 Profibus DP card

Structure	Connector	One 9-way female SUB-D connector
	Transmission speed	9600 bps, 19.2 Kbps, 93.75 Kbps , 187.5 Kbps, 500 Kbps , 1.5 Mbps, $3 \mathrm{Mbps}, 6 \mathrm{Mbps}$ or 12 Mbps
	Address	1 to 126, configurable using switches on the card
Services	Periodic variables	PPO type 5 8 control variables which can be assigned by communication scanner 8 monitoring variables which can be assigned by communication scanner PKW indexed periodic variable (settings)
	Functional profiles	CiA DSP 402: "Device Profile Drives and Motion Control" I/O profile
	Communication monitoring	Can be inhibited Time out can be set via the Profibus DP network configurator
Diagnostics	Using LEDs	2 LEDs on the card: "ST" (status) and "DX" (data exchange)
	Using the graphic display terminal	Control word received Reference received Periodic variables (communication scanner)
Description file		A single gsd file is supplied on the documentation CD-ROM for the whole range or can be downloaded from the Internet at "www.telemecanique.com". This file does not contain the description of the drive parameters.
Characteristics of the VW3 A3 309 DeviceNet card		
Structure	Connector	One removable screw connector, 5 contacts at intervals of 5.08
	Transmission speed	125 Kbps , 250 Kbps or 500 Kbps , configurable using switches on the card
	Address	1 to 63 , configurable using switches on the card
Services	Periodic variables	ODVA assemblies type 20, 21, 70 and 71 Allen-Bradley ${ }^{\circledR}$ assemblies type 103, 104 and 105 Communication scanner assemblies 100 and 101
	Periodic exchange mode	Inputs: Polled, Change of state, Cyclic Outputs: Polled
	Functional profiles	ODVA AC Drive (02) profile Allen-Bradley drive profile CiA DSP 402: "Device Profile Drives and Motion Control" I/O profile
	Auto Device Replacement	No
	Communication monitoring	Can be inhibited Time out can be set via the DeviceNet network configurator
Diagnostics	Using LEDs	One two-tone LED on the card: "MNS" (status)
	Using the graphic display terminal	Control word received Reference received
Description file		A single eds file is supplied on the documentation CD-ROM for the whole range or can be downloaded from the Internet at "www.telemecanique.com". This file contains the description of the drive parameters.

Presentation:	Functions:	References:
page 44	page 45	pages 52 and 53

Variable speed drives for asynchronous motors

Altivar 61

Communication buses and networks

Characteristics of the VW3 A3 304 InterBus card

Structure	Connector	2 connectors: One 9-way male SUB-D and one 9-way female SUB-D
	Power supply	The card is powered by the drive. To ensure that the InTERBUS subscriber continues to operate during line supply failures to the power part, fit a separate power supply for the drive control part.
Services	Messaging	PCP: - Read: read a parameter - Write: write a parameter - Initiate: initialize the communication relationship - Abort: abort the communication relationship - Status: Communication and drive status - Get-OV: read an object description - Identify: identification of the card
	Periodic variables	2 control variables which can be assigned by communication scanner 2 monitoring variables which can be assigned by communication scanner
	Functional profile	CiA DSP 402 (Drivecom profile 21)
	Communication monitoring	Can be inhibited Fixed time out: 640 ms
Diagnostics	Using LEDs	5 LEDs on the card: "U" (power supply), "RC" (bus input), "Rd" (bus output), "BA" (periodic data) and "TR" (messaging)
	Using the graphic display terminal	Control word received Reference received
Characteristics of the VW3 A3 312 LONWORKS card		
Structure	Connector	1 removable 3-way screw connector
	Topology	TP/FT-10 (free topology)
	Transmission speed	78 Kbps
Services	Functional profiles	LONMARK 6010: Variable Speed Motor Drive LonMark 0000: Node Object
Diagnostics	Using LEDs	3 LEDs on the card: "Service", "Status", "Fault"
	Using the graphic display terminal	Control word received Reference received
Description file		An xif file is supplied on the documentation CD-ROM or can be downloaded from the Internet at "www.telemecanique.com".

Presentation:	Functions:	References:
page 44	page 45	pages 52 and 53

Characteristics of the VW3 A3 313 METASYS N2 card

Structure	Connector	One 9-way female SUB-D connector
Diagnostics	Using LEDs	2 LEDs on the card: "COM" (network traffic) and "ERR" (fault)
	Using the graphic display terminal	Control word received Reference received
Characteristics of the VW3 A3 314 APOGEE FLN card		
Structure	Connector	One 9-way female SUB-D connector
Diagnostics	Using LEDs	2 LEDs on the card: "COM" (network traffic) and "ERR" (fault)
	Using the graphic display terminal	Control word received Reference received

Characteristics of the VW3 A3 315 BACnet card

Structure	Connector	One 9-way female SUB-D connector
Diagnostics	Using LEDs	2 LEDs on the card: "COM" (network traffic) and "ERR" (fault)
	Using the graphic display terminal	Control word received Reference received

Variable speed drives for asynchronous motors

Altivar 61
Communication buses and networks

VW3 A3 311

TSX FP ACC12

490 NAD 91103

Communication cards (1) (2)			
Description	Use	Reference	Weight kg
Ethernet (3)	To be connected on a Hub or Switch using a 490 NTW $000 \bullet \bullet$ cable. See pages 186 and 187	VW3 A3 310	0.300
Modbus/ Uni-Telway	To be connected on TSX SCA 62 subscriber socket using the VW3 A8 3062 cable. See pages 194 and 201	VW3 A3 303	0.300
Fipio	To be connected using a TSX FP ACC 12 connector with a TSX FP CCee extension cable or a TSX FP CA $\bullet \bullet$ drop cable. See pages 190 and 191	VW3 A3 311	0.300
Modbus Plus	To be connected to the 990 NAD 23000 IP 20 Modbus Plus tap using a 990 NAD $219 \bullet 0$ cable. See pages 198 and 199	VW3 A3 302	0.300
Profibus DP	To be connected using a 490 NAD $911 \bullet \bullet$ connector to Profibus cable TSX PBS CA•00 (4)	VW3 A3 307	0.300
DeviceNet	The card is equipped with a removable 5-way screw terminal block.	VW3 A3 309	0.300
InterBus	To be connected using the $170 \mathrm{MCl} \bullet \bullet 00$ (4)cable	VW3 A3 304	0.300
LONWORKS	The card is equipped with a removable 3-way screw terminal block.	VW3 A3 312	0.300
METASYS N2	The card is equipped with a 9 -way male SUB-D connector	VW3 A3 313	0.300
APOGEE FLN	The card is equipped with a 9 -way male SUB-D connector	VW3 A3 314	0.300
BACnet	The card is equipped with a 9-way male SUB-D connector	VW3 A3 315	0.300

(1) The Altivar 61 drive can only take one communication card. Consult the tables summarizing the possible combinations: drives, options and accessories (see pages 84 to 89).
(2) The user manuals are supplied on CD-ROM or can be downloaded from the Internet at "www.telemecanique.com". For Profibus DP, DeviceNet and LonWorks cards, the description files in gsd, eds or xif format are also supplied on CD-ROM or can be downloaded from the Internet at "www.telemecanique.com".
(3) Please consult our "Ethernet TCP/IP Transparent Ready" catalogue.
(4) Please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" catalogue.

Presentation:	Functions:	Characteristics:
page 44	page 45	pages 46 to 51

Variable speed drives for asynchronous motors

Altivar 61

Communication buses and networks

Example of Modbus diagram, connections via splitter blocks and RJ45 connectors

Premium (1)

Example of CANopen diagram

VW3 CAN A71

VW3 CAN KCDF 180 T

Connection accessories				
Description	No.	Length m	Unit reference	Weight kg
Modbus bus				
Modbus splitter block 10 RJ45 connectors and 1 screw terminal block	1	-	LU9 GC3	0.500
Cables for Modbus bus equipped with 2 RJ45 connectors	2	0.3	VW3 A8 306 R03	0.025
		1	VW3 A8 306 R10	0.060
		3	VW3 A8 306 R30	0.130
Modbus T-junction boxes (with integrated cable)	3	0.3	VW3 A8 306 TF03	-
		1	VW3 A8 306 TF10	-
Line terminator For RJ45 connector	4	-	VW3 A8 306 RC	0.010

Description	No.	Length \mathbf{m}	Reference	Weight $\mathbf{k g}$
CANopen bus				
CANopen adapter for mounting on 1	-	VW3 CAN A71	-	

the RJ45 socket in the drive control terminals.
The adapter provides a 9 -way male SUB-D connector conforming to the CANopen standard
(CIA DRP 303-1).

CANopen connector (4)	2	-	VW3 CAN KCDF 180T
9-way female SUB-D connector			
with line terminator			
(can be disabled)			
Output at 180° for 2 CANopen			
cables.			
CAN-H, CAN-L, CAN-GND			
connection			

CANopen cables (1)	3	50	TSX CAN CA 50	-
Standard cable.				
Low smoke emission, halogen-free.		100	TSX CAN CA 100	-
Flame retardant (IEC 60332-1).		300	TSX CAN CA 300	-
CANopen cables (1) UL certification.	3	50	TSX CAN CB 50	-
Flame retardant (IEC 60332-2).		100	TSX CAN CB 100	-
		300	TSX CAN CB 300	-
CANopen cables (1)	3	50	TSX CAN CD 50	-
Cable for harsh environments (5) or mobile installation.		100	TSX CAN CD 100	-
Low smoke emission, halogen-free.		100	TSX CAN CD 100	-
Flame retardant (IEC 60332-1).		300	TSX CAN CD 300	-

(1) Please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" and "Automation platform Modicon TSX Micro and PL7 software" catalogues.
(2) Cable depending on the type of controller or PLC.
(3) Sold in lots of 2.
(4) For ATV 61HoooM3, ATV 61HD11M3X, HD15M3X, ATV 61H075N4 ... HD18N4 drives, this connector can be replaced by the TSX CAN KCDF 180T connector.
(5) Harsh environments:

- Resistance to hydrocarbons, industrial oils, detergents and solder splashes
- Relative humidity up to 100%
- Saline atmosphere
- Significant temperature variations
- Operating temperature between $-10^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$

Presentation:	Functions:	Characteristics:
page 44	pages 45	pages 46 to 51

Variable speed drives for asynchronous motors

Altivar 61
Option: resistance braking units

Presentation

Resistance braking enables the Altivar 61 drive to operate while braking to a standstill or during "generator" operation, by dissipating the energy in the braking resistor.

The ATV 61HeeゃM3, ATV 61Hee๓M3X, ATV 61H075N4...HC22N4,
ATV 61WeeoN4 and ATV 61WeeoN4C drives have a built-in dynamic brake transistor.

For ATV 61HC25N4...HC63N4 drives, a braking unit must be used. It is controlled by the drive:
■ For ATV 61HC25N4 and ATV 61HC31N4 drives, the braking unit is mounted directly on the left-hand side of the drive, see dimensions on page 91
■ For ATV 61HC40N4...HC63N4 drives, the braking unit is an external module, see dimensions on page 101.

Application
Machines with high inertia.

Characteristics			
Type of braking unit		VW3 A7 101	VW3 A7 102
Ambient air temperature Operation	${ }^{\circ} \mathrm{C}$	-10... 50	
around the device Storage	${ }^{\circ} \mathrm{C}$	-25... 70	
Degree of protection of enclosure		IP 20	
Degree of pollution		2 according to st	
Relative humidity		Class 3K3 withou	
Maximum operating altitude	m	2000	
Vibration resistance		0.2 gn	
Nominal voltage of line supply and drive supply (rms value)	V	$\sim 380-15 \% . . .4$	
Engage threshold	V	--- $785 \pm 1 \%$	
Maximum DC bus voltage	V	850	
$\begin{aligned} & \text { Maximum braking power on } 785 \mathrm{~V}=- \text { (1) } \\ & 400 \mathrm{~V} \sim \text { supply } \end{aligned}$	kW	420	750
Percentage of conduction time at constant power at $785 \mathrm{~V}=-$		5 \% at 420 kW	5 \% at 750 kW
		15% at 320 kW	15\% at 550 kW
		50% at 250 kW	50% at 440 kW
Cycle time	s	≤ 240	
Maximum continuous power	kW	200	400
Thermal protection		Integrated, via thermal probe	
Forced ventilation	$\mathrm{m}^{3} / \mathrm{h}$	100	600
Installation		Vertical	
Minimum resistor value to be associated with the braking unit	Ω	1.05	0.7

References:	Selection:	Dimensions:
page 55	pages 58 to 61	pages 91 and 101

Variable speed drives for asynchronous motors

Altivar 61
Option: resistance braking units

Braking units
Supply voltage: 380... 480 V 50/60 Hz

| For drives | Power | | Loss | Cable
 (drive-braking unit) | Cable (braking
 unit-resistors) | Reference |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Note: To increase the braking power, several resistors can be mounted in parallel on the same braking unit. In this case, do not forget to take the minimum resistance value on each unit into account, see Characteristics on page 54.

Presentation: page 54	Characteristics: page 54	Selection: pages 58 to 61	Dimensions: pages 91 and 101

for asynchronous motors

Altivar 61

Option: braking resistors

Presentation
The braking resistor enables the Altivar 61 drive to operate while braking to a standstill, by dissipating the braking energy. It enables maximum transient braking torque.
The resistors are designed to be mounted on the outside of the enclosure, but should not inhibit natural cooling. Air inlets and outlets must not be obstructed, even partially. The air must be free of dust, corrosive gas and condensation.

Application

Inertia machines.

General characteristics

(1) The contact should be connected in the sequence (use for signalling, or in the line contactor control).
(2) The minimum ohmic value is determined at a temperature of $20^{\circ} \mathrm{C}$. In an environment where the temperature is below $20^{\circ} \mathrm{C}$, make sure that the minimum ohmic value recommended in the table is followed.

References:	Selection:	
page 57	pages 58 to 61	Dimensions:

Braking resistors				
For drives	Ohmic value at $20^{\circ} \mathrm{C}$	Average power available at $50^{\circ} \mathrm{C}$ (1)	Reference	Weight
	Ω	kW		kg
Supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$				
ATV 61H075M3	100	0.05	VW3 A7 701	1.900
ATV 61HU15M3, HU22M3	60	0.1	VW3 A7 702	2.400
ATV 61HU30M3, HU40M3	28	0.2	VW3 A7 703	3.500
ATV 61HU55M3, HU75M3	15	1	VW3 A7 704	11.000
ATV 61HD11M3X	10	1	VW3 A7 705	11.000
ATV 61HD15M3X	8	1	VW3 A7 706	11.000
ATV 61HD18M3X, HD22M3X	5	1	VW3 A7 707	11.000
ATV 61HD30M3X	4	1	VW3 A7 708	11.000
ATV 61HD37M3X, HD45M3X	2.5	1	VW3 A7 709	11.000
ATV 61HD55M3X, HD75M3X	1.8	15.3	VW3 A7 713	50.000
ATV 61HD90M3X	1.4	20.9	VW3 A7 714	63.000
Supply voltage: 380...480 V 50/60 Hz				
ATV 61H075N4...HU40N4 ATV 61W075N4...WU55N4 (2) ATV 61W075N4C...WU55N4C (2)	100	0.05	VW3 A7 701	1.900
ATV 61HU55N4, HU75N4 ATV 61WU75N4, WD11N4 (2) ATV 61WU75N4C, WD11N4C (2)	60	0.1	VW3 A7 702	2.400
ATV 61HD11N4, HD15N4 ATV 61WD15N4, WD18N4 (2) ATV 61WD15N4C, WD18N4C (2)	28	0.2	VW3 A7 703	3.500
ATV 61HD18N4...HD30N4 ATV 61WD22N4...WD37N4 (2) ATV 61WD22N4C...WD37N4C (2)	15	1	VW3 A7 704	11.000
ATV 61HD37N4 ATV 61WD45N4 (2) ATV 61WD45N4C (2)	10	1	VW3 A7 705	11.000
ATV 61WD55N4...WD90N4 (2) ATV 61WD55N4C...WD90N4C (2)	8	1	VW3 A7 706	11.000
ATV 61HD45N4...HD75N4	5	1	VW3 A7 707	11.000
ATV 61HD90N4, HC11N4	2.75	25	VW3 A7 710	80.000
ATV 61HC13N4, HC16N4	2.1	37	VW3 A7 711	86.000
ATV 61HC22N4	2.1	44	VW3 A7 712	104.000
ATV 61HC25N4	1.05	56	VW3 A7 715	136.000
ATV 61HC31N4	1.05	75	VW3 A7 716	172.000
ATV 61HC40N4, HC50N4	0.7	112	VW3 A7 717	266.000
ATV 61HC63N4	0.7	150	VW3 A7 718	350.000

[^3]| Presentation: | Characteristics: | Selection: |
| :--- | :--- | :--- |
| page 56 | page 56 | pages 58 to 61 |

Variable speed drives for asynchronous motors

Altivar 61
Option: braking units and resistors

Determining the braking unit and resistor

Calculating the various braking powers makes it possible to determine the braking unit and the braking resistor.

Operation

The braking power during deceleration is characterized by a peak power Pb obtained at the start of deceleration, which decreases to 0 in proportion to the speed. Example: Stopping centrifuges, translational movement, change of direction, etc.

n_{1}	Motor speed	$[\mathrm{rpm}]$
T_{1}	Load torque	$[\mathrm{Nm}]$
T_{b}	Braking torque	$[\mathrm{Nm}]$
P_{b}	Peak braking power	$[\mathrm{W}]$
$\overline{\mathrm{P}}_{\mathrm{b}}$	Average braking power during t_{b}	$[\mathrm{W}]$
t_{b}	Braking time	$[\mathrm{s}]$

[rpm]
[Nm] Nm] [W]
[W]
[s]

Calculating the braking time from the inertia

Motor braking torque

$\sum J$
n_{1}
n_{2}
Total inertia applied to the motor
Motor speed ahead of gearbox
Motor speed after gearbox
Braking time
[Nm]
[kgm^{2}]
[rpm]
[rpm]
$\mathrm{P}_{\mathrm{b}} \quad$ Peak braking power [W]
[s]
$P_{f} \quad$ Average braking power during time t_{b}
Resistive torque
[W] [Nm]

Presentation:	Characteristics:	References:	Dimensions:	pagemes:
pages 54 and 56	pages 54 and 56	pages 91, 101 and 102	pages 118 and 123	

Example of using characteristics curves
VW3 A7 $\mathbf{7 1 0}$ (P continuous $=\mathbf{2 5} \mathbf{k W}$) for $\mathbf{2 . 7 5 ~} \Omega$ at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$

Example of using the curves:
Point A For a 200 s cycle, the resistance of 2.75Ω can take an overload of $7 \times 25 \mathrm{~kW}$ (continuous power) for 24 s , or 175 kW of braking every 200 s.

Point B For a 120 s cycle, the resistance of 2.75Ω can take an overload of $5 \times 25 \mathrm{~kW}$ (continuous power) for 20 s , or 125 kW of braking every 120 s.

Point C For a 60 s cycle, the resistance of 2.75Ω can take an overload of $5 \times 25 \mathrm{~kW}$ (continuous power) for 10 s , or 125 kW of braking every 60 s.

- P max/P av (60 s cycle)
=-=- P max/P av (120 s cycle)
- P max/P av (200 s cycle)

Braking resistors

VW3 A7 701 (P continuous $=0.05 \mathrm{~kW}$)

VW3 A7 703 (P continuous $=0.2 \mathrm{~kW}$)

VW3 A7 702 (P continuous $=0.1 \mathrm{~kW}$)

VW3 A7 704... 709 (P continuous $=1 \mathrm{~kW}$)

Presentation: pages 54 and 56	Characteristics: pages 54 and 56	References: pages 55 and 57	Dimensions: pages 91, 101 and 102	Schemes: pages 118 and 123

Variable speed drives for asynchronous motors
Altivar 61
Characteristics curves for resistors

Braking resistors (continued) VW3 A7 710 (P continuous = $\mathbf{2 5}$ kW)

VW3 A7 712 (P continuous = 44 kW)

VW3 A7 714 (P continuous $=\mathbf{2 0 . 9} \mathbf{~ k W}$)

VW3 A7 711 (P continuous = 37 kW)

VW3 A7 713 (P continuous $=\mathbf{1 5 . 3} \mathbf{~ k W}$)

VW3 A7 715 (P continuous = 56 kW)

Presentation:	Characteristics:	References:
pages 54 and 56	pages 54 and 56	pages 55 and 57

Variable speed drives for asynchronous motors
Altivar 61
Characteristics curves for resistors

Braking resistors (continued) VW3 A7 716 (P continuous = $\mathbf{7 5}$ kW)

VW3 A7 718 (P continuous $=150 \mathrm{~kW}$)

[^4]
VW3 A7 717 (P continuous = 112 kW)

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: DC chokes

The main solutions for reducing current harmonics are as follows:

- DC chokes, see below

■ Line chokes, see page 66
■ 16% and 10% passive filters, see page 69
■ Use of passive filters with a DC choke, see pages 69 to 73
These 4 solutions can be used on the same installation.
It is always easier and less expensive to handle current harmonics at installation level as a whole rather than at the level of each individual unit, particularly when using passive filters and active compensators.

DC chokes

DC chokes are used to reduce current harmonics in order to comply with standard IEC/61000-3-2 for drives on which the line current is greater than 16 A and less than 75 A.
Using the DC choke with the drive complies with draft standard IEC/61000-3-12 provided that the RSCE $\geqslant 120$ (1) at the point of connection to the public network. 120 represents the minimum value of RSCE (1) for which the values in table 4 of draft standard IEC/61000-3-12 are not exceeded.
It is the responsibility of the installer or the user to ensure that the device is connected correctly to a connection point with an RSCE $\geqslant 120$.
The DC choke is connected to the drive power terminals.
It is supplied as standard with ATV 61HD55M3X, HD90M3X and
ATV 61HD90N4...HC63N4 drives and is integrated into ATV 61WeeeN4 and ATV 61WeeeN4C drives.

Applications

Reduction of current harmonics.
Reduction of THD to 5% or to 10% in association with passive filters, see pages 69 to 73.
Maintaining the motor torque in relation to the DC choke.

Characteristics:	References:	
page 65	page 65	Dimensions:
	page 103	Schemes:
pages 114 to 117, 123 and 124		

Altivar 61: Reduction of current harmonics Option: DC chokes

Example of current harmonic levels for ATV 61H075M3...ATV 61HD90M3X drives (1)

Motor		Line s		Curr	harm	nonic	levels														THD(2)
power	ATV 61 drives	Line current	Line Isc	H1	H5	H7	H11	H13	H17	H19	H23	H25	H29	H31	H35	H37	H41	H43	H47	H49	
kW HP		A	kA	A	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	
3-phase supply voltage: 230 V 50 Hz, with optional DC choke																					
0.751	H075M3	3.05	5	2.81	31.99	20.91	8.88	7.36	5.6	4.63	4.07	3.42	3.18	2.71	2.59	2.24	2.17	1.91	1.86	1.66	41.27
1.52	HU15M3	6.04	5	5.55	33.65	21.59	8.14	6.84	4.97	4.19	3.54	3.08	2.71	2.43	2.17	2.01	1.78	1.7	1.5	1.47	42.4
2.23	HU22M3	8.33	5	7.64	34.89	21.11	8.78	6.72	5.36	4.1	3.8	3	2.9	2.37	2.29	1.95	1.85	1.66	1.52	1.44	43.33
3	HU30M3	11.12	5	10.19	35.17	20.68	8.71	6.48	5.24	3.94	3.67	2.88	2.76	2.27	2.15	1.87	1.71	1.58	1.37	1.37	43.22
$4 \quad 5$	HU40M3	14.53	5	13.29	36.23	20.51	8.73	6.2	5.2	3.73	3.61	2.71	2.68	2.14	2.06	1.76	1.61	1.49	1.27	1.28	43.91
5.57 .5	HU55M3	19.2	8	17.9	30.68	17.26	8.75	6.31	5.3	4.03	3.72	2.98	2.79	2.36	2.17	1.94	1.71	1.63	1.36	1.4	38
7.510	HU75M3	26.1	15	23.9	35.23	21.09	8.82	6.71	5.38	4.09	3.82	2.98	2.91	2.35	2.31	1.92	1.87	1.63	1.54	1.4	43.96
$11 \quad 15$	HD11M3X	36.6	15	34.2	30.91	17.12	8.86	6.36	5.37	4.08	3.77	3.01	2.82	2.37	2.19	1.94	1.73	1.62	1.37	1.38	38.14
$15 \quad 20$	HD15M3X	48.6	15	45.8	28.3	14.9	8.8	6.2	5.3	4.1	3.7	3	2.7	2.4	2.1	1.9	1.6	1.6	1.2	1.3	35
18.525	HD18M3X	60	22	56	31.5	17.1	8.7	6.1	5.2	3.9	3.7	2.9	2.7	2.3	2.1	1.9	1.7	1.6	1.3	1.3	38.5
$22 \quad 30$	HD22M3X	70.28	22	65.92	29.81	15.91	8.7	6.15	5.23	3.99	3.63	2.95	2.68	2.32	2.04	1.89	1.57	1.57	1.22	1.32	36.62
$30 \quad 40$	HD30M3X	96.9	22	88.78	36.68	19.42	8.38	5.67	4.86	3.44	3.29	2.52	2.38	1.98	1.77	1.62	1.34	1.34	1.02	1.12	43.51
$37 \quad 50$	HD37M3X	116.1	22	107.9	33.09	16.4	8.59	5.59	4.97	3.54	3.33	2.6	2.36	2.03	1.72	1.63	1.26	1.32	0.94	1.06	39.24
4560	HD45M3X	138.7	22	130.5	30.15	13.86	8.65	5.38	5.01	3.49	3.33	2.55	2.33	1.96	1.66	1.53	1.2	1.19	0.9	0.9	35.7

3-phase supply voltage: 230 V 50 Hz , with DC choke supplied as standard with the drive

| 55 | 75 | $H D 55 M 3 X$ | 120 | 14 | 109.29 | 39.77 | 18.67 | 7.98 | 4.67 | 4.16 | 2.59 | 2.61 | 1.81 | 1.76 | 1.35 | 1.23 | 1.02 | 0.87 | 0.78 | 0.63 | 0.59 | 45.36 |
| :--- |

| 75 | 100 | HD75M3X 163.0 | 35 | 148.35 | 38.83 | 20.24 | 8.2 | 5.43 | 4.58 | 3.15 | 3.04 | 2.24 | 2.17 | 1.7 | 1.62 | 1.33 | 1.23 | 1.06 | 0.94 | 0.84 | 45.51 |
| :--- |

| 90 | 125 | $H D 90 M 3 X$ | 196.06 | 35 | | 177.16 | 40.75 | 21.04 | 8.1 | 5.26 | 4.42 | 2.93 | 2.88 | 2.06 | 2.04 | 1.55 | 1.49 | 1.21 | 1.12 | 0.95 | 0.85 | 0.75 | 47.41 |
| :--- |

Example of current harmonic levels for ATV 61H075N4...ATV 61HC63N4 drives (1)

Motor	For ATV 61 drives	Line supply		Current harmonic levels																	THD (2)
power		Line current	Line Isc	H1	H5	H7	H11	H13	H17	H19	H23	H25	H29	H31	H35	H37	H41	H43	H47	H49	
kW HP		A	kA	A	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	

3-phase supply voltage: 400 V 50 Hz , with optional DC choke

| 0.75 | 1 | H075N4 | 1.77 | 5 | 1.61 | 34.6 | 23.7 | 8.9 | 7.8 | 5.6 | 4.8 | 4.1 | 3.5 | 3.2 | 2.8 | 2.6 | 2.3 | 2.2 | 1.9 | 1.9 | 1.7 | 44.95 |
| :--- |
| 1.5 | 2 | HU15N4 | 3.34 | 5 | 3.03 | 35.55 | 23.53 | 8.95 | 7.65 | 5.61 | 4.74 | 4.06 | 3.49 | 3.16 | 2.76 | 2.57 | 2.28 | 2.15 | 1.94 | 1.83 | 1.68 | 45.48 |
| 2.2 | 3 | HU22N4 | 4.83 | 5 | 4.4 | 35.79 | 22.77 | 8.7 | 7.11 | 5.41 | 4.36 | 3.89 | 3.2 | 3.01 | 2.53 | 2.43 | 2.09 | 2.01 | 1.77 | 1.7 | 1.53 | 45 |
| 3 | - | HU30N4 | 6.13 | 5 | 5.67 | 31.61 | 18.82 | 9.41 | 6.82 | 5.88 | 4.57 | 4.24 | 3.38 | 3.28 | 2.67 | 2.63 | 2.19 | 2.16 | 1.86 | 1.8 | 1.6 | 40.08 |
| 4 | 5 | HU40N4 | 8.24 | 5 | 7.51 | 36.16 | 21.63 | 9 | 8.17 | 5.52 | 4.17 | 3.93 | 3.05 | 3 | 2.4 | 2.38 | 1.98 | 1.93 | 1.68 | 1.58 | 1.45 | 44.72 |
| 5.5 | 7.5 | HU55N4 | 10.81 | 22 | 9.83 | 34.85 | 23.08 | 9.68 | 4.05 | 6.12 | 5.18 | 4.45 | 3.83 | 3.48 | 3.04 | 2.85 | 2.52 | 2.4 | 2.14 | 2.06 | 1.85 | 45.19 |
| 7.5 | 10 | HU75N4 | 15.01 | 10 | 13.8 | 34.09 | 20.49 | 8.57 | 6.43 | 5.28 | 3.95 | 3.78 | 2.89 | 2.9 | 2.28 | 2.32 | 1.88 | 1.9 | 1.59 | 1.58 | 1.37 | 42.25 |
| 11 | 15 | HD11N4 | 21.1 | 9 | 19.3 | 35.22 | 20.11 | 8.95 | 6.5 | 5.41 | 4.02 | 3.8 | 2.95 | 2.86 | 2.32 | 2.23 | 1.9 | 1.77 | 1.6 | 1.42 | 1.37 | 43.1 |
| 15 | 20 | HD15N4 | 28.2 | 12 | 25.8 | 35.22 | 20.01 | 8.98 | 6.49 | 5.43 | 4.02 | 3.82 | 2.94 | 2.88 | 2.32 | 2.24 | 1.9 | 1.78 | 1.6 | 1.43 | 1.37 | 43.06 |
| 18.5 | 25 | HD18N4 | 33.9 | 12 | 31.9 | 28.36 | 15.16 | 8.85 | 6.18 | 5.39 | 4.04 | 3.78 | 2.98 | 2.83 | 2.34 | 2.18 | 1.9 | 1.7 | 1.58 | 1.33 | 1.33 | 35.23 |
| 22 | 30 | HD22N4 | 40.87 | 22 | 37.85 | 32.79 | 18.73 | 8.6 | 6.42 | 5.28 | 4.09 | 3.75 | 3.03 | 2.85 | 2.4 | 2.25 | 1.97 | 1.81 | 1.67 | 1.48 | 1.44 | 40.4 |
| 30 | 40 | HD30N4 | 54.1 | 20 | 50.6 | 29.97 | 16.26 | 8.75 | 6.27 | 5.32 | 4.07 | 3.73 | 3.01 | 2.79 | 2.37 | 2.15 | 1.94 | 1.69 | 1.62 | 1.33 | 1.38 | 36.99 |
| 37 | 50 | HD37N4 | 66.43 | 22 | 62.6 | 28.49 | 15.01 | 8.63 | 6.08 | 5.23 | 4 | 3.65 | 2.97 | 2.71 | 2.34 | 2.07 | 1.9 | 1.61 | 1.58 | 1.26 | 1.32 | 35.13 |
| 45 | 60 | HD45N4 | 83.11 | 22 | 75.56 | 38.31 | 20.96 | 8.24 | 5.81 | 4.85 | 3.48 | 3.33 | 2.54 | 2.44 | 2 | 1.85 | 1.64 | 1.42 | 1.38 | 1.1 | 1.17 | 45.59 |
| 55 | 75 | HD55N4 | 98.6 | 22 | 91.69 | 32.94 | 16.76 | 8.5 | 5.68 | 4.98 | 3.62 | 3.38 | 2.67 | 2.44 | 2.09 | 1.81 | 1.69 | 1.37 | 1.39 | 1.04 | 1.14 | 39.29 |
| 75 | 100 | HD75N4 | 134 | 22 | 125.9 | 30.65 | 14.43 | 8.4 | 5.4 | 4.84 | 3.52 | 3.21 | 2.59 | 2.25 | 2 | 1.61 | 1.58 | 1.17 | 1.25 | 0.88 | 0.96 | 36.2 |

3-phase supply voltage: 400 V 50 Hz , with DC choke supplied as standard with the drive

90125	HD90N4	158.81	35	145.1	36.72	20.66	8.33	6.19	4.93	3.78	3.43	2.75	2.56	2.13	1.99	1.72	1.59	1.4	1.29	1.16	44.26
110150	HC11N4	188.59	35	175.5	33.15	16.56	8.29	5.6	4.81	3.57	3.26	2.58	2.36	1.97	1.77	1.53	1.36	1.2	1.04	0.95	39.26
132200	HC13N4	226.53	35	209.6	34.91	17.14	8.21	5.36	4.66	3.33	3.11	2.4	2.22	1.82	1.64	1.41	1.24	1.1	0.94	0.86	40.86
160250	HC16N	271.34	50	251.7	34	17.22	8.28	5.59	4.8	3.5	3.23	2.56	2.35	1.9	1.7	1.5	1.3	1.	1.04	0.95	40.24
200300	HC22N	337.95	50	313	34.38	16	8.23	5.33	4.6	3.3	3.0	2.39	2.	1.8	1.63	1.38	1.22	1.07	0.91	0.84	0.24
22035	H	3	5	344.77	8	15	8.	5.	4	3.	3.	2.39	2.	1.	1.	1.	1.	1.03	0	9	38.53
50400	HC25	4	50	39	32.69	14	8.1	5.14	4.5	3.2	2.9	2.32	2.0	1.	1.	1.	1.0	0.97	0.78	0.72	37.95
45	H	471.17	50	437.41	34.78	15.9	8.1	4	4.44	3.0	2.86	2.16	1.97	1.6	1.4	1.21	1	0.9	0.72	0.67	40.05
315500	HC	526.6	50	4	33	14.4	8.0	4.85	4.4	3.05	2.81	2.15	1.9	1.57	1.32	1.15	0.92	0.84	0.65	0.61	37.99
355	HC40N	591.92	50	554.81	32.59	13.7	8	4.73	4.3	2.99	2.	2.09	1.8	1.5	1.22	1.08	0.84	0.78	0.57	0.55	3.2
$400 \quad 600$	HC40N	660.94	50	62	31.23	12.6	7.95	4.71	4.26	2.99	2.63	2.06	1.71	1.45	1.12	1.01	0.75	0.7	0.51	0.49	35.57
500700	HC50N	834.65	50	78	33.52	13.05	7.75	4.28	3.97	2.65	2.37	1.82	1.49	1.26	0.96	0.88	0.63	0.61	0.43	0.42	37.54
560 800	HC63N4	930.84	50	874.82	32.5	12.37	7.76	4.28	3.96	2.67	2.34	1.78	1.46	1.21	0.86	0.79	0.56	0.54	0.39	0.38	36.39
630900	HC63N4	1037.11	50	980.2	31.06	11.11	7.64	4.23	3.81	2.63	2.15	1.73	1.27	1.13	0.77	0.73	0.5	0.48	0.39	0.36	34.61
(1) Example of current harmonic levels up to harmonic order 49 for a $400 \mathrm{~V} / 50 \mathrm{~Hz}$ supply with chokes connected between the $P O$ and $P A /+$ terminals on the Altivar 61.																					

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: DC chokes

Example of current harmonic levels for ATV 61WeooN4 and ATV 61WeoeN4C drives (1)
3-phase supply voltage: 400 V 50 Hz , with integrated DC choke

Moto		For ATV 61 drives	Line supply		Current harmonic levels																	THD (2)
pow			Line current	Line Isc	H1	H5	H7	H11	H13	H17	H19	H23	H25	H29	H31	H35	H37	H41	H43	H47	H49	
kW			A	kA	A	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	\%	
0.75	1	W075N4 W075N4C	1.75	5	1.61	32.12	22.41	8.97	7.96	5.77	5	4.25	3.69	3.36	2.93	2.78	2.43	2.37	2.08	2.06	1.81	42.65
1.5	2	WU15N4 WU15N4C	3.38	5	3.08	34.84	23.58	8.77	7.71	5.60	4.77	4.11	3.51	3.24	2.78	2.67	2.30	2.26	1.96	1.96	1.71	45.12
2.2	3	$\begin{aligned} & \hline \text { WU22N4 } \\ & \text { WU22N4C } \end{aligned}$	4.77	5	4.38	33.37	22.01	8.8	7.48	5.6	4.7	4.1	3.48	3.23	2.76	2.65	2.28	2.24	1.94	1.93	1.69	43.12
3	-	WU30N4 WU30N4C	6.39	5	5.84	35.07	22.41	8.51	7.38	5.36	4.63	3.89	3.43	3.04	2.73	2.48	2.26	2.08	1.93	1.79	1.67	44.48
4	5	WU40N4 WU40N4C	8.39	5	7.64	36.07	22.73	8.45	7.27	5.29	4.52	3.82	3.33	2.97	2.65	2.42	2.19	2.02	1.86	1.73	1.61	45.34
5.5	7.5	WU55N4 WU55N4C	10.71	22	9.9	30.94		9.56	8.22	6.09	5.31	4.47	3.94	3.52	3.14	2.9	2.6	2.45	2.21	2.11	1.92	41.41
7.5	10	WU75N4 WU75N4C	15.10	22	13.73	35.93	23.66	8.72	7.55	5.53	4.65	4.03	3.41	3.16	2.7	2.59	2.23	2.19	1.89	1.88	1.64	45.9
11	15	WD11N4 WD11N4C	20.75	22	19.35	29.81	18.76	9.1	7.38	5.76	4.79	4.2	3.56	3.29	2.83	2.69	2.34	2.26	1.99	1.93	1.72	38.88
15	20	$\begin{aligned} & \hline \text { WD15N4 } \\ & \text { WD15N4C } \end{aligned}$	28.74	22	26.24	35.65	22.28	8.55	7.22	5.32	4.50	3.83	3.32	2.97	2.63	2.41	2.17	2.01	1.84	1.71	1.58	44.79
18.5	25	WD18N4 WD18N4C	35.41	22	32.11	37.49	23.29	8.44	7.13	5.22	4.36	3.74	3.19	2.88	2.52	2.32	2.08	1.93	1.75	1.63	1.51	46.65
22	30	$\begin{aligned} & \hline \text { WD22N4 } \\ & \text { WD22N4C } \end{aligned}$	41.66	22	37.87	37.21	22.55	8.38	6.95	5.16	4.26	3.69	3.13	2.84	2.47	2.29	2.02	1.89	1.7	1.6	1.46	45.99
30	40	WD30N4 WD30N4C	54.02	22	50.77	29.05	16.24	8.66	6.55	5.39	4.32	3.86	3.22	2.96	2.55	2.36	2.09	1.92	1.76	1.59	1.5	36.54
37	50	$\begin{aligned} & \hline \text { WD37N4 } \\ & \text { WD37N4C } \end{aligned}$	66.15	22	62.09	29.46	16.33	8.76	6.51	5.41	4.25	3.85	3.15	2.93	2.48	2.32	2.03	1.86	1.7	1.52	1.45	36.89
45	60	$\begin{aligned} & \text { WD45N4 } \\ & \text { WD45N4C } \end{aligned}$	80.82	22	75.33	31.82	17.26	8.57	6.24	5.22	4.02	3.69	2.97	2.78	2.34	2.18	1.91	1.73	1.59	1.39	1.35	38.98
55	75	WD55N4 WD55N4C	100.42	22	92.45	35.41	19.11	8.24	6.06	4.92	3.78	3.43	2.77	2.57	2.16	2	1.73	1.6	1.42	1.3	1.18	42.51
75	100	WD75N4 WD75N4C	133.88	22	125.86	30.11	14.93	8.5	5.85	5.07	3.82	3.49	2.81	2.56	2.19	1.92	1.76	1.46	1.43	1.12	1.18	36.35
90	125	WD90N4 WD90N4C	164.46	35	152.4	33.86	17.83	8.24	5.98	4.93	3.8	3.43	2.8	2.57	2.18	2	1.75	1.6	1.43	1.29	1.18	40.65

(1) Example of current harmonic levels up to harmonic order 49 for a $400 \mathrm{~V} / 50 \mathrm{~Hz}$ supply with chokes connected between the PO and PA/+ terminals on the Altivar 61.
(2) Total harmonic distortion conforming to draft standard IEC 61000-3-12.

Characteristics:	References:	Dimensions:
page 65	page 65	page 103

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: DC chokes

General characteristics								
Degree of protection			IP 20					
Maximum relative humidity			95\%					
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$ without derating Up to $60^{\circ} \mathrm{C}$ with current derating of 2.2% per ${ }^{\circ} \mathrm{C}$ above $50^{\circ} \mathrm{C}$					
	Storage	${ }^{\circ} \mathrm{C}$	-40...+65					
Maximum operating altitude		m	1000 without derating 1000 ... 3000 with current derating of 1% per additional 100 m					
Voltage drop			4 to 6\%					
Maximum current			$1.65 \times$ nominal current for 60 seconds					
Connection characteristics								
Type of terminal Maximum connection capacity and tightening torque			Earth			Power supply		
	VW3 A4 501... 505		$\begin{aligned} & 10 \mathrm{~mm}^{2}(\mathrm{AWG} 6) \\ & 1.2 \ldots 1.4 \mathrm{Nm} \end{aligned}$			$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \text { (AWG 12) } \\ & 0.4 \ldots 0.6 \mathrm{Nm} \end{aligned}$		
	VW3 A4 506		$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.2 \ldots .1 .4 \mathrm{Nm} \end{aligned}$			$\begin{aligned} & 4 \mathrm{~mm}^{2} \text { (AWG 10) } \\ & 0.5 \ldots . .0 .8 \mathrm{Nm} \end{aligned}$		
	VW3 A4 507		$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.2 \ldots .1 .4 \mathrm{Nm} \end{aligned}$			$\begin{aligned} & \hline 6 \mathrm{~mm}^{2} \text { (AWG 8) } \\ & 0.8 \ldots 1 \mathrm{Nm} \\ & \hline \end{aligned}$		
	VW3 A4 508, 509		$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.2 \ldots . .1 .4 \mathrm{Nm} \end{aligned}$			$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.2 \ldots 1.4 \mathrm{Nm} \end{aligned}$		
	VW3 A4 510		$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.2 \ldots . .1 .4 \mathrm{Nm} \end{aligned}$			$\begin{aligned} & 35 \mathrm{~mm}^{2} \text { (AWG 0) } \\ & 2.5 \ldots . .3 \mathrm{Nm} \end{aligned}$		
	VW3 A4 511		-			Connected on a bar, $\varnothing 9$		
	VW3 A4 512		-			Connected on a bar, Ø 9		
		DC chokes (1)						
			es	Inductance value	Nominal current	Loss	Reference	Weight
				mH	A	W		kg
		3-phase supply voltage: $200 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
		ATV 61H075M3		6.8	8	22.5	VW3 A4 503	1.700
		ATV 61HU15M3		3.2	14.3	32	VW3 A4 505	2.200
		ATV 61HU22M3		2.2	19.2	33	VW3 A4 506	2.500
		ATV 61HU30M3		1.6	27.4	43	VW3 A4 507	3.000
		ATV 61HU40M3, HU55M3		1.2	44	61	VW3 A4 508	4.500
		ATV 61HU75M3		0.7	36	30.5	VW3 A4 509	2.500
		ATV 61HD11M3X, HD15M3X		0.52	84.5	77	VW3 A4 510	6.200
		$\begin{aligned} & \text { ATV 61HD18M3X, } \\ & \text { HD22M3X } \end{aligned}$		0.22	171.2	86	VW3 A4 511	15.500
		$\begin{aligned} & \text { ATV 61HD30M3X... } 0.09 \\ & \text { HD45M3X } \end{aligned}$			195	73	VW3 A4 512	10.000
		3-phase supply voltage: $380 \ldots 480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$						
		ATV 61H075N4		18	2.25	7.7	VW3 A4 501	0.650
		ATV 61HU15N4		10	4.3	11	VW3 A4 502	1.000
		ATV 61HU22N4, HU30N4		6.8	8	22.5	VW3 A4 503	1.700
		ATV 61HU40N4		3.9	10.7	27	VW3 A4 504	1.650
		ATV 61HU55N4		3.2	14.3	32	VW3 A4 505	2.200
		ATV 61HU75N4		2.2	19.2	33	VW3 A4 506	2.500
		ATV 61HD11N4		1.6	27.4	43	VW3 A4 507	3.000
		ATV 61HD15N4, HD18N4		1.2	44	57.5	VW3 A4 508	4.300
		ATV 61HD22N4... HD37N4		0.52	84.5	98.3	VW3 A4 510	5.600
		ATV 61HD45N4... 0.22 HD75N4			171.2	128	VW3 A4 511	9.100
		(1) For ATV 61HD55M3X...HD90M3X, ATV 61HD90N4...HC63N4 drives, the choke is supplied as standard with the drive. It is integrated into ATV 61WoooN4 and ATV 61WoooN4C drives.						

| Presentation:
 pages 62 to 64 | Dimensions:
 page 103 |
| :--- | :--- | | Schemes: |
| :--- |
| pages 114 to 117, 123 and 124 |

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics
Option: Line chokes

Line chokes

A line choke can be used to provide improved protection against overvoltages on the line supply and to reduce the current harmonics produced by the drive.

Line chokes are compulsory on ATV 61HU40M3...HU75M3 drives supplied with a single phase 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ supply voltage.

They can be used instead of a DC choke. In this case, to order an ATV 61HD55M3X...HD90M3X and ATV 61HD90N4...HC63N4 drive without DC choke, add the letter D to the end of the drive's reference, see pages 18 and 19.

The recommended chokes can be used to limit the line current. They have been developed in line with standard EN 50178 (VDE 0160 level 1 high energy overvoltages on the line supply).

The inductance values are defined for a voltage drop between phases of between 3% and 5% of the nominal line voltage. Values higher than this will cause loss of torque.

These chokes should be installed upstream of the drive.

Applications

The use of line chokes is recommended in particular under the following circumstances:
■ Close connection of several drives in parallel

- Line supply with significant disturbance from other equipment (interference, overvoltages)
■ Line supply with voltage imbalance between phases above 1.8% of the nominal voltage
■ Drive supplied by a line with very low impedance (in the vicinity of a power
transformer 10 times more powerful than the drive rating)
■ Installation of a large number of frequency converters on the same line
- Reduction of overload in $\cos \varphi$ correction capacitors, if the installation has a power factor correction unit

Variable speed drives for asynchronous motors
Altivar 61: Reduction of current harmonics Option: Line chokes

General characteristics							
Type of choke			VW3 A58501. A58502	VW3 A4 551... A4 553	VW3 A4 554, A4 555	VW3 A4 556... A4 560	VW3 A4 561, A4 564, 565, A4 568, 569
Conformity to standards			EN 50178 (VDE 0160 level 1 high energy overvoltages on the line supply), IEC 60076 (with HD 398)				
Degree of protection	Choke		IP 00				
	Terminals		IP 20		IP 10	IP 00	
Atmospheric pollution			$3 \mathrm{C} 2,3 \mathrm{~B} 1,3 \mathrm{~S} 1$ conforming to IEC 721.3.3				
Degree of pollution			2 conforming to EN 50178				
Vibration resistance			1.5 mm from $3 . .13 \mathrm{~Hz}, 1 \mathrm{gn}$ from 13... 200 Hz , conforming to IEC 60068-2				
Shock resistance			15 gn for 11 ms conforming to IEC/EN 60068-2-27				
Maximum relative humidity			95\%				
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	$0 \ldots+45$ without derating Up to $+55^{\circ} \mathrm{C}$ with current derating of 2% per ${ }^{\circ} \mathrm{C}$ above $45^{\circ} \mathrm{C}$				
	Storage	${ }^{\circ} \mathrm{C}$	-25... 70				
Isolation class			F				
Clearance distance in air		mm	5.5 conforming to IEC 60664				
Leakage distance in air		mm	11.5 conforming to IEC 60664				
Maximum operating altitude		m	1000 without derating 1000 ... 3000 with current derating of 1% per additional 100 m				
Voltage drop			Between 3% and 5% of the nominal supply voltage. Values higher than this will cause loss of torque.				
Maximum current			$1.65 \times$ nominal current for 60 seconds				
Connection characteristics							
Maximum connection capacity and tightening torque	VW3 A58501		$\begin{aligned} & 16 \mathrm{~mm}^{2},(\text { AWG 4) } \\ & 1.2 \ldots 1.4 \mathrm{Nm} \end{aligned}$				
	VW3 A58502		$\begin{aligned} & 6 \mathrm{~mm}^{2}, \text {, (AWG 8) } \\ & 0.8 \ldots 1 \mathrm{Nm} \\ & \hline \end{aligned}$				
	VW3 A4 551, 552		$\begin{aligned} & 2.5 \mathrm{~mm}^{2}, \text {, (AWG 12) } \\ & 0.4 \ldots . .0 .6 \mathrm{Nm} \end{aligned}$				
	VW3 A4 553		$\begin{aligned} & 6 \mathrm{~mm}^{2}, \text { (AWG 8) } \\ & 0.8 \ldots 1 \mathrm{Nm} \\ & \hline \end{aligned}$				
	VW3 A4 554		$\begin{aligned} & \hline 16 \mathrm{~mm}^{2}, \text { (AWG 4) } \\ & 1.2 \ldots 1.4 \mathrm{Nm} \\ & \hline \end{aligned}$				
	VW3 A4 555		$\begin{array}{\|l\|} \hline 35 \mathrm{~mm}^{2},(\text { AWG 0) } \\ 2.5 \ldots 3 \mathrm{Nm} \\ \hline \end{array}$				
	VW3 A4 556		Connected on a bar, $\varnothing 6.5 \mathrm{~mm}$				
	VW3 A4 557, 558		Connected on a bar, Ø 9 mm				
	VW3 A4 559... 561		Connected on a bar, Ø 11 mm				
	VW3 A4 564, 565		Connected on a bar, Ø 13 mm				
	VW3 A4 568		Connected on a bar, Ø 11 mm				
	VW3 A4 569		Connected on a bar, Ø 13 mm				

$\left.\begin{array}{lll}\hline \text { Presentation: } & \begin{array}{l}\text { References: } \\ \text { page 66 }\end{array} & \begin{array}{l}\text { Dimensions: } \\ \text { page 103 }\end{array}\end{array} \begin{array}{l}\text { Schemes: } \\ \text { pages 114 to 118 }\end{array}\right]$

Altivar 61: Reduction of current harmonics Option: Line chokes

Line chokes								
For drives	Line supply Line Isc	Line choke				Number required per drive	Reference	Weight
		Inductance value	Nominal current	Saturation current	Loss			
	kA	mH	A	A	W			kg
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$								
ATV 61HU40M3	5	2	25	-	45	1	VW3 A58501	3.500
ATV 61HU55M3	5	1	45	-	50	1	VW3 A58502	3.500
ATV 61HU75M3	22	1	45	-	50	1	VW3 A58502	3.500
3-phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$								
ATV 61H075M3	5	10	4	-	45	1	VW3 A4 551	1.500
ATV 61HU15M3, HU22M3	5	4	10	-	65	1	VW3 A4 552	3.000
ATV 61HU30M3	5	2	16	-	75	1	VW3 A4 553	3.500
ATV 61HU40M3	5	1	30	-	90	1	VW3 A4 554	6.000
ATV 61HU55M3	22	1	30	-	90	1	VW3 A4 554	6.000
ATV 61HU75M3, HD11M3X	22	0.5	60	-	94	1	VW3 A4 555	11.000
ATV 61HD15M3X	22	0.3	100	-	260	1	VW3 A4 556	16.000
ATV 61HD18M3X...HD45M3X	22	0.15	230	-	400	1	VW3 A4 557	45.000
ATV 61HD55M3XD	35	0.066	344	685	258	1	VW3 A4 561	47.000
ATV 61HD75M3XD	35	0.066	344	685	258	1	VW3 A4 561	47.000
ATV 61HD90M3XD	35	0.038	613	1150	307	1	VW3 A4 564	73.000

3-phase supply voltage: $380 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$								
ATV 61H075N4, HU15N4	5	10	4	-	45	1	VW3 A4 551	1.500
ATV 61HU22N4...HU40N4	5	4	10	-	65	1	VW3 A4 552	3.000
ATV 61HU55N4, HU75N4	22	2	16	-	75	1	VW3 A4 553	3.500
ATV 61HD11N4, HD15N4	22	1	30	-	90	1	VW3 A4 554	6.000
ATV 61HD18N4, HD22N4	22	0.5	60	-	94	1	VW3 A4 555	11.000
ATV 61HD30N4...HD55N4	22	0.3	100	-	260	1	VW3 A4 556	16.000
ATV 61HD75N4	22	0.15	230	-	400	1	VW3 A4 557	45.000
ATV 61HD90N4D	35	0.155	184	370	220	1	VW3 A4 558	31.000
ATV 61HC11N4D	35	0.12	222	445	230	1	VW3 A4 559	35.000
ATV 61HC13N4D	35	0.098	264	530	245	1	VW3 A4 560	43.000
ATV 61HC16N4D	50	0.085	300	570	268	1	VW3 A4 568	46.000
ATV 61HC22N4D $\begin{array}{l}\text { Motor P } \\ \\ 200 \mathrm{~kW}\end{array}$	50	0.066	344	685	258	1	VW3 A4 561	47.000
Motor P 220 kW	50	0.060	450	849	300	1	VW3 A4 569	70.000
ATV 61HC25N4D	50	0.060	450	849	300	1	VW3 A4 569	70.000
ATV 61HC31N4D	50	0.038	613	1150	307	1	VW3 A4 564	73.000
ATV 61HC40N4D	50	0.032	720	1352	428	1	VW3 A4 565	82.000
ATV 61HC50N4D	50	0.060	450	849	300	2	VW3 A4 569	70.000
ATV 61HC63N4D	50	0.038	613	1150	307	2	VW3 A4 564	73.000

Presentation:	Characteristics:	Dimensions: page 66

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: Passive filters

Passive filters

The passive filter is used to reduce current harmonics with total harmonic distortion factors of less than 16% or 10%. These ratios may be less than 10% or 5% if the filter is used with a DC choke, see pages 62 and 70 to 73 .
For applications requiring stricter control of current harmonics, the filter can be controlled via the drive on the basis of the load, see page 122.

Applications

Reduction of current harmonics in order to use drives in the first environment.

General characteristics

Degree of protection			IP 20	
Maximum relative humidity			Class F humidity without condensation 5\%... 85%	
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	$5 \ldots+40$ without derating Up to $55^{\circ} \mathrm{C}$ with current derating of 3% per additional ${ }^{\circ} \mathrm{C}$	
	Storage	${ }^{\circ} \mathrm{C}$	-25...+55	
Maximum operating altitude		m	1000 without derating 1000 ... 4000 with current derating of 5% per additional 1000 m	
Electrical characteristics				
Range			400 V	460 V
Nominal voltage $\pm \mathbf{1 0 \%}$		V	$380 . .415$ ~	440... 480 ~
Operating frequency			50 ± 5 \%	60 ± 5 \%
Overload capacity			$1.5 \times \mathrm{Irms}$ (A)	
Efficiency			98% (2\% of thermal losses)	
THDI (1)		\%	≤ 16	
$\overline{\operatorname{Cos} \varphi}$			At 75\% of the line current: 0.85 At 100% of the line current: 0.99 At 150% of the line current: 1	
Connection characteristics				
Maximum connection capacity VW3 A4 601... 604			16 mm ${ }^{2}$	
	VW3 A4 605... 609		$50 \mathrm{~mm}^{2}$	
	VW3 A4 610, 611, 614		Connected on a bar, $\varnothing 12.5$	
	VW3 A4 612, 613, 615...617		Connected on a bar, $\varnothing 16.5$	
	VW3 A4 618		Connected on a bar, $\varnothing 16.5$	
	VW3 A4 621, 622		16 mm ${ }^{2}$	
	VW3 A4 623... 627		$50 \mathrm{~mm}^{2}$	
	VW3 A4 628, 629		Connected on a bar, Ø 12.5	
	VW3 A4 630... 637		Connected on a bar, $\varnothing 16.5$	
	VW3 A4 638		Connected on a bar, $\varnothing 16.5$	
	VW3 A4 641... 644		16 mm ${ }^{2}$	
	VW3 A4 645... 648		$50 \mathrm{~mm}^{2}$	
	VW3 A4 649		Connected on a bar, Ø 12.5	
	VW3 A4 650... 655		Connected on a bar, $\varnothing 16.5$	
	VW3 A4 656		Connected on a bar, Ø 16.5	
	VW3 A4 661... 663		$16 \mathrm{~mm}^{2}$	
	VW3 A4 664... 666		$50 \mathrm{~mm}^{2}$	
	VW3 A4 667, 668		Connected on a bar, $\varnothing 12.5$	
	VW3 A4 669... 675		Connected on a bar, $\varnothing 16.5$	
	VW3 A4 676		Connected on a bar, $\varnothing 16.5$	

(1) The total current harmonic distortion (THDI) is indicated for a total voltage harmonic distortion (THDU) < 2% and a short-circuit ratio (RSCE) >66\%, and only for the nominal current of the passive filter. If these conditions are not adhered to, the total current harmonics will be reduced without any guarantee of level.

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: Passive filters

Presentation:	Characteristics:	Dimensions:
page 69	page 69	pages 104 and 105

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: Passive filters

Passive filters: 3-phase power supply 400 V 50 Hz (continued)							
Motor rating		For drives	Line supply	Filter	Number	Reference	Weight
			Line current	In (2)	required per drive		
kW	HP		A	A			kg
THDI 10\% (1)							
0.75	1	ATV 61H075N4	3.30	6	1	VW3 A4 621	21.000
1.5	2	ATV 61HU15N4	4.00	6	1	VW3 A4 621	21.000
2.2	3	ATV 61HU22N4	5.00	6	1	VW3 A4 621	21.000
3	-	ATV 61HU30N4	6.00	6	1	VW3 A4 621	21.000
4	5	ATV 61HU40N4	7.80	10	1	VW3 A4 622	27.000
5.5	7.5	ATV 61HU55N4	10.00	10	1	VW3 A4 622	27.000
7.5	10	ATV 61HU75N4	14.00	19	1	VW3 A4 623	28.000
11	15	ATV 61HD11N4	19.00	19	1	VW3 A4 623	28.000
15	20	ATV 61HD15N4	26.00	26	1	VW3 A4 624	40.000
18.5	25	ATV 61HD18N4	32.00	35	1	VW3 A4 625	49.000
22	30	ATV 61HD22N4	38.00	43	1	VW3 A4 626	52.000
30	40	ATV 61HD30N4	52.00	72	1	VW3 A4 627	88.000
37	50	ATV 61HD37N4	63.00	72	1	VW3 A4 627	88.000
45	60	ATV 61HD45N4	77.00	101	1	VW3 A4 628	150.000
55	75	ATV 61HD55N4	91.00	101	1	VW3 A4 628	150.000
75	100	ATV 61HD75N4	126.00	144	1	VW3 A4 629	167.000
90	125	ATV 61HD90N4	156.00	144	1	VW3 A4 629	167.000
110	150	ATV 61HC11N4	187.00	180	1	VW3 A4 630	178.000
132	200	ATV 61HC13N4	234.00	216	1	VW3 A4 631	224.000
160	250	ATV 61HC16N4	287.00	289	1	VW3 A4 632	271.000
200	300	ATV 61HC22N4	353.50	370	1	VW3 A4 633	320.000
220	350	ATV 61HC22N4	390.00	370	1	VW3 A4 633	320.000
250	400	ATV 61HC25N4	445.00	216	2	VW3 A4 631	224.000
280	450	ATV 61HC31N4	485.00	289	2	VW3 A4 632	271.000
315	500	ATV 61HC31N4	543.00	289	2	VW3 A4 632	271.000
355	-	ATV 61HC40N4	592.00	289	2	VW3 A4 632	271.000
400	600	ATV 61HC40N4	670.00	325	2	VW3 A4 639	284.000
500	700	ATV 61HC50N4	840.00	289	3	VW3 A4 632	271.000
560	800	ATV 61HC63N4	918.00	370	3	VW3 A4 633	320.000
630	900	ATV 61HC63N4	1091.00	370	3	VW3 A4 633	320.000

(1) If a DC choke (see page 62) is used with VW3 A4 621 to VW3 A4 633 and VW3 A4 639 passive filters, the THD will be $\leq 5 \%$. These reduced current harmonics are obtained on condition that the THDU is $<2 \%$ and the RSCE is $>66 \%$ and only for the nominal current of the passive filter.
(2) In: Nominal filter current.

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: Passive filters

Presentation:	Characteristics:	Dimensions:
page 69	page 69	pages 104 and 105

Variable speed drives for asynchronous motors

Altivar 61: Reduction of current harmonics Option: Passive filters

(1) If a DC choke (see page 62) is used with VW3 A4 661 to VW3 A4 671, VW3 A4 676 and VW3 A4 677 passive filters, the THD will be $\leq 5 \%$.
These reduced current harmonics are obtained on condition that the THDU is $<2 \%$ and the RSCE is $>66 \%$ and only for the nominal current of the passive filter.
(2) In: Nominal filter current.

Variable speed drives for asynchronous motors

Altivar 61

Option: additional EMC input filters

Integrated filters

The Altivar 61 drive, except for the ATV $61 \mathrm{H} \bullet \bullet \bullet \mathrm{M} 3 \mathrm{X}$, has built-in radio interference input filters to meet the EMC standard for variable speed electrical power drive "products" IEC/EN 61800-3, edition 2, category C2 or C3 in environment 1 or 2 and to comply with the European directive on EMC (electromagnetic compatibility).

Drives	Maximum length of shielded cable according to EN 55011, class A (1)			
	Group 1 (2)		Group 2 (2)	
	LF (3)	HF (3)	LF (3)	HF (3)
	m	m	m	m
ATV 61H075M3...HU22M3	10	5	-	-
ATV 61HU30M3...HU75M3	-	-	10	5
ATV 61H075N4...HU40N4	10	5	-	-
ATV 61HU55N4...HD15N4	-	-	10	5
ATV 61HD18N4...HC63N4	-	-	50	25
ATV 61WeoeN4	80	50	-	-
ATV 61WeooN4C	80	50	20	5

Additional EMC input filters

Applications

Additional EMC input filters can be used to meet more stringent requirements and are designed to cut down conducted emissions on the line supply below the limits of standard EN 55011 group 1, class A or B (2).
For the ATV 61HeeeM3, ATV 61HD11M3X...HD45M3X and
ATV 61H075N4...HD75N4 drives, the additional EMC filters can be mounted next to or under the device. They act as a support for the drives and are attached to them via tapped holes.
For the ATV61HD90N4...HC63N4 drives, the additional EMC filters are only mounted at the side of the drives.

Use according to the type of network

Use of these additional filters is only possible on TN (neutral connection) and TT (neutral to earth) type networks.

Standard IEC/EN 61800-3, appendix D2.1, states that on IT networks (impedance or isolated neutral), filters can cause permanent insulation monitors to operate in a random manner.
In addition, the effectiveness of additional filters on this type of network depends on the type of impedance between neutral and earth, and therefore cannot be predicted. In the case of a machine which needs to be installed on an IT network, one solution consists of inserting an isolation transformer and placing the machine locally on a TN or TT network.
(1) Maximum lengths for shielded cables connecting motors to drives, for a factory-set switching frequency of 2.5 or 4 kHz , depending on the rating (see page 10). If motors are connected in parallel, it is the total length that should be taken into account.
(2) See page 8 .
(3) LF: low switching frequency. HF: high switching frequency.

These frequencies depend on the drive rating.

Drives	Switching frequency	
	LF	HF
	kHz	kHz
ATV 61HeeoM3 ATV 61H075N4...HD30N4	4	4.1... 16
ATV 61HD37N4...HD75N4	2...2.5	2.6...12
ATV 61HD90N4...HC63N4	2... 4	4.1... 8
ATV 61W075N4...WD45N4	8	8.1... 16
ATV 61W075N4C...WD45N4C	8	8.1... 16
ATV 61WD55N4...WD90N4	4	4.1... 16
ATV 61WD55N4C...WD90N4C	4	4.1... 16

Characteristics:	References:	Dimensions:
Page 75	Pages 76 and 77	Pages 106 and 107

Option: additional EMC input filters

General characteristics

Type of EMC filter			VW3 A4 401... 409	VW3 A4 410... 413
Conformity to standards			EN 133200	
Degree of protection			IP 20 and IP 41 on upper part	IP 00 IP 30 with VW3 A9 601, 602 kits
Maximum relative humidity			93% without condensation or dripping water conforming to IEC 68-2-3	
Ambient temperature around the unit	Operation	${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$	-25... 45
	Storage	${ }^{\circ} \mathrm{C}$	-40... 65	-25... 85
Maximum operating altitude		m	1000 without derating $1000 . . .3000$ derating the current by 1% per additional 100 m . Limited to 2000 m for the "Corner Grounded" distribution network	
Vibration resistance			1.5 mm peak to peak from $3 \ldots 13 \mathrm{~Hz}, 1$ gn peak from $13 \ldots 150 \mathrm{~Hz}$, in accordance with IEC 60068-2-6	
Shock resistance			15 gn for 11 ms in accordance with IEC/EN 60068-2-27	
Maximum nominal voltage	50/60 Hz three phase	V	$\begin{aligned} & 240+10 \% \\ & 480+10 \% \end{aligned}$	
Connection characteristics				
Maximum connection capacity and tightening torque	VW3 A4 401		$\begin{array}{\|l} 4 \mathrm{~mm}^{2} \text { (AWG 10). } \\ 0.6 \mathrm{Nm} \\ \hline \end{array}$	
	VW3 A4 402		$\begin{aligned} & 6 \mathrm{~mm}^{2} \text { (AWG 8). } \\ & 1.5 \mathrm{Nm} \end{aligned}$	
	VW3 A4 403		$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6). } \\ & 1.5 \mathrm{Nm} \end{aligned}$	
	VW3 A4 404		$\begin{aligned} & 16 \mathrm{~mm}^{2} \text { (AWG 4). } \\ & 2 \mathrm{Nm} \end{aligned}$	
	VW3 A4 405... 407		$\begin{aligned} & 50 \mathrm{~mm}^{2} \text { (AWG 0). } \\ & 6 \mathrm{Nm} \end{aligned}$	
	VW3 A4 408		$\begin{aligned} & 150 \mathrm{~mm}^{2} \text { (} 300 \mathrm{kcmil} \text {). } \\ & 25 \mathrm{Nm} \end{aligned}$	
	VW3 A4 409		$\begin{aligned} & 25 \mathrm{~mm}^{2} \text { (AWG 2). } \\ & 4 \mathrm{Nm} \end{aligned}$	
	VW3 A4 410... 412		Bar connection, M10 -	
	VW3 A4 413		Bar connection, $2 \times \mathrm{M} 12$	

Presentation:	References:	Dimensions:
Page 74	Pages 76 and 77	Pages 106 and 107

Variable speed drives for asynchronous motors

Altivar 61
Option: additional EMC input filters

Additional EMC input filters									
Drives	Maximum length of shielded cable(1)				$\begin{aligned} & \mathbf{I n} \\ & (2) \end{aligned}$	II (3)	Loss(4)	Reference	Weight
	EN 55011 (5) class A Gr1		EN 55011 (5) class B Gr1						
	LF (6)	HF (6)	LF (6)	HF (6)					
	m	m	m	m	A	mA	W		kg
Three phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
ATV 61H075M3, HU15M3	100	50	50	20	12	4	10	VW3 A4 401	2.200
ATV 61HU22M3...HU40M3	100	50	50	20	26	4.4	18	VW3 A4 402	4.000
ATV 61HU55M3	100	50	50	20	35	3	24	VW3 A4 403	5.800
ATV 61HU75M3	100	50	50	20	46	10	19	VW3 A4 404	7.000
ATV 61HD11M3X, HD15M3X	200	100	50	25	72	33	34	VW3 A4 405	12.000
ATV 61HD18M3X, HD22M3X	200	100	50	25	90	33	34	VW3 A4 406	15.000
ATV 61HD30M3X...HD45M3X	200	100	50	25	180	80	58	VW3 A4 408	40.000
ATV 61HD55M3X, HD75M3X	100	50	50	25	273	285	60	VW3 A4 410	22.000
ATV 61HD90M3X	100	50	50	25	336	500	125	VW3 A4 411	22.000
Three phase supply voltage: $\mathbf{3 8 0} . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
ATV 61H075N4...HU22N4	100	50	50	20	12	7	5	VW3 A4 401	2.200
ATV 61HU30N4, HU40N4	100	50	50	20	26	8	6	VW3 A4 402	4.000
ATV 61HU55N4, HU75N4	100	50	50	20	35	7	14	VW3 A4 403	5.800
ATV 61HD11N4	100	50	50	20	46	14	13	VW3 A4 404	7.000
ATV 61HD15N4 (7), HD18N4	300	200	100	100	72	60	14	VW3 A4 405	12.000
ATV 61HD22N4	300	200	100	100	90	60	11	VW3 A4 406	15.000
ATV 61HD30N4, HD37N4	300	200	100	100	92	60	30	VW3 A4 407	17.000
ATV 61HD45N4...HD75N4	300	200	100	100	180	140	58	VW3 A4 408	40.000
ATV 61HD90N4...HC16N4	300	150	50	25	273	500	60	VW3 A4 410	22.000
ATV 61HC22N4...HC31N4	300	150	50	25	546	500	125	VW3 A4 411	25.000
ATV 61HC40N4, HC50N4	300	150	50	25	728	500	210	VW3 A4 412	25.000
ATV 61HC63N4	300	150	50	25	1456	200	380	VW3 A4 413	34.000

(1) The filter selection tables give the maximum lengths for shielded cables connecting motors to drives for a switching frequency of 1 to 16 kHz (see page 10). These limits are given as examples only as they vary depending on the stray capacitance of the motors and the cables used. If motors are connected in parallel, it is the total length that should be taken into account.
(2) Filter nominal current.
(3) Maximum earth leakage current at 230 V and at 400 V 50 Hz on a TT network.
(4) Via thermal dissipation.
(5) See page 8 .
(6) LF: low switching frequency. HF: high switching frequency. These frequencies depend on the drive rating:

For drives	Switching frequency	
	LF	HF
	kHz	kHz
ATV 61HoeoM3 ATV 61H075N4...HD11N4	4	4.1... 16
ATV 61HD11M3X, HD15M3X ATV 61HD15N4...HD30N4	3.5... 4	4.1... 12
ATV 61HD18M3X...HD45M3X ATV 61HD37N4...HD75N4	2...2.5	2.6... 12
ATV 61HD55M3X...HD90M3X	2.5... 4	4.1... 8
ATV 61HD90N4...HC63N4	2... 4	4.1... 8

(7) It is possible to use a special filter VW3 A4 409 with a leakage current II (3) of 14 mA , which enables a maximum motor cable length of 100 m

Presentation:	Characteristics:	Dimensions:
Page 74	Page 75	Pages 106 and 107

IP 30 protection kits

Variable speed drives for asynchronous motors
 Altivar 61: Output filters

The Altivar 61 drive includes as standard a software function used to limit overvoltages at the motor terminals.
Depending on the cable lengths or the type of application, it may be necessary to use output filters:
■ Motor chokes used to limit the dv/dt

- Sinus filters that are particularly effective for long cable runs

Cable length (2)	10... 50 m	$50 . . .100 \mathrm{~m}$	100... 150 m	150... 300 m	300... 600 m	$600 . .1000 \mathrm{~m}$
Shielded cable						
ATV 61HeeoM3 ATV 61H075N4...HD15N4	Software function (1)	Motor choke		-		
ATV 61HeeoM3X ATV 61HD18N4...HC63N4	Software function (1)		Motor choke	-		
Unshielded cable						
ATV 61H075M3, HU15M3 ATV 61H075N4...HU22N4	Software function (1)		Motor choke or sinus filter		-	
ATV 61HU22M3...HU30M3 ATV 61HU30N4...HU55N4	Software function (1)		Motor choke		Sinus filter	-
ATV 61HU40M3...HU75M3 ATV 61HU75N4...HD15N4	Software function (1)		Motor choke		Sinus filter	
ATV 61HD11M3X...HU45M3X ATV 61HU18N4...HD75N4	Software function (1)			Motor choke	Sinus filter	
ATV 61HD55M3X...HD90M3X ATV 61HD90N4...HC63N4	Software function (1)			Motor choke	2 motor chokes connected in series	-

(1) The software function limits the overvoltage at the motor terminals to twice the DC bus voltage.

For any application with braking cycles, the DC bus voltage rises to more than the supply voltage multiplied by $\sqrt{2}$.
You must check the electrical characteristics of the motor before using this function.
(2) For an application with several motors connected in parallel, the cable length must include all tap-offs.

Recommended cable types:

- Shielded cables: "GORSE" cable, type GUOSTV-LS/LH; "PROTOFLEX" cable, type EMV2YSL CY,

■ Unshielded cables: "GORSE" cable, type H07 RN-F4GXX; "BELDEN" cable, type 2950X

Variable speed drives for asynchronous motors
 Altivar 61: Output filters
 Option: Motor chokes

Motor chokes

Altivar 61 drives have been designed for operation with the following maximum motor cable lengths:

For drives	Maximum length of motor cable (1)	
	Shielded cable	Unshielded cable
	m	m
ATV 61HeoeM3 ATV 61HD11M3X, HD15M3X ATV 61H075N4...HD18N4	$\geqslant 50$	$\geqslant 100$
ATV 61HD18M3X...HD90M3X ATV 61HD22N4...HC63N4	$\geqslant 100$	$\geqslant 200$

The motor choke enables operation beyond these motor cable length limits and/or can limit the $\mathrm{dv} / \mathrm{dt}$ to $500 \mathrm{~V} / \mu \mathrm{s}$ at the motor terminals.

It also enables:

- Overvoltages on the motor terminals to be limited as follows:
- 1000 V to 400 V ~ (rms value)
- 1150 V to 460 V ~ (rms value)
- Interference caused by opening a contactor placed between the filter and the motor to be filtered
- The motor earth leakage current to be reduced

General characteristics (2)

Type of choke			VW3 A5 101... 103	VW3 A5 104... 108
Maximum drive switching frequency	ATV 61HeoeM3 ATV 61HD11M3X, HD15M3X ATV 61H075N4...HD30N4	kHz	4	
	ATV 61HD18M3X...HD90M3X ATV 61HD37N4...HC63N4	kHz	2.5	
Maximum drive output frequency		Hz	100	
Degree of protection			IP 00	IP 00 IP 20 with kits VW3 A9 612 and VW3 A9 613
Thermal protection			By temperature controlled switch	-
Temperature controlled switch (3)	Tripping temperature	${ }^{\circ} \mathrm{C}$	125	-
	Maximum voltage	V	$250 \sim$	-
	Maximum current	A	0.5	-
Ambient air temperature around the device	Operation	${ }^{\circ} \mathrm{C}$	-10... +50	
	Storage	${ }^{\circ} \mathrm{C}$	$-25 \ldots+70$	
Connection characteristics				
Maximum connection capacity VW3 A5 101, 102 and tightening torque			$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.5 \mathrm{Nm} \end{aligned}$	
	VW3 A5 103		Connected on a bar, $\varnothing 11$ mm	
	VW3 A5 104		Connected on a tag connector, M10	
	VW3 A5 105, 106		Connected on a tag connector, M12	
	VW3 A5 107, 108		Connected on a tag connector, $2 \times$ M12	
(2) Choke performance is ensured by not exceeding the cable lengths between the motor and the drive given in the table above. For an application with several motors connected in parallel, the cable length must include all tap-offs. If a cable longer than that recommended is used, the motor chokes may overheat. (3) The contact should be connected in sequence (used for signalling or controlling the line contactor).				

References:	Dimensions:	Schemes:
page 80	pages 108 to 110	page 122

Altivar 61: Output filters
 Option: Motor chokes

Motor chokes							
For drives	Maxi of m	length cable (1)	Loss	Nominal current	Sold in lots of	Unit reference	Weight
		Unshielded					
	m	m	W	A			kg
3-phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$							
ATV 61H075M3...HU22M3	150	300	150	12	-	VW3 A5 101	5.500
ATV 61HU30M3...HU75M3	200	260	250	48	-	VW3 A5 102	8.000
	300	300	350	90	-	VW3 A5 103	10.000
ATV 61HD11M3X...HD22M3X	150	300	350	90	-	VW3 A5 103	10.000
ATV 61HD30M3X...HD45M3X	150	300	430	215	3	VW3 A5 104	17.300
ATV 61HD55M3X, HD75M3X	150	300	475	314	\bigcirc	VW3 A5 105	29.600
ATV 61HD90M3X	250	300	530	481	3	VW3 A5 106	44.400

3-phase supply voltage: 380... $480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

ATV 61H075N4...HU40N4		75	90	150	12	-	VW3 A5 101	5.500
		85	95	250	48	-	VW3 A5 102	8.000
		160	200	350	90	-	VW3 A5 103	10.000
ATV 61HU55N4...HD18N4		85	95	250	48	-	VW3 A5 102	8.000
		160	200	350	90	-	VW3 A5 103	10.000
		200	300	430	215	3	VW3 A5 104	17.300
ATV 61HD22N4...HD30N4		140	170	350	90	-	VW3 A5 103	10.000
		150	300	430	215	3	VW3 A5 104	17.300
ATV 61HD37N4		97	166	350	90	-	VW3 A5 103	10.000
		200	300	430	215	3	VW3 A5 104	17.300
ATV 61HD45N4...HD75N4		150	300	430	215	3	VW3 A5 104	17.300
ATV 61HD90N4		200	300	430	215	3	VW3 A5 104	17.300
ATV 61HC11N4, HC13N4		150	250	475	314	3	VW3 A5 105	29.600
ATV 61HC16N4		250	300	530	481	3	VW3 A5 106	44.400
ATV 61HC22N4		250	300	530	481	3	VW3 A5 106	44.400
ATV 61HC25N4		200	250	598	759	3	VW3 A5 107	64.500
ATV 61HC31N4		200	250	598	759	3	VW3 A5 107	64.500
ATV 61HC40N4	Motor P 355 kW	200	250	598	759	3	VW3 A5 107	64.500
	$\begin{aligned} & \text { Motor P } \\ & 400 \mathrm{~kW} \end{aligned}$	250	300	682	1188	3	VW3 A5 108	99.200
ATV 61HC50N4		250	300	682	1188	3	VW3 A5 108	99.200
ATV 61HC63N4		250	300	682	1188	3	VW3 A5 108	99.200

(1) Maximum length given for a switching frequency of 2.5 or 4 kHz depending on the rating of the fan, see Characteristics on page 79.

Presentation: pages 78 and 79	Characteristics: page 79	Dimensions: pages 108 to 110

IP 20 protection kits			
Description	For filters	Reference	Weight kg
Mechanical device consisting of an IP $\mathbf{2 0}$ cover and cable clips	VW3 A5 104, 105	VW3 A9 612	-
	VW3 A5 106... 108	VW3 A9 613	-

Variable speed drives for asynchronous motors

Altivar 61: Output filters
Option: Sinus filters

Sinus filters

Sinus filters allow Altivar 61 drives to operate with longer motor cables (up to 1000 m).
For ATV 61H•o๐M3, ATV 61HD11M3X...HD45M3X, ATV 61HU15N4... HD75N4 drives, they also enable the use of unshielded cables whilst maintaining compliance with the standards governing radiated EMC emissions (EN 55011 class A Gr 1).

Applications

For ATV 61HoゃoM3, ATV 61HD11M3X...HD45M3X, ATV 61HU15N4... HD75N4 drives, applications requiring:

- Long cable runs
- Mechanical restrictions preventing the use of shielded cables
- An intermediate transformer between the drive and the motor
- Motors connected in parallel

For ATV 61HD55M3X...HD75M3X and ATV 61HD90N4...HC63N4 drives, applications requiring:

- An intermediate transformer between the drive and the motor

General characteristics			
Type of filter		VW3 A5 201... 206	VW3 A5 207... 211
Degree of protection		IP 20	IP 00
Atmospheric pollution		3C2, 3B1, 3S1 conforming to IEC 721.3.3	
Degree of pollution		2 conforming to standard EN 50178	
Vibration resistance		1.5 mm from $3 \ldots . .13 \mathrm{~Hz}, 1 \mathrm{gn}$ from $13 . .200 \mathrm{~Hz}$, conforming to IEC $60068-2$	
Shock resistance		15 gn for 11 ms conforming to IEC 60068-2-27	
Maximum relative humidity		95\%	
Ambient air temperature Operation around the device	${ }^{\circ} \mathrm{C}$	$-10 \ldots+40$ without derating $40 \ldots 50^{\circ} \mathrm{C}$ with current derating of 1.5% per additional ${ }^{\circ} \mathrm{C}$	
Storage	${ }^{\circ} \mathrm{C}$	$-40 \ldots+65$	
Maximum operating altitude	m	1000 without derating $1000 \ldots 3000$ with current derating of 1% per additional 100 m	
Switching frequency	kHz	4... 8	
Output frequency	Hz	0... 100	
Voltage drop		< 10\%	
Maximum voltage	V	500 ~	
Maximum current		$1.5 \times$ nominal current for 60 s	
Maximum motor cable Unshielded cable length	m	600 or 1000 depending on the drive rating, see page 78	
Connection characteristics			
Maximum connection capacity VW3 A5 201 and tightening torque		$\begin{aligned} & 4 \mathrm{~mm}^{2} \text { (AWG 10) } \\ & 0.6 \mathrm{Nm} \end{aligned}$	
VW3 A5 202		$\begin{aligned} & 6 \mathrm{~mm}^{2} \text { (AWG 8) } \\ & 1.5 \mathrm{Nm} \\ & \hline \end{aligned}$	
VW3 A5 203		$\begin{aligned} & 10 \mathrm{~mm}^{2} \text { (AWG 6) } \\ & 1.5 \mathrm{Nm} \end{aligned}$	
VW3 A5 204		$\begin{aligned} & 25 \mathrm{~mm}^{2} \text { (AWG 2) } \\ & 4 \mathrm{Nm} \\ & \hline \end{aligned}$	
VW3 A5 205		$\begin{aligned} & 50 \mathrm{~mm}^{2} \text { (AWG 0) } \\ & 6 \mathrm{Nm} \\ & \hline \end{aligned}$	
VW3 A5 206, 207		$\begin{aligned} & 95 \mathrm{~mm}^{2}(\text { AWG 4/0) } \\ & 20 \mathrm{Nm} \end{aligned}$	
VW3 A5 208, 209		Connected on a bar, $\varnothing 11$ mm	
VW3 A5 210		Connected on a bar, $\varnothing 14 \mathrm{~mm}$	
VW3 A5 211		Connected on a bar, $4 \times \varnothing 11 \mathrm{~mm}$	

References:	Dimensions:	Schemes:
page 83	page 111	page 122

Altivar 61: Output filters
Option: Sinus filters

[^5]| Presentation: | Characteristics: | Dimensions: |
| :--- | :--- | :--- |
| pages 78 and 82 | page 82 | page 111 |

Variable speed drives for asynchronous motors

Altivar 61

Table showing possible combinations of Altivar 61 UL Type 1/IP 20 drive options

Motor		Drive	Options					
kW	HP		DC choke	Line choke	Additional EMC input filter	$\begin{aligned} & \text { IP } 30 \text { EMC } \\ & \text { filter kit } \end{aligned}$	Motor choke	IP 20 motor choke kit
Single phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$								
0.37	0.5	ATV 61H075M3	VW3 A4 503	-	VW3 A4 401	-	VW3 A5 101	-
0.75	1	ATV 61HU15M3	VW3 A4 505	-	VW3 A4 401	-	VW3 A5 101	-
1.5	2	ATV 61HU22M3	VW3 A4 506	-	VW3 A4 402	-	VW3 A5 101	-
2.2	3	ATV 61HU30M3	VW3 A4 507	-	VW3 A4 402	-	VW3 A5 102, 103	-
3	-	ATV 61HU40M3	VW3 A4 508	VW3 A58501	VW3 A4 402	-	VW3 A5 102, 103	-
4	5	ATV 61HU55M3	VW3 A4 508	VW3 A58502	VW3 A4 403	-	VW3 A5 102, 103	-
5.5	7.5	ATV 61HU75M3	VW3 A4 509	VW3 A58502	VW3 A4 404	-	VW3 A5 102, 103	-
3-phase supply voltage: $200 . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$								
0.75	1	ATV 61H075M3	VW3 A4 503	VW3 A4 551	VW3 A4 401	-	VW3 A5 101	-
1.5	2	ATV 61HU15M3	VW3 A4 505	VW3 A4 552	VW3 A4 401	-	VW3 A5 101	-
2.2	3	ATV 61HU22M3	VW3 A4 506	VW3 A4 552	VW3 A4 402	-	VW3 A5 101	-
3	-	ATV 61HU30M3	VW3 A4 507	VW3 A4 553	VW3 A4 402	-	VW3 A5 102, 103	-
4	5	ATV 61HU40M3	VW3 A4 508	VW3 A4 554	VW3 A4 402	-	VW3 A5 102, 103	-
5.5	7.5	ATV 61HU55M3	VW3 A4 508	VW3 A4 554	VW3 A4 403	-	VW3 A5 102, 103	-
7.5	10	ATV 61HU75M3	VW3 A4 509	VW3 A4 555	VW3 A4 404	-	VW3 A5 102, 103	-
11	15	ATV 61HD11M3X	VW3 A4 510	VW3 A4 555	VW3 A4 405	-	VW3 A5 103	-
15	20	ATV 61HD15M3X	VW3 A4 510	VW3 A4 556	VW3 A4 405	-	VW3 A5 103	-
18.5	25	ATV 61HD18M3X	VW3 A4 511	VW3 A4 557	VW3 A4 406	-	VW3 A5 103	-
22	30	ATV 61HD22M3X	VW3 A4 511	VW3 A4 557	VW3 A4 406	-	VW3 A5 103	-
30	40	ATV 61HD30M3X	VW3 A4 512	VW3 A4 557	VW3 A4 408	-	VW3 A5 104	VW3 A9 612
37	50	ATV 61HD37M3X	VW3 A4 512	VW3 A4 557	VW3 A4 408	-	VW3 A5 104	VW3 A9 612
45	60	ATV 61HD45M3X	VW3 A4 512	VW3 A4 557	VW3 A4 408	-	VW3 A5 104	VW3 A9 612
55	75	ATV 61HD55M3X	Integrated	(1)	VW3 A4 410	VW3 A9 601	VW3 A5 105	VW3 A9 612
75	100	ATV 61HD75M3X	Integrated	(1)	VW3 A4 410	VW3 A9 601	VW3 A5 105	VW3 A9 612
90	125	ATV 61HD90M3X	Integrated	(1)	VW3 A4 411	VW3 A9 601	VW3 A5 106	VW3 A9 613
Pages		18	65	68	76	77	80	81

For drives	Logic input adaptor 115 V ~	Remote graphic display terminal	I/O cards (2)		Multi-pump cards		"Controller Inside" programmable card	PowerSuite software workshop for PC
			Logic	Extended	Compatible with ATV 38 applications	For multipump applications		
ATV 61Heceee	VW3 A3 101	VW3 A1 101	VW3 A3 201	VW3 A3 202	VW3 A3 502	VW3 A3 503	VW3 A3 501	VW3 A8 104, 105
Pages	22	28	31	31	35	35	43	180

(1) See page 68.
(2) Maximum combination: 2 cards, in accordance with the compatibility table below:

Type of card	Logic I/O VW3 A3 201	Extended I/O VW3 A3 202	Multi-pump VW3 A3 502, 503	Programmable "Controller inside" VW3 A3 501	Communication VW3 A3 3e॰
$\begin{aligned} & \text { Logic I/O } \\ & \text { VW3 A3 } 201 \end{aligned}$					
Extended I/O VW3 A3 202					
Multi-pump VW3 A3 502, 503					
Programmable "Controller inside" VW3 A3 501					
Communication VW3 A3 3ee					

Possible to combine
Not possible to combine

Sinus filter	Braking resistor	Flush-mounting kit (inside dust and damp proof enclosure)	UL Type 1 conformity kit (outside enclosure)	IP 21 or IP 31 conformity kit (outside enclosure)	Control card fan kit
VW3 A5 201	VW3 A7 701	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 201	VW3 A7 702	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 202	VW3 A7 702	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 202	VW3 A7 703	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 203	VW3 A7 703	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 203	VW3 A7 704	VW3 A9 503	VW3 A9 203	VW3 A9 103	-
VW3 A5 203	VW3 A7 704	VW3 A9 504	VW3 A9 204	VW3 A9 104	-
VW3 A5 201	VW3 A7 701	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 201	VW3 A7 702	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 202	VW3 A7 702	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 202	VW3 A7 703	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 203	VW3 A7 703	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 203	VW3 A7 704	VW3 A9 503	VW3 A9 203	VW3 A9 103	-
VW3 A5 203	VW3 A7 704	VW3 A9 504	VW3 A9 204	VW3 A9 104	-
VW3 A5 204	VW3 A7 705	VW3 A9 505	VW3 A9 205	VW3 A9 105	-
VW3 A5 204	VW3 A7 706	VW3 A9 505	VW3 A9 205	VW3 A9 105	-
VW3 A5 205	VW3 A7 707	VW3 A9 506	VW3 A9 206	VW3 A9 106	VW3 A9 404
VW3 A5 205	VW3 A7 707	VW3 A9 506	VW3 A9 206	VW3 A9 106	VW3 A9 404
VW3 A5 206	VW3 A7 708	VW3 A9 508	VW3 A9 217	VW3 A9 117	VW3 A9 406
VW3 A5 206	VW3 A7 709	VW3 A9 508	VW3 A9 217	VW3 A9 117	VW3 A9 406
VW3 A5 206	VW3 A7 709	VW3 A9 508	VW3 A9 217	VW3 A9 117	VW3 A9 406
VW3 A5 208	VW3 A7 713	VW3 A9 510	VW3 A9 209	VW3 A9 109	-
VW3 A5 208	VW3 A7 713	VW3 A9 510	VW3 A9 209	VW3 A9 109	-
VW3 A5 209	VW3 A7 714	VW3 A9 511	VW3 A9 210	VW3 A9 110	-
83	57	23	24	25	22

Communication cards (2)

Ethernet TCP/IP	Modbus/ Uni-Telway	Fipio	Modbus Plus	Profibus DP	DeviceNet	InterBus	LonWorks	METASYS N2	APOGEE FLN	BACnet
VW3 A3 310	VW3 A3 303	VW3 A3 311	VW3 A3 302	VW3 A3 307	VW3 A3 309	VW3 A3 304	VW3 A3 312	VW3 A3 313	VW3 A3 314	VW3 A3 315
52 and 186	$\begin{aligned} & 52,193 \text { and } \\ & 201 \end{aligned}$	52 and 190	52 and 198	52	52	52	52	52	52	52

Table showing possible combinations of Altivar 61 UL Type 1/IP 20 drive options

Motor		Drive	Options						
kW	HP		DC choke	Line choke	Passive filter (1)	Additional EMC input filter	IP 30 EMC filter kit	Motor choke	IP 20 motor choke kit
3-phase supply voltage: $380 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$									
0.75	1	ATV 61H075N4	VW3 A4 501	VW3 A4 551	VW3 A4 6-1	VW3 A4 401	-	VW3 A5 10•	-
1.5	2	ATV 61HU15N4	VW3 A4 502	VW3 A4 551	VW3 A4 6e1	VW3 A4 401	-	VW3 A5 10•	-
2.2	3	ATV 61HU22N4	VW3 A4 503	VW3 A4 552	VW3 A4 6e1	VW3 A4 401	-	VW3 A5 10•	-
3	-	ATV 61HU30N4	VW3 A4 503	VW3 A4 552	VW3 A4 6e1	VW3 A4 402	-	VW3 A5 10•	-
4	5	ATV 61HU40N4	VW3 A4 504	VW3 A4 552	VW3 A4 6e2	VW3 A4 402	-	VW3 A5 10•	-
5.5	7.5	ATV 61HU55N4	VW3 A4 505	VW3 A4 553	VW3 A4 6e2	VW3 A4 403	-	VW3 A5 100	VW3 A9 612
7.5	10	ATV 61HU75N4	VW3 A4 506	VW3 A4 553	VW3 A4 6e3	VW3 A4 403	-	VW3 A5 10•	VW3 A9 612
11	15	ATV 61HD11N4	VW3 A4 507	VW3 A4 554	VW3 A4 6e3	VW3 A4 404	-	VW3 A5 10•	VW3 A9 612
15	20	ATV 61HD15N4	VW3 A4 508	VW3 A4 554	VW3 A4 $6 \bullet 4$	VW3 A4 405	-	VW3 A5 10•	VW3 A9 612
18.5	25	ATV 61HD18N4	VW3 A4 508	VW3 A4 555	VW3 A4 6e5	VW3 A4 405	-	VW3 A5 10•	VW3 A9 612
22	30	ATV 61HD22N4	VW3 A4 510	VW3 A4 555	VW3 A4 $6 \bullet 6$	VW3 A4 406	-	VW3 A5 10•	VW3 A9 612
30	40	ATV 61HD30N4	VW3 A4 510	VW3 A4 556	VW3 A4 6•7	VW3 A4 407	-	VW3 A5 10•	VW3 A9 612
37	50	ATV 61HD37N4	VW3 A4 510	VW3 A4 556	VW3 A4 6•7	VW3 A4 407	-	VW3 A5 10•	VW3 A9 612
45	60	ATV 61HD45N4	VW3 A4 511	VW3 A4 556	VW3 A4 $6 \bullet 8$	VW3 A4 408	-	VW3 A5 104	VW3 A9 612
55	75	ATV 61HD55N4	VW3 A4 511	VW3 A4 556	VW3 A4 $6 \bullet 8$	VW3 A4 408	-	VW3 A5 104	VW3 A9 612
75	100	ATV 61HD75N4	VW3 A4 511	VW3 A4 557	VW3 A4 $6 \bullet 9$	VW3 A4 408	-	VW3 A5 104	VW3 A9 612
90	125	ATV 61HD90N4	-	(2)	VW3 A4 $6 \bullet 9$	VW3 A4 410	VW3 A9 601	VW3 A5 104	VW3 A9 612
110	150	ATV 61HC11N4	-	(2)	VW3 A4 6•0	VW3 A4 410	VW3 A9 601	VW3 A5 105	VW3 A9 612
132	200	ATV 61HC13N4	-	(2)	VW3 A4 6e1	VW3 A4 410	VW3 A9 601	VW3 A5 105	VW3 A9 612
160	250	ATV 61HC16N4	-	(2)	VW3 A4 6e2	VW3 A4 410	VW3 A9 601	VW3 A5 106	VW3 A9 613
200	300	ATV 61HC22N4	-	(2)	VW3 A4 6e3	VW3 A4 411	VW3 A9 601	VW3 A5 106	VW3 A9 613
220	350	ATV 61HC22N4	-	(2)	VW3 A4 $6 \bullet 3$	VW3 A4 411	VW3 A9 601	VW3 A5 106	VW3 A9 613
250	400	ATV 61HC25N4	-	(2)	VW3 A4 601	VW3 A4 411	VW3 A9 601	VW3 A5 107	VW3 A9 613
280	450	ATV 61HC31N4	-	(2)	VW3 A4 6e2	VW3 A4 411	VW3 A9 601	VW3 A5 107	VW3 A9 613
315	500	ATV 61HC31N4	-	(2)	VW3 A4 6•2	VW3 A4 411	VW3 A9 601	VW3 A5 107	VW3 A9 613
355	-	ATV 61HC40N4	-	(2)	VW3 A4 6e2	VW3 A4 412	VW3 A9 602	VW3 A5 107	VW3 A9 613
400	600	ATV 61HC40N4	-	(2)	VW3 A4 $6 \bullet 9$	VW3 A4 412	VW3 A9 602	VW3 A5 108	VW3 A9 613
500	700	ATV 61HC50N4	-	(2)	VW3 A4 $6 \bullet 2$	VW3 A4 412	VW3 A9 602	VW3 A5 108	VW3 A9 613
560	800	ATV 61HC63N4	-	(2)	VW3 A4 6e3	VW3 A4 413	VW3 A9 602	VW3 A5 108	VW3 A9 613
630	900	ATV 61HC63N4	-	(2)	VW3 A4 6e3	VW3 A4 413	VW3 A9 602	VW3 A5 108	VW3 A9 613
Pages		19	65	68	70	76	77	80	81

Table showing possible combinations of options common to all Altivar 61 UL Type 1/IP 20 drives

For drives	Logic input adaptor 115 V ~	Remote graphic display terminal	I/O cards (3)		Multi-pump cards		Programmable "Controller Inside" card	PowerSuite software workshop for PC
			Logic	Extended	Compatible with ATV 38 applications	For multi-pump applications		
ATV 61HeeoN4	VW3 A3 101	VW3 A1 101	VW3 A3 201	VW3 A3 202	VW3 A3 502	VW3 A3 503	VW3 A3 501	$\begin{aligned} & \text { VW3 A8 104, } \\ & 105 \end{aligned}$
Pages	22	28	31	31	35	35	43	180

(1) There are special passive filters for a $460 \mathrm{~V} \sim$ supply, see pages 72 and 73.
(2) See page 68.
(3) Maximum combination: 2 cards, in accordance with the compatibility table below:

Type of card	Logic I/O VW3 A3 201	Extended I/O VW3 A3 202	Multi-pump VW3 A3 502, 503	Programmable "Controller inside" VW3 A3 501	Communication VW3 A3 300
Logic I/O					
VW3 A3 201					
Extended I/O					
VW3 A3 202					
Multi-pump					
VW3 A3 502, 503					
Programmable "Controller inside" VW3 A3 501					
Communication					
VW3 A3 30e					

Possible to combine
Not possible to combine

Sinus filter	Braking unit on resistor	Braking resistor	Flush-mounting kit (inside dust and damp proof enclosure)	UL Type 1 conformity kit (outside enclosure)	IP 21 or IP 31 conformity kit (outside enclosure)	Control card fan kit
-	-	VW3 A7 701	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 201	-	VW3 A7 701	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 201	-	VW3 A7 701	VW3 A9 501	VW3 A9 201	VW3 A9 101	-
VW3 A5 201	-	VW3 A7 701	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 201	-	VW3 A7 701	VW3 A9 502	VW3 A9 202	VW3 A9 102	-
VW3 A5 202	-	VW3 A7 702	VW3 A9 503	VW3 A9 203	VW3 A9 103	-
VW3 A5 203	-	VW3 A7 702	VW3 A9 503	VW3 A9 203	VW3 A9 103	-
VW3 A5 203	-	VW3 A7 703	VW3 A9 504	VW3 A9 204	VW3 A9 104	-
VW3 A5 203	-	VW3 A7 703	VW3 A9 505	VW3 A9 205	VW3 A9 105	-
VW3 A5 204	-	VW3 A7 704	VW3 A9 505	VW3 A9 205	VW3 A9 105	-
VW3 A5 204	-	VW3 A7 704	VW3 A9 506	VW3 A9 206	VW3 A9 106	VW3 A9 404
VW3 A5 204	-	VW3 A7 704	VW3 A9 507	VW3 A9 207	VW3 A9 107	VW3 A9 405
VW3 A5 205	-	VW3 A7 705	VW3 A9 507	VW3 A9 207	VW3 A9 107	VW3 A9 405
VW3 A5 205	-	VW3 A7 707	VW3 A9 509	VW3 A9 208	VW3 A9 108	VW3 A9 407
VW3 A5 206	-	VW3 A7 707	VW3 A9 509	VW3 A9 208	VW3 A9 108	VW3 A9 407
VW3 A5 206	-	VW3 A7 707	VW3 A9 509	VW3 A9 208	VW3 A9 108	VW3 A9 407
VW3 A5 207	-	VW3 A7 710	VW3 A9 510	VW3 A9 209	VW3 A9 109	-
VW3 A5 207	-	VW3 A7 710	VW3 A9 510	VW3 A9 209	VW3 A9 109	-
VW3 A5 208	-	VW3 A7 711	VW3 A9 511	VW3 A9 210	VW3 A9 110	-
VW3 A5 208	-	VW3 A7 711	VW3 A9 512	VW3 A9 211	VW3 A9 111	-
VW3 A5 209	-	VW3 A7 712	VW3 A9 513	VW3 A9 212	VW3 A9 112	-
VW3 A5 209	-	VW3 A7 712	VW3 A9 513	VW3 A9 212	VW3 A9 112	-
VW3 A5 210	VW3 A7 101	VW3 A7 715	VW3 A9 514, 515	VW3 A9 213, 214	VW3 A9 113, 114	-
VW3 A5 210	VW3 A7 101	VW3 A7 716	VW3 A9 514, 515	VW3 A9 213, 214	VW3 A9 113, 114	-
VW3 A5 210	VW3 A7 101	VW3 A7 716	VW3 A9 514, 515	VW3 A9 213, 214	VW3 A9 113, 114	-
VW3 A5 210	VW3 A7 102	VW3 A7 717	-	-	VW3 A9 115	-
VW3 A5 211	VW3 A7 102	VW3 A7 717	-	-	VW3 A9 115	-
VW3 A5 211	VW3 A7 102	VW3 A7 717	-	-	VW3 A9 115	-
VW3 A5 211	VW3 A7 102	VW3 A7 718	-	-	VW3 A9 116	-
VW3 A5 211	VW3 A7 102	VW3 A7 718	-	-	VW3 A9 116	-
83	55	57	23	24	25	22

Communication cards (3)

Variable speed drives for asynchronous motors
 Altivar 61

Table showing possible combinations of Altivar 61 UL Type 12/IP 54 drive options

Table showing possible combinations of options common to all Altivar 61 UL Type 12/IP 54 drives

For	Logic input adaptor 115 V ~	Remote graphic display terminal	I/O cards (1)		Multi-pump cards		"Controller Inside" programmable card	PowerSuite software workshop for PC
			Logic	Extended	Compatible with ATV 38 applications	For multipump applications		
ATV 61Weee	VW3 A3 101	VW3 A1 101	VW3 A3 201	VW3 A3 202	VW3 A3 502	VW3 A3 503	VW3 A3 501	VW3 A8 104, 105
Pages	22	28	31	31	35	35	43	180

Table showing possible combinations of Altivar 61 UL Type 12/IP 54 communication options (1)

For	Ethernet TCP/IP	Modbus/ Uni-Telway	Fipio	Modbus Plus	Profibus DP	DeviceNet	InterBus	LonWorks	METASYS N2	APOGEE FLN	BACnet
ATV 61Weee	VW3 A3 310	VW3 A3 303	VW3 A3311	VW3 A3 302	VW3 A3 307	VW3 A3 309	VW3 A3 304	VW3 A3312	VW3 A3 313	VW3 A3 314	VW3 A3 315
Pages	52 and 186	$\begin{aligned} & \text { 52, } 193 \\ & \text { and } 201 \end{aligned}$	52 and 190	52 and 198	52	52	52	52	52	52	52

(1) Maximum combination: 2 cards, in accordance with the compatibility table below:

Type of card	Logic I/O VW3 A3 201	Extended I/O VW3 A3 202	Multi-pump VW3 A3 502, 503	Programmable "Controller inside" VW3 A3 501	Communication VW3 A3 3e•
Logic I/O VW3 A3 201					
Extended I/O VW3 A3 202					
Multi-pump VW3 A3 502, 503					
Programmable "Controller inside" VW3 A3 501					
Communication VW3 A3 3ee					

Possible to combine
Not possible to combine

Variable speed drives for asynchronous motors

Altivar 61
UL Type 1/IP 20 drives

ATV 61HeeeM3, ATV 61HD11M3X...HD15M3X, ATV 61H075N4...HD18N4
Without option card
1 option card (1)
2 option cards (1)
Common front view

| ATV 61H | a | b | c | c1 | c2 | G | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 075M3, U15M3, 075N4...U22N4 | 130 | 230 | 175 | 198 | 221 | 113.5 | 220 | 5 | 5 |
| U22M3..U40M3, U30N4, U40N4 155 | 260 | 187 | 210 | 233 | 138 | 249 | 4 | 5 | |
| U55M3, U55N4, U75N4 | 175 | 295 | 187 | 210 | 233 | 158 | 283 | 6 | 6 |
| U75M3, D11N4 | 210 | 295 | 213 | 236 | 259 | 190 | 283 | 6 | 6 |
| D11M3X, D15M3X, | 230 | 400 | 213 | 236 | 259 | 210 | 386 | 8 | 6 | D11M3X, D15M3X,

ATV 61HD22N4...HD37N4

| ATV 61HD18M3X...45M3X, ATV 61HD22N4...HD37N4 |
| :--- | :--- |
| Without option card 1 option card (1) |

2 option cards (1)
Common front view

ATV 61H	a	b	c	c1	c2	G	H	K	\varnothing
D18M3X, D22M3X, D22N4	240	420	236	259	282	206	403	11.4	6
D30N4, D37N4	240	550	266	289	312	206	531.5	11.4	6
D30M3X...D45M3X	320	550	266	289	312	280	524	20	9
ATV 61HD45N4...HD75N4									
Without option card	1 option card (1)			2 option cards (1)				Common front view	

(1) Option cards: I/O extension cards, multi-pump cards, "Controller Inside" programmable card, communication cards.

Presentation: pages 4 to 7	Characteristics:	References:		Functions:
pages 8 to 15				

Variable speed drives
for asynchronous motors
Altivar 61
UL Type 1/IP 20 drives

ATV 61HD55M3X...HD90M3X, ATV 61HD90N4...HC31N4
With or without 1 option
card (1)

2 option cards (1)
Common front view card (1)

ATV 61HC25N4, HC31N4 with braking unit VW3 A7 101
Front view

| ATV 61H | \mathbf{a} | \mathbf{b} | \mathbf{c} | $\mathbf{c 1}$ | G | H | K | $K 1$ | $K 2$ | \varnothing |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| D55M3X, D75M3X
 D90N4, C11N4 | 320 | 920 | 377 | 392 | 250 | 650 | 150 | 75 | 30 | 11.5 |
| D90M3X, | 360 | 1022 | 377 | 392 | 298 | 758 | 150 | 72 | 30 | 11.5 |
| C13N4 | | | | | | | | | | |

ATV 61HC40N4...HC63N4
With or without 1 option
2 option cards (1) card (1)

ATV 61HC40N4, HC50N4

Front view

$\begin{array}{llll}\text { a } & \text { b } & \text { c } & \text { c1 }\end{array}$

| ATV 61H | \mathbf{a} | \mathbf{b} | \mathbf{c} | $\mathbf{c 1}$ | G | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| C40N4, C50N4 | 890 | 1390 | 377 | 392 | 417.5 | 70 | 380 | 1120 | 150 | 75 | 30 | 11.5 |
| C63N4 | 1120 | 1390 | 377 | 392 | 532.5 | 70 | 495 | 1120 | 150 | 75 | 30 | 11.5 |

(1) Option cards: I/O extension cards, multi-pump cards, "Controller Inside" programmable card, communication cards.

Variable speed drives for asynchronous motors
Altivar 61
UL Type 1/IP 20 drives

ATV 61HoゃeM3Z, ATV 61HD11M3XZ, HD15M3XZ, ATV 61H075N4Z...HD15N4Z
Without option card (1)
1 option card (1)
2 option cards (1)
Common front view

ATV 61H	a	b	c	c1	c2	G	H	K	\varnothing
075M3Z, U15M3Z, 075N4Z...U22N4Z	130	230	149	172	195	113.5	220	5	5
U22M3Z...U40M3Z, U30N4Z, U40N4Z	155	260	161	184	207	138	249	4	5
U55M3Z, U55N4Z, U75N4Z	175	295	161	184	207	158	283	6	6
$\begin{aligned} & \text { U75M3Z, } \\ & \text { D11N4Z } \end{aligned}$	210	295	187	210	233	190	283	6	6
D11M3XZ, D15M3XZ D15N4Z	230	400	187	210	233	210	386	8	6

ATV 61HD18M3XZ...45M3XZ, ATV 61HD22N4Z...HD37N4Z
$\begin{array}{lll}\text { Without option card } & 1 \text { option card (1) } & 2 \text { option card }\end{array}$

ATV 61H	a	b	c	c1	c2	G	H	K	\varnothing
$\begin{aligned} & \text { D18M3XZ, D22M3XZ, } \\ & \text { D22N4Z } \end{aligned}$	240	420	210	233	256	206	403	11.4	6
D30N4Z, D37N4Z	240	550	230	253	276	206	531.5	11.4	6
D30M3XZ...D45M3XZ	320	550	230	253	276	280	524	20	9

(1) Option cards: I/O extension cards, multi-pump cards, "Controller Inside" programmable card, communication cards.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 and 19

Variable speed drives for asynchronous motors
Altivar 61
UL Type 1/IP 20 drives

ATV 61HD45N4Z...HD75N4Z

ATV 61HD55M3XD...HD90M3XD, ATV 61HD90N4D...HC31N4D

With or without 1 option
 2 option cards (1)
 Common front view

 card (1)

ATV 61HC25N4D, HC31N4D with braking unit VW3 A7 101 Front view

ATV 61H	a	b	c	c1	G	H	K	\varnothing
D55M3XD, D75M3XD D90N4D, C11N4D	310	680	377	392	250	650	15	11.5
$\begin{aligned} & \text { D90M3XD, } \\ & \text { C13N4D } \end{aligned}$	350	782	377	392	298	758	12	11.5
C16N4D	330	950	377	392	285	920	15	11.5
C22N4D	430	950	377	392	350	920	15	11.5
C25N4D, C31N4D	585	950	377	392	540	920	15	11.5

(1) Option cards: I/O extension cards, multi-pump cards, "Controller Inside" programmable card, communication cards.

Presentation:	Characteristics:	References: pages 4 to 7 19	pages 18 and 19	Schemes: pages 112 to 127

Variable speed drives for asynchronous motors
Altivar 61
UL Type 1/IP 20, UL Type 12/IP 54 drives

ATV 61HC40N4D...HC63N4D

ATV 61H	a	b	c	c1
C40N4D, C50N4D	880	1150	377	392
C63N4D	1110	1150	377	392

(1) Option cards: I/O extension cards, multi-pump cards, "Controller Inside" programmable card, communication cards.

ATV 61W075N4...WD90N4, ATV 61W075N4C...WD90N4C

ATV 61W	a	b	c	G	H	K	\varnothing
075N4...U30N4 075N4C...U30N4C	235	490	272	200	478	6	6
U40N4, U55N4 U40N4C, U55N4C	235	490	286	200	478	6	6
U75N4, D11N4 U75N4C, D11N4C	255	525	286	220	513	6	6
D15N4 D15N4C	290	560	315	250	544	8	6
D18N4, D22N4 D18N4C, D22N4C	310	665	315	270	650	10	6
D30N4 D30N4C	284	720	315	245	700	10	7
D37N4, D45N4 D37N4C, D45N4C	284	880	343	245	860	10	7
D55N4...D90N4 D55N4C...D90N4C	362	1000	364	300	975	10	9

Presentation:	Characteristics:	References:		Schemes:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pages 112 to 127	Functions:

EMC mounting plates (1)
For ATV 61HeeoM3, ATV 61HD11M3X, HD15M3X, ATV 61H075N4...HD18N4

For ATV 61H	b
075M3...U40M3,	83
075N4...U40N4	
U55M3...U75M3	95
D11M3X, D15M3X U55N4...D18N4	

For ATV 61H	b	$\boldsymbol{\varnothing}$
D18M3X, D22M3X, D22N4	122	M5
D30N4, D37N4	113	M5
D30M3X...D45M3X D45N4...D75N4	118	M8

For ATV 61HD18M3X...HD45M3X,
ATV 61HD22N4...HD75N4
(1) Supplied with the drive apart from ATV 61HD55M3X... HD90M3X and ATV 61HD90N4...HC63N4. In the case of these drives the mounting plate is supplied with the UL Type 1, IP 21 or IP 31 conformity kits, which must be ordered separately, see pages 18, 19, 24 and 25. Dimensions, see page 99 and 100.

VW3 A9 404... 407 control card fan kits
Mounting recommendations

Presentation: pages 4 to 7 7 22	Characteristics: pages 8 to 15	References: page 22	Schemes:	pages 112 to 127

Kits for flush-mounting in a dust and damp proof enclosure
Installation of the drive using the kit for flush-mounting

VW3 A9 501... 505

(1) $\varnothing 3.6$ hole for M4 self-tapping screw.
VW3 A9 $\mathbf{5 0 7}$

For ATV 61H drives	c	VW3 kit
075M3, U15M3, 075N4...U22N4	60	A9 501
U22M3...U55M3, U30N4...U75N4	70	A9 502, 503
U75M3, D11M3X, D15M3X, D11N4...D18N4	90	A9 504, 505
D18M3X...D45M3X D22N4...D75N4	105	A9 506...509
D5M3X..D90M3X, D55M3XD..D90M3XD, D90N4...C31N4, D90N4D...C31N4D	150	A9 510...515

(1) Dust and
(1) Dust and damp proof enclosure.
(2) Kit for flush-mounting in a dust and damp proof enclosure.
(3) Power part of the drive outside the enclosure.
(4) DC choke for ATV 61HD55M3X...HD90M3X and

ATV 61HD90N4...HC31N4 drives.

VW3 A9 506

(1) $\varnothing 4.5$ hole for M5 self-tapping screw.
(1) $\varnothing 4.5$ hole for M5 self-tapping screw.

VW3 A9 508

Cut-outs and drill holes

(1) $\varnothing 4.5$ hole for M5 self-tapping screw.

Presentation:	References:	Functions:
page 23	page 23	pages 148 to 175

Cut-outs and drill holes

(1) $\varnothing 4.5$ hole for M5 self-tapping screw.

VW3	a3	a4	a5	b3	
A9 510	82.5	180	120	45	150
A9 511	87.5	190	130	35	160

VW3	a	a1	a2	b	b1	b2	G	G1
A9 510	420	340	55	850	790	80	370	15
A9 511	440	360	45	885	845	66	396	18
VW3	G2	H	$H 1$	$H 2$	$H 3$	$H 4$	$H 5$	
A9 510	30	260	120	80	100	15	35	
A9 511	23	310	70	91.5	83.5	10	27.5	

(1) For fixing using an M8 screw min.

Presentation:	References:	Functions:
page 23	page 23	pages 148 to

Variable speed drives for asynchronous motors
 Altivar 61
 Accessories

Kits for flush-mounting in a dust and damp proof enclosure (continued)

VW3 A9 514 (without braking unit), VW3 A9 515 (with braking unit)
Cut-outs and drill holes without DC choke
Cut-outs and drill holes with DC choke

VW3	a2
A9 514	90
A9 515	165

VW3	a	a1	G	G1
A9 514	697	610	645	215
A9 515	772	685	720	240

(1) For fixing using an M8 screw min.

Presentation:	References:	
page 23	page 23	Functions:
	pages 148 to 175	

UL Type 1 VW3 A9 2ee, IP 21 or IP 31 VW3 A9 1 ee conformity kits VW3 A9 201...205, 101... 105

VW3 A9 206...208, 217, 106...108, 117

VW3	a	b
A9 201	132.6	31.4
A9 202	154.9	31.4
A9 203	177	31.4
A9 204	211.6	35.4
A9 205	231.6	38.9
A9 101	132.6	96.8
A9 102	154.9	104.1
A9 103	177	111.7
A9 104	211.6	128.9
A9 105	231.6	199.4

VW3	a	b
A9 206	240	59.9
A9 207	240	51.5
$\mathbf{A 9} \mathbf{2 1 7}$	320	48
A9 208	320	136
A9 106	240	75
$\mathbf{A 9 1 0 7}$	240	75
A9 117	320	75
A9 108	320	163

Variable speed drives for asynchronous motors
 Altivar 61
 Accessories

UL Type 1 VW3 A9 2ee, IP 21 or IP 31 VW3 A9 1 ee conformity kits (continued)
VW3 A9 209...214,
VW3 A9 209...213, VW3 A9 109...113, 115
VW3 A9 109... 116

$$
\text { VW3 A9 214, } 114
$$ (with braking unit)

VW3 A9 116

VW3	a	b	c	c1	G	G1	G2	K	K1	K2	\varnothing	J	J1
A9 209	334	220	377	-	250	-	-	95	65	75	11.5	-	-
A9 210	374	300	377	-	298	-	-	172	65	75	11.5	-	-
A9 211	345	315	377	-	285	-	-	250	65	75	11.5	-	-
A9 212	445	375	377	-	350	-	-	250	65	75	11.5	-	-
A9 213	600	375	377	-	540	-	-	250	65	75	11.5	-	-
A9 214	670	375	377	-	540	102.5	27.5	250	65	75	11.5	-	-
A9 109	334	220	377	-	250	-	-	95	65	75	11.5	-	-
A9 110	374	300	377	-	298	-	-	172	65	75	11.5	-	-
A9 111	345	315	377	-	285	-	-	250	65	75	11.5	-	-
A9 112	445	375	377	-	350	-	-	250	65	75	11.5	-	-
A9 113	600	375	377	-	540	-	-	250	65	75	11.5	-	-
A9 114	670	375	377	-	540	102.5	27.5	250	65	75	11.5	-	-
A9 115	895	475	-	477	835	-	-	350	65	75	11.5	-	-
A9 116	1125	475	-	477	-	-	-	350	65	75	11.5	70	495

Presentation:	References:	Functions:
pages 24 and 25	pages 24 and 25	pages 148 to 175

Variable speed drives for asynchronous motors
Altivar 61
Dialogue, braking units, braking resistors

Remote graphic display terminal IP 54 kit VW3 A1 102

Cut-outs and drill holes

IP 65 door VW3 A1 103

Braking units VW3 A7 101 (1), VW3 A7 102
VW3 A7 102

(1) The VW3 A7 101 braking unit is mounted on the left-hand side of the drive, see page 91

Braking resistors
VW3 A7 701... 703
Mounting recommendations

VW3	a	b	c	G	H	\varnothing
A7 701	95	293	95	70	275	6×12
A7 702	95	293	95	70	375	6×12
A7 703	140	393	120	120	375	6×12

$\begin{aligned} & \text { Presentation: } \\ & \text { pages } 28,54 \text { and } 56 \end{aligned}$	Characteristics: pages 54 and 56	References: pages 28, 55 and 57	Schemes: pages 118 and 123	Functions: pages 148 to 175

Variable speed drives for asynchronous motors

Altivar 61
Braking resistors

(1) The dimension is given for 1 component. References VW3 A7 717 and 718 consist of two components; all components must be taken into account to determine the overall dimensions. A space of 300 mm must be left between each component.

VW3 A7 713, 714

Mounting recommendations

Presentation:	Characteristics:	References:
page 56	page 56	Page 57

Variable speed drives for asynchronous motors
Altivar 61
DC chokes, line chokes

DC chokes

VW3 A4 501... 510

VW3	a	b	c	c1	G	H	\varnothing
A4 501	60	103	60	95	50	51	3.5
A4 502	60	103	77	118	50	68	3.5
A4 503	96	134	80	115	80	65	5.5
A4 504	96	134	79	115	80	64	5.5
A4 505	96	134	85	120	80	70	5.5
A4 506	96	134	89	120	80	74	5.5
A4 507	96	134	99	130	80	84	5.5
A4 508	108	142	112	145	90	97	5.5
A4 509	96	134	89	120	80	74	5.5
A4 510	126	171	120	170	105	103	7

Line chokes
VW3 A58501, A58502

VW3	c	H
A58501	95	65
A58502	105	77

VW3 A4 511, 512

VW3	a	b	c	c1	G	G1	H	Ø
A4 551	100	135	55	60	40	60	42	6×9
A4 552,	130	155	85	90	60	80.5	62	6×12
A4 553								
A4 554	155	170	115	135	75	107	90	6×12
A4 555	180	210	125	165	85	122	105	6×12

VW3
A4 556

| A4 555 | 180 | 21012516585 | 122 | 1056×12 |
| :--- | :--- | :--- | :--- | :--- | :--- |

VW3 A4 558...561, 564, 565, 568, 569

VW3	a	b	b1	c	c1	G	G1	H	\varnothing	$\varnothing 1$	102
A4 558	280	305	240	210	200	200	125	275	9	9	9
A4 559	280	330	260	210	200	200	125	300	11	9	9
A4 560, 561	320	380	300	210	200	225	150	350	11	9	9
A4 564	320	380	300	250	230	225	150	350	13	11	11
A4 565	385	440	340	275	250	300	125	400	$2 \times \varnothing 13$	13.5	13.5
A4 568	320	380	300	210	200	225	150	350	11	9	9
A4 569	320	380	300	250	230	225	150	350	13	11	11

(1) 25 mm minimum.

Presentation: pages 62 to 64 and 66	Characteristics: pages 65 and 67	References: pages 65 and 68	Schemes: pages 114 to 124

Variable speed drives for asynchronous motors
 Altivar 61
 Passive filters

Passive filters VW3 A4 601...609, 621...627, 641...648, 661... 666 Mounting recommendations (1)

VW3 A4 601...604, 621, 622, 641...644, 661... 663

VW3 A4 605...609, 623...627, 645...648, 664... 666

VW3	a	a1	
A4 605, $\mathbf{6 0 6}, \mathbf{6 2 3} \ldots \mathbf{6 2 5}, \mathbf{6 4 5}, \mathbf{6 4 6}, \mathbf{6 6 4 , 6 5 5}$	698	600	532,5
$\mathbf{A 4} \mathbf{6 0 7} . .609, \mathbf{6 2 6}, \mathbf{6 2 7}, \mathbf{6 4 7}, \mathbf{6 4 8}, \mathbf{6 6 6}$	938	840	772,5

A4 607...609, 626, 627, 647, 648, 666
(1) Vertical mounting only

Presentation:	Characteristics:	References:	
page 69	pages 70 to 73	Schemes: page 122	Functions:

Variable speed drives for asynchronous motors
Altivar 61
Passive filters

Passive filters VW3 A4 610...613, 619, 628...633, 639, 649...651, 656, 657, 667...671, 676, 677
Mounting recommendations (1)

VW3 A4 610...613, 619, 628...632, 639, 649...651, 656, 657, 667...670, 676, 677

VW3	a	a1	b	b1	c	c1	G	G1	J
$\begin{aligned} & \text { A4 610, 611, 628, 629, 649, } \\ & 667,668 \end{aligned}$	1060	830	400	390	393	345	395	377	370
$\begin{aligned} & \hline \text { A4 612, 619, 630, 631, } \\ & \text { 650, 656, 657, } 669 \\ & \hline \end{aligned}$	1160	900	419	409	454	406	430	412	430
$\begin{aligned} & \hline \text { A4 613, 632, 639, 651, } \\ & 670,676,677 \\ & \hline \end{aligned}$	1330	1070	419	409	454	406	515	497	430

VW3 A4 633, 671

(1) Vertical or horizontal mounting.

Presentation:	Characteristics:	References: page 69	page 70 to 73	Schemes:

Variable speed drives
for asynchronous motors
Altivar 61
Additional EMC input filters

Additional EMC input filters VW3 A4 401... 404

VW3 A4 405, 409

VW3	\mathbf{a}	\mathbf{b}	\mathbf{c}	G	H	$H 1$	\varnothing
A4 401	130	290	40	105	275	-	4.5
A4 402	155	324	50	130	309	-	4.5
A4 403	175	370	60	150	355	-	5.5
A4 404	210	380	60	190	365	-	5.5
A4 405	230	498.5	62	190	479.5	460	6.6
A4 409	230	498.5	62	190	479.5	460	6.6

VW3 A4 406... 408

VW3	a	b	c	G	H	J		
A4 406	240	522	79	200	502.5	40	6.6	
A4 407	240	650	79	200	631	40	6.6	
$\mathbf{A 4 4 0 8}$	320	750	119	280	725	80	9	

Mounting the filter under the drive

Front view

Front view

Presentation:	Characteristics:	References:
page 74	page 75	pages 76 and 77

Variable speed drives for asynchronous motors
Altivar 61
Additional EMC input filters

Additional EMC input filters (continued) VW3 A4 410... 413

| VW3 | a | a1 | b | b1 | c | G | H |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A4 410 | 800 | 302 | 261 | 219 | 139 | 120 | 235 |
| A4 411 | 800 | 302 | 261 | 219 | 139 | 120 | 235 |
| A4 412 | 900 | 352 | 281 | 239 | 174 | 145 | 255 |
| A4 413 | 1000 | 401 | 301 | 259 | 164 | 170 | 275 |

IP 30 protection kits for filters VW3 A4 410... 413

VW3	a	a1	b	b1
A9 601	1200	800	310	270
A9 602	1400	1000	350	310

Presentation: page 74	Characteristics: page 75	References: pages 76 and 77	Schemes: page 122

Variable speed drives for asynchronous motors
 Altivar 61
 Motor chokes

Motor chokes (1)
VW3 A5 101, 102
Mounting recommendations (2)

VW3	a	b	c	G	H	\varnothing
A5 101	190	210	90	170	45	8×12
A5 102	190	235	120	170	48	8×12

VW3 A5 103
Mounting recommendations (2)

(1) It is absolutely essential that the motor chokes are mounted on a metal support (grille, frame, etc.)
(2) Because of the magnetic field and/or heat dissipation, it is very important to follow the mounting recommendations provided.

Presentation: pages 78 and 79	Characteristics: page 79	References: page 80	Schemes: page 122

Motor chokes (continued) (1)
VW3 A5 104, 105 (2)

VW3	a	b	c	G	H	\varnothing
A5 104	170	250	100	150	75	9
A5 105	210	250	110	175	75	9×13

Mounting recommendations (3)

(1) It is absolutely essential that the motor chokes are mounted on a metal support (grille, frame, etc.)
(2) References VW3 A5 104 and 105 consist of 3 components.
(3) Because of the magnetic field and/or heat dissipation, it is very important to follow the mounting recommendations provided.

Presentation: pages 78 and 79	Characteristics: page 79	References: page 80	Schemes: page 122

Variable speed drives for asynchronous motors
Altivar 61
Motor chokes

Motor chokes (continued) (1)
VW3 A5 106... 108 (2)

VW3	a	b	c	G	H	Ø
A5 106	$\mathbf{2 4 5}$	$\mathbf{2 5 0}$	$\mathbf{2 0 0}$	225	175	9
A5 107	320	250	220	275	200	9
A5 108	370	250	230	325	200	9

$\rightarrow \mathrm{a}$
$\begin{array}{ll}\text { A5 } 108 & 370 \\ \text { Mounting recommendations (3) }\end{array}$

(1) It is absolutely essential that the motor chokes are mounted on a metal support (grille, frame, etc.)
(2) References VW3 A5 106... 108 consist of 3 components.
(3) Because of the magnetic field and/or heat dissipation, it is very important to follow the mounting recommendations provided.

IP 20 protection kits for chokes VW3 A5 104... 108

Variable speed drives for asynchronous motors
Altivar 61
Sinus filters

Sinus filters (1)
VW3 A5 201... 206
Mounting recommendations

VW3	a	b	c	G	H	\varnothing	L (2)
A5 201	120	335	160	100	280	6.6	700
A5 202	120	405	190	100	350	6.6	900
A5 203	150	470	240	120	380	6.6	900
A5 204	210	650	280	160	530	8.6	1500
A5 205	250	780	360	200	650	11	1600
A5 206	310	1060	375	220	880	11	2700

Mounting recommendations

VW3 A5 208... 211
Mounting recommendations

(1) Sinus filters emit considerable heat and must not be placed underneath the drive.
(2) Length of cable integrated in sinus filter.

Presentation: pages 78 and 82	Characteristics: page 82	References: page 83	Schemes: page 122

Variable speed drives for asynchronous motors

Altivar 61

Safety requirements

"Power Removal" safety function

The Altivar 61 drive integrates the "Power Removal" safety function which prohibits unintended equipment operation. The motor no longer produces torque.

This safety function:

- conforms to machine safety standard EN 954-1, category 3
- conforms to operational safety standard IEC/EN 61508, capacity SIL2 (safety control-signalling applied to processes and systems)
The SIL (Safety Integrity Level) capacity depends on the connection diagram for the drive and for the safety function. Failure to follow the setup recommendations could inhibit the SIL capacity of the "Power Removal" safety function.
- conforms to draft product standard IEC/EN 61800-5-2 for both stop functions:
- Safe Torque Off ("STO")
- Safe Stop 1 ("SS1")

The "Power Removal" safety function has a redundant electronic architecture (1) which is monitored continuously by a diagnostics function.

This SIL2 and category 3 level of safety function is certified as conforming to these standards by the INERIS certification body under a program of voluntary certification.
Categories relating to safety according to EN 954-1
Categories

Main safety basis \quad\begin{tabular}{l}
Control system

requirements

\quad

Selecting components

which conform to the

relevant standards

\quad

Monitoring in accordance with

event of a fault

established practice

\quad

Possible loss of safety

function
\end{tabular}

The machine manufacturer is responsible for selecting the safety category. The category depends on the level of risk factors given in standard EN 954-1.

Safety Integrity Levels (SIL) according to standard IEC/EN 61508

SIL1 according to standard IEC/EN 61508 is comparable with category 1 according to EN 954-1 (SIL1: mean probability of undetected dangerous failure per hour between 10^{-5} and 10^{-6}).
SIL2 according to standard IEC/EN 61508 is comparable with category 3 according to EN 954-1 (SIL 2: mean probability of undetected dangerous failure per hour between 10^{-6} and 10^{-7}).
(1) Redundant: consists of mitigating the effects of failure of one component by means of the correct operation of another, assuming that faults do not occur simultaneously on both.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives
for asynchronous motors
Altivar 61
Safety requirements

"Power Removal" safety function considerations

The "Power Removal" safety function cannot be considered as a means of electrical disconnection of the motor (no electrical isolation); if necessary, a Vario switch disconnector must be used.
The "Power Removal" safety function is not designed to overcome any malfunction in the drive process control or application functions.
The output signals available on the drive must not be considered as safety signals (example: "Power Removal" active); these are Preventa-type safety module outputs which must be integrated into a safety control-signalling circuit.

The schemes on the following pages take into account conformity with standard IEC/EN 60204-1 that defines 3 stop categories:
■ Category 0: stopping by immediate removal of the power from the actuators (example: uncontrolled stop)
■ Category 1: controlled stop maintaining the power on the actuators until the machine stops, then cutting off the power when the actuators stop as a result of the machine stopping
■ Category 2: controlled stop maintaining the power on the actuators

Connection schemes and applications

Conformity with category 1 of standard EN 954-1 and level SIL1 according to standard IEC/EN 61508
Use of the connection schemes on pages 114 and 115 which use a line contactor or a Vario switch disconnector between the drive and the motor. In this case, the "Power Removal" safety function is not used and the motor stops in accordance with category 0 of standard IEC/EN 60204-1.

Conformity with category 3 of standard EN 954-1 and level SIL2 according to standard IEC/EN 61508

The connection diagrams use the "Power Removal" safety function of the Altivar 61 drive combined with a Preventa safety module to monitor the Emergency stop circuits.

Machines with short freewheel stopping times (low inertia, see page 116). When the activation command is given on the PWR input with the controlled motor, the motor power supply is immediately switched off and the motor stops according to category 0 of standard IEC/EN 60204-1.
Restarting is not permitted ("STO") if the activation command is given after the motor has come to a complete stop.
This safe stop is maintained while the PWR input remains activated.
Machines with long freewheel stopping times (high inertia, see page 117). When the activation command is given, deceleration of the motor controlled by the drive is first requested, then, following a time delay controlled by a Preventa-type fault relay which corresponds to the deceleration time, the "Power Removal" safety function is activated by the PWR input. The motor stops according to category 1 of standard IEC/EN 60204-1 ("SS1").

Periodic test

The "Power Removal" safety input must be activated at least once a year for preventive maintenance purposes. The drive power supply must be switched off and then on again before carrying out this preventive maintenance. If during testing the power supply to the motor is not switched off, safety integrity is no longer assured for the "Power Removal" safety function. The drive must therefore be replaced to ensure the operational safety of the machine or of the system process.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

Schemes conforming to standards EN 954-1 category 1, IEC/EN 61508 capacity SIL1, in stopping category 0 according to IEC/EN 60204-1

3-phase power supply with upstream breaking via contactor

ATV 61H075M3...HU75M3
Power section for single phase power supply

Note: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.
Components for use with the Altivar (for a complete list of references, see our "Motor starter solutions. Power control and protection components" specialist catalogue)

Reference	Description
A1	ATV 61 drive, see pages 18 to 21
KM1	Contactor, see motor starters pages 128 to 137
$\mathbf{L 1}$	DC choke, see page 65
Q1	Circuit-breaker, see motor starters pages 128 to 137
Q2	GV2 L rated at twice the nominal primary current of T1
Q3	GB2 CB05
$\mathbf{S 1 , ~ S 2 ~}$	XB4 B or XB5 A pushbuttons
T1	100 VA transformer 220 V secondary

(1) Line choke (single phase or 3-phase), see page 68.
(2) For ATV 61HC50N4 and ATV 61HC63N4 drives, see page 118.
(3) Fault relay contacts for remote signalling of the drive status
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch: see schemes on page 118.
(5) DC choke as an option for ATV 61HeooM3, ATV 61HD11M3X...HD45M3X, ATV 61 H075N4...HD75N4. Connected in place of the strap between the PO and PA + terminals. For ATV 61HD55M3X, HD75M3X, ATV 61HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. On drives ATV 61 WoooN4 and ATV 61 WoooN4C, the DC choke is integrated.
(6) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 . . .10 \mathrm{~V}$) analog input.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors Altivar 61

Schemes conforming to standards EN 954-1 category 1, IEC/EN 61508 capacity SIL1, in stopping category 0 according to IEC/EN 60204-1 (continued)
ATV 61e000M3, ATV 61e000M3X, ATV 61e000N4, ATV 61We00N4C
3-phase power supply with downstream breaking via switch disconnector

ATV 61H075M3...HU75M3
Power section for single phase power supply

Note: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.
Components for use with the Altivar (for a complete list of references, see our "Motor starter solutions. Power control and protection components" specialist catalogue).

Reference	Description
A1	ATV 61 drive, see pages 18 to 21
L1	DC choke, see page 65
Q1	Circuit-breaker, see motor starters pages 128 to 137
Q2	Switch disconnector (Vario)

(1) Line choke (single phase or 3-phase), see page 68.
(2) For ATV 61HC50N4 and ATV 61HC63N4 drives, see page 118.
(3) Fault relay contacts for remote signalling of the drive status
(4) Connection of the common for the logic inputs depends on the positioning of the SW1 switch: see schemes on page 118.
(5) DC choke as an option for ATV 61H000M3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4...HD75N4. Connected in place of the strap between the PO and PA + terminals. For ATV 61HD55M3X, HD75M3X, ATV 61HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. On drives ATV 61We00N4 and ATV 61W000N4C, the DC choke is integrated.
(6) Software-configurable current ($0 \ldots 20 \mathrm{~mA}$) or voltage ($0 \ldots 10 \mathrm{~V}$) analog input.

Presentation:	Characteristics:	References: pages 4 to 7	pages 18 to 21	Dimensions:

Variable speed drives for asynchronous motors

Altivar 61

Schemes conforming to standards EN 954-1 category 3, IEC/EN 61508 capacity SIL2, in stopping category 0 according to IEC/EN 60204-1 ATV 61HeoeM3, ATV 61HeeoM3X, ATV 61eeveN4, ATV 61WeeeN4C
3-phase power supply, low inertia machine
ATV 61H075M3...HU75M3

Power section for single phase power supply

Note: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.
Components for use with the Altivar (for a complete list of references, see our "Motor starter solutions. Power control and protection components" and "Preventa safety solutions" specialist catalogues).

Reference
A1
A2 Description
ATV 61 drive, see pages 18 to 21
Preventa XPS AC safety module for monitoring Emergency stops and switches. One safety module can manage the "Power Removal" function for several drives on the same machine.

F1
L1
Q1
S1

S1
S2

(1) Power supply: -- or $24 \mathrm{~V} \sim, 48 \mathrm{~V} \sim, 115 \mathrm{~V} \sim, 230 \mathrm{~V} \sim$.
(2) S2: resets XPS AC module on power-up or after an Emergency stop. ESC can be used to set external starting conditions.
(3) Requests freewheel stopping of the movement and activates the "Power Removal" safety function.
(4) Line choke (single phase or 3-phase), see page 68.
(5) The logic output can be used to signal that the machine is in a safe stop state.
(6) For ATV 61HC50N4 and ATV 61HC63N4 drives, see page 118.
(7) Fault relay contacts for remote signalling of the drive status
(8) Connection of the common for the logic inputs depends on the positioning of the SW1 switch: see schemes on page 118
(9) Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter 2.54 mm, maximum length 2 m . The cable shielding must be earthed.
(10)DC choke as an option for ATV 61HeoooM3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4...HD75N4. Connected in place of the strap between the PO and PA/+ terminals. For ATV 61HD55M3X, HD75M3X, ATV 61HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. On drives ATV 61 WoeoN4 and ATV 61WeooN4C, the DC choke is integrated.
(11)Software-configurable current ($0 . . .20 \mathrm{~mA}$) or voltage ($0 . .10 \mathrm{~V}$) analog input.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors Altivar 61

Schemes conforming to standards EN 954-1 category 3, IEC/EN 61508 capacity SIL2, in stopping category 1 according to IEC/EN 60204-1
ATV 61HeeoM3, ATV 61HeeeM3X, ATV 61eeeoN4, ATV 61WeeoN4C
3-phase power supply, high inertia machine

ATV 61H075M3...HU75M3
Power section for single phase power supply

Note: All terminals are located at the bottom of the drive. Install interference suppressors on all inductive circuits near the drive or connected on the same circuit, such as relays, contactors, solenoid valves, fluorescent lighting, etc.
Components for use with the Altivar (for a complete list of references, see our "Motor starter solutions. Power control and protection components" and "Preventa safety solutions" specialist catalogues).

Reference	Description
A1	ATV 61 drive, see pages 18 to 21
A2 (6)	Preventa XPS AT safety module for monitoring Emergency stops and switches. One safety module can manage the "Power Removal" safety function for several drives on the same machine, but the time delay must be adjusted on the drive controlling the motor that requires the longest stopping time.
F1	Fuse
L1	DC choke, see page 65
Q1	Circuit-breaker, see motor starters pages 128 to 137
S1	Emergency stop button with 2 contacts
S2	XB4 B or XB5 A pushbutton
(1) Power supply: -- or $24 \mathrm{~V} \sim, 115 \mathrm{~V} \sim, 230 \mathrm{~V} \sim$.	
(2) Requests controlled stopping of the movement and activates the "Power Removal" safety function.	
(3) Line choke (single phase or 3-phase), see page 68.	
(4) S2: resets XPS AT module on power-up or after an Emergency stop. ESC can be used to set external starting conditions.	
(5) The " O " contact can be used to signal that the machine is in a safe stop state.	
(6) For stopping times requiring more than 30 seconds in category 1, use a Preventa XPS AV safety module which can provide a maximum time delay of 300 seconds.	
(7) For ATV 61HC50N4 and ATV 61HC63N4 drives, see page 118.	
(8) Fault relay contacts for remote signalling of the drive status	
(9) Connection of the common for the logic inputs depends on the positioning of the SW1 switch: see schemes on page 118.	
(10)Standardized coaxial cable, type RG174/U according to MIL-C17 or KX3B according to NF C 93-550, external diameter 2.54 mm, maximum length $2 m$. The cable shielding must be earthed.	
(11)Logic inputs LI1 and LI2 must be assigned to the direction of rotation: LI1 in the forward direction and LI2 in the reverse direction.	
(12)DC choke as an option for ATV 61HeoeoM3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4...HD75N4. Connected in place of the strap between the PO and PA/+ terminals. For ATV 61HD55M3X, HD75M3X, ATV 61HD90N4...HC50N4 drives, the choke is supplied with the drive; the customer is responsible for connecting it. On drives ATV 61 WoooN4 and ATV 61WoooN4C, the DC choke is integrated. (13)Software-configurable current ($0 . .20 \mathrm{~mA}$) or voltage ($0 . . .10 \mathrm{~V}$) analog input.	

Presentation: pages 4 to 7	Characteristics:	References:		Fimensions:

Variable speed drives for asynchronous motors

Altivar 61

Power terminal connections
For ATV 61HC50N4 and ATV 61HC63N4

(1) For control section connections, see pages 114 to 117.
(2) Line choke, see page 68.
(3) DC chokes provided as standard with the drive

VW3 A7 7e0 braking resistors or VW3 A7 100 braking units

ATV 61Hee๐M3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4 ...HD75N4,
ATV 61WeeoN4, ATV 61WeeoN4C

ATV 61HD55M3X...HD90M3X, ATV 61HD90N4...HC22N4

ATV 61HC25N4...HC63N4

Components for use with the Altivar

Reference
A1
A2
Braking resistor

Description

ATV 61 drive, see pages 18 to 21
Braking unit, if using a braking resistor for ATV 61HC25N4...HC63N4, see page 55
See page 57

(1) Option of using a thermal overload relay.

Examples of recommended schemes

Logic inputs

The SW1 switch is used to adapt operation of the logic inputs (LI) to the PLC output technology:
■ Set the switch to Source (factory setting) if using PLC outputs with PNP transistors,
■ Set the switch to Sink Int or Sink Ext if using PLC outputs with NPN transistors
Internal power supply

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Examples of recommended schemes (continued)

 Input for PTC probesThe SW2 switch is used to operate the LI6 input:

- As a logic input by setting the SW2 switch to LI (factory setting)
- Or for protecting the motor via PTC probes by setting the SW2 switch to PTC

2-wire control and jog operation (JOG)

Unipolar speed reference

Separate control power supply
The separate control card can be powered by an external 24 V =-. supply

Analog input configured for voltage
External 0... 10 V
External + 10 V

3-wire control and jog operation (JOG)

Bipolar speed reference
Requires a VW3 A3 201 or VW3 A3 202 I/O extension card

Analog input configured for current 0-20 mA, 4-20 mA, X-Y mA

Presentation:	Characteristics:	References: pages 4 to 7	pages 18 to 21	Dimensions: pages 8 to 15

Variable speed drives for asynchronous motors
 Altivar 61

VW3 A3 201 and VW3 A3 202 I/O extension cards

Logic I/O
The SW3 or SW4 switch is used to adapt operation of the logic inputs (LI) to the PLC output technology:
■ Set the switch to Source (factory setting) if using PLC outputs with PNP transistors,
■ Set the switch to Sink Int or Sink Ext if using PLC outputs with NPN transistors
Internal power supply
Switch in "Source" position
Switch in "Sink Int" position

External power supply
Switch in "Source" position

Switch in "Sink Ext" position

Analog I/O (only on VW3 A3 202 extended I/O card)

(1) Software-configurable current ($0-20 \mathrm{~mA}$) or voltage ($0 . .10 \mathrm{~V}$) analog input.
(2) Software-configurable current ($0-20 \mathrm{~mA}$) or voltage ($\pm 10 \mathrm{~V}$ or $0 \ldots 10 \mathrm{~V}$) analog outputs, independent selection possible for each output via switch.
(3) R : add a resistor if the input voltage of the pulse train is greater than 5 V . Recommended values.
$\left.\begin{array}{ll}\text { Input voltage } & \text { Resistance } \\ \mathbf{V} & \Omega\end{array}\right)$

| Presentation:
 page 30 | Characteristics:
 pages 30 and 31 | References:
 page 19 |
| :--- | :--- | :--- | | Functions: |
| :--- |

VW3 A3 502 and VW3 A3 503 multi-pump cards, VW3 A3 501 "Controller Inside" programmable card Card powered by the drive (1)

Card powered by external power supply

(1) Only if the power consumption is less than 200 mA ; otherwise use an external power supply.

Variable speed drives for asynchronous motors
 Altivar 61

VW3 A4 6ee passive filters

Standard scheme

Scheme for filter control by drive depending on load

(1) Contact making it possible to show the thermal state of the passive filter

(2) Supplied wired.

VW3 A4 $4 \bullet \bullet$ additional EMC input filters

3-phase power supply, 3-phase filter

Single phase power supply, 3-phase filter

(1) Line choke compulsory for ATV 61HU4OM3...HU75M3, see page 68.

Output filters

VW3 A5 1 ee motor chokes

VW3 A5 $2 \bullet 0$ sinus filters

Presentation: pages 69, 74 and 78	Characteristics: pages 69, 75 and 78	References: pages 70, 76 and 78	Dimensions: pages 104 to 111

Variable speed drives for asynchronous motors
 Altivar 61

Drives combined with a braking unit and wired onto the same DC bus ATV 61HC25N4...HC63N4

(1) Option of using a thermal overload relay.

Drive powered by external DC power supply
ATV 61HD18M3X...HD45M3X, ATV 61HD22N4...HD75N4, ATV 61WD22N4...WD90N4, ATV 61WD22N4C...WD90N4C

$\begin{array}{l}\text { For drives } \\ \text { A1, A2 }\end{array}$	Braking resistors R1, R2		
	Value	Contactors (3)	
KM1, KM2			

(1) DC power supply not included.
(2) Fast-acting fuses, see page 125. The function of the fuses is to protect the DC bus wiring in the event of a drive short-circuit.
(3) See our "Motor starter solutions. Power control and protection components" specialist catalogue.

Note: ATV 61HeooM3, ATV 61HD11M3X, HD15M3X, ATV 61H075N4...HD18N4, ATV 61W075N4...WD18N4 and ATV 61W075N4C...WD18N4C have an integrated pre-charge circuit. This is used to connect the DC power supply directly to the drive without the need for an external pre-charge circuit.

Presentation:	Characteristics:	References:	Dimensions:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pages 90 to 111

Variable speed drives for asynchronous motors

Altivar 61

Connection diagrams for several drives in parallel on the DC bus
Drives with different ratings

Reference	Description A1 ATV 61 drive, see pages 18 to 21. Drive power $=\sum$ motor power ratings $M 1+\mathrm{M} 2+\mathrm{M} 3+\mathrm{M} 4+\ldots$
A2, A3, A4	ATV 61 drives powered by the DC bus. They must be protected using fast-acting fuses. Contactors on the DC circuit are ineffective as the switching action may cause the fuses to blow owing to the high load current.
F1	Fast-acting fuses, see page 125. Drive A1 powered by the AC supply with an output bus. The function of the fuse is to protect the internal diode bridge in the event of a short-circuit on the external DC bus.
F2, F3, F4	Fast-acting fuses, see page 125. Drives A2 and A3 are powered by their DC bus and are not connected to the AC input. The function of the fuses is to protect the DC bus wiring in the event of a drive short-circuit.

(1) With ATV 61HD90M3X and ATV 61HC11N4...HC63N4 drives, make provision for connection of the fans' power supply.

Drives with equivalent ratings

Reference	Description
A1, A2, A3	ATV 61 drives, see pages 18 to 21. The power difference between the drives connected in parallel must not exceed any rating.
F1, F2, F3	Fast-acting fuses, see page 125. Drives A1, A2 and A3 powered by the AC supply with an output bus. The function of the fuse is to protect the internal diode bridge in the event of a short-circuit on the external DC bus.
$\mathbf{K M 1}$	When using a common line contactor, all the Altivar 61 drive load circuits operate in parallel and cannot therefore be overloaded.
L1, L2, L3	DC chokes, see page 65.
Q1, Q2, Q3	Circuit-breakers on the line supply side to protect drives against overloads. Use trip contacts on the "external fault" logic input or the line contactor. The line contactor must only be activated if all three circuit-breakers are closed, as otherwise there is a risk of damage to the drives.

(1) DC chokes compulsory except for ATV 61HD55M3X...HD90M3X and ATV 61HD90N4...HC63N4 (these drives include a DC choke as standard).

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

Size of DC bus fuses (F1, F2, F3, F4) depending on the drive rating	
For drives	Fast-acting fuses (1)
	A
ATV 61H075M3	10
ATV 61HU15M3, HU22M3	16
ATV 61HU30M3	25
ATV 61HU40M3, HU55M3	40
ATV 61HU75M3	50
ATV 61HD11M3X	80
ATV 61HD15M3X	100
ATV 61HD18M3X	125
ATV 61HD22M3X	160
ATV 61HD30M3X	200
ATV 61HD37M3X	250
ATV 61HD45M3X	315
ATV 61HD55M3X	350
ATV 61HD75M3X	500
ATV 61HD90M3X	630
ATV 61H075N4...HU22N4, ATV 61W075N4...WU22N4, ATV 61W075N4C...WU22N4C	10
ATV 61HU30N4, HU40N4, ATV 61WU30N4, WU40N4, ATV 61WU30N4C, WU40N4C	16
ATV 61HU55N4, ATV 61WU55N4, ATV 61WU55N4C	25
ATV 61HU75N4, HD11N4, ATV 61WU75N4, WD11N4, ATV 61WU75N4C, WD11N4C	40
ATV 61HD15N4...HD22N4, ATV 61WD15N4...WD22N4, ATV 61WD15N4C...WD22N4C	80
ATV 61HD30N4, HD37N4, ATV 61WD30N4, WD37N4, ATV 61WD30N4C, WD37N4C	125
ATV 61HD45N4, ATV 61WD45N4, ATV 61WD45N4C	160
ATV 61HD55N4, ATV 61WD55N4, ATV 61WD55N4C	200
ATV 61HD75N4, HD90N4 ATV 61WD75N4, WD90N4, ATV 61WD75N4C, WD90N4C	315
ATV 61HC11N4	400
ATV 61HC13N4	500
ATV 61HC16N4	550
ATV 61HC22N4	800
ATV 61HC25N4	900
ATV 61HC31N4	1100
ATV 61HC40N4	1400
ATV 61HC50N4	1800
ATV 61HC63N4	2250
(1) Nominal voltage of fast-acting fuse:	
Line voltage	Nominal voltage of fast-acting fuse
$\sim \mathrm{V}$	V
230	690
400	690
440	800
460	800
480	800

Presentation: pages 4 to 7	Characteristics: pages 8 to 15	References: pages 18 to 21	Dimensions:	Functions:

Variable speed drives for asynchronous motors

Altivar 61

Electromagnetic compatibility

ATV 61H•00M3, ATV 61HD11M3X, HD15M3X, ATV 61H075N4...HD18N4

ATV 61HD18M3X...HD45M3X,
ATV 61HD22N4...HD75N4

ATV 61HD55M3X...HD90M3X, ATV 61HD90N4...HC63N4

Connections to meet the requirements of EMC standards Principle

■ Earths between drive, motor and cable shielding must have "high frequency" equipotentiality.
■ Use shielded cables with shielding connected to earth over 360° at both ends for the motor cable, the braking resistor cable and the control-signalling cables. Conduit or metal ducting can be used for part of the shielding length provided that there is no break in the continuity of the earth connections.
■ Ensure maximum separation between the power supply cable (line supply) and the motor cable.

Installation plan for ATV 61HeoeM3, ATV 61HeeoM3X, ATV 61HeeoN4 drives

1 Steel plate (1), to be mounted on the drive (machine earth).
2 Altivar 61 UL Type 1/IP 20 drive.
3 Unshielded power supply wires or cable.
4 Unshielded wires for the output of the fault relay contacts.
5 Attach and earth the shielding of cables 6, 7 and 8 as close as possible to the drive:

- strip the shielding,
- attach the cable to the plate 1 by attaching the clamp to the stripped part of the shielding.
The shielding must be clamped tightly enough to the metal plate to ensure good contact.
6 Shielded cable for connecting the motor
7 Shielded cable for connecting the control/signalling wiring.
For applications requiring several conductors, use cables with a small crosssection ($0.5 \mathrm{~mm}^{2}$).
8 Shielded cable for connecting the braking resistor
$6,7,8$, the shielding must be earthed at both ends.
The shielding must be continuous and intermediate terminals must be placed in EMC shielded metal boxes.
9 Earth screw.
Note: The HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.
If using an additional EMC input filter, it should be mounted beneath the drive and connected directly to the line supply via an unshielded cable. Link 3 on the drive is then via the filter output cable.
(1) Plate supplied for ATV 61H000M3, ATV 61HD11M3X, HD45M3X and ATV 61H075N4...HD75N4 drives.
For ATV 61HD55M3X... HD90M3X and ATV 61HD90N4...HC31N4 drives, the plate is supplied with the UL Type 1 conformity kit or the IP 21 or IP 31 conformity kit, to be ordered separately, see pages 24 and 25 .
For ATV 61HC40N4...HC63N4 drives the plate is supplied with the IP 31 conformity kit, to be ordered separately, see page 25.

Presentation:	Characteristics:	References: pages 4 to 7	pages 8 to 15	pages 18 and 19

Variable speed drives for asynchronous motors

Altivar 61

Electromagnetic compatibility

ATV 61W075N4...WD30N4,
ATV 61W075N4C...WD30N4C

ATV 61 WD37N4 WD90N4 ATV 61WD37N4C...WD90N4C

Connections to meet the requirements of EMC standards (continued)

Installation plan for ATV 61WeeoN4, ATV 61WeeeN4C drives

1 Steel plate (machine earth)
2 Altivar 61 UL Type 12/IP 54 drive.
3 Unshielded power supply wires or cable.
4 Unshielded wires for the output of the fault relay contacts.
5 Attach and earth the shielding of cables 6,7 and 8 as close as possible to the drive:

- strip the shielding,
- Attach the shielded cable to the cable gland 9 ensuring it is fully in contact 360°,
- fold back the shielding and clamp it between the ring and the body of the cable gland.
According to the rating, the cable shielding 7 can be earthed by using a cable gland 5, a clamp 5 or a cable clip 5.
The shielding must be clamped tightly enough to the metal plate to ensure good contact.
6 Shielded cable for connecting the motor
7 Shielded cable for connecting the control/signalling wiring.
For applications requiring several conductors, use cables with a small cross-section ($0.5 \mathrm{~mm}^{2}$).
8 Shielded cable for connecting the braking resistor
$6,7,8$, the shielding must be earthed at both ends.
The shielding must be continuous and intermediate terminals must be placed in EMC shielded metal boxes.
9 Metal cable gland (not supplied) for cables 6, 7 and 8.
Standard cable gland (not supplied) for cables 3 and 4.

Note: The HF equipotential ground connection between the drive, motor and cable shielding does not remove the need to connect the PE protective conductors (green-yellow) to the appropriate terminals on each unit.
If using an additional EMC input filter, it should be mounted beneath the drive and connected directly to the line supply via an unshielded cable. Link 3 on the drive is then via the filter output cable.

Presentation:	Characteristics:	References:	Functions:
pages 4 to 7 175	pages 8 to 15	pages 20 and 21	pagensions:

Altivar 61

Motor starters: supply voltage 200... 240 V

GV2 L20
$+{ }_{+}$LC1 D2500
ATV 61HU22M3

Applications

Circuit-breaker/contactor/drive combinations can be used to ensure continuous service of the installation with optimum safety.
The type of circuit-breaker/contactor coordination selected can reduce maintenance costs in the event of a motor short-circuit by minimizing the time required to make the necessary repairs and the cost of replacement equipment. The suggested combinations provide type 1 or type 2 coordination depending on the drive rating.

Type 2 coordination: A motor short-circuit will not damage the device or affect its settings. The motor starter should be able to operate once the electrical fault has been removed. The electrical isolation provided by the circuit-breaker will not be affected by the short-circuit. Welding of the contactor contacts is permissible if they can be separated easily.

Type 1 coordination: The electrical isolation provided by the circuit-breaker will not be affected by the incident and no other elements apart from the contactor are damaged as a result of the motor short-circuit.

The drive controls the motor, provides protection against short-circuits between the drive and the motor and protects the motor cable against overloads. The overload protection is provided by the drive's motor thermal protection. If this protection is removed, external thermal protection should be provided. Before restarting the installation, the cause of the trip must be removed.

Motor starters for UL Type 1/IP 20 drives						
Motor		Drive	Circuit-breaker			Line contactor Reference (3) (4)
Power (1)		Reference	Reference (2)	Rating Im		
kW	HP			A	A	
Single phase supply voltage: $200 . . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 2 coordination						
0.37	0.5	ATV 61H075M3	GV2 L14	10	-	LC1 D09ee
0.75	1	ATV 61HU15M3	GV2 L16	14	-	LC1 D180e
1.5	2	ATV 61HU22M3	GV2 L20	18	-	LC1 D25ee
2.2	3	ATV 61HU30M3	$\begin{aligned} & \text { GV2 L32 } \\ & \text { NS80HMA50 } \end{aligned}$	$\begin{aligned} & 32 \\ & 50 \\ & \hline \end{aligned}$	$\overline{300}$	$\begin{aligned} & \text { LC1 D32ee } \\ & \text { LC1 D32ee } \end{aligned}$
3	-	ATV 61HU40M3 (5)	$\begin{aligned} & \text { GV2 L32 } \\ & \text { NS80HMA50 } \end{aligned}$	$\begin{aligned} & 32 \\ & 50 \end{aligned}$	$\overline{300}$	$\begin{aligned} & \text { LC1 D32ee } \\ & \text { LC1 D32өe } \end{aligned}$
4	5	ATV 61HU55M3 (5)	NS80HMA50	50	300	LC1 D40ee
5.5	7.5	ATV 61HU75M3 (5)	NS80HMA50	50	300	LC1 D50¢0
Single phase supply voltage: $200 . . .240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 1 coordination						
0.37	0.5	ATV 61H075M3	GV2 LE14	10	-	LC1 K06ee
0.75	1	ATV 61HU15M3	GV2 LE16	14	-	LC1 K06ee
1.5	2	ATV 61HU22M3	GV2 LE20	18	-	LC1 K06ee
2.2	3	ATV 61HU30M3	GV2 LE32	32	-	LC1 D180e
3	-	ATV 61HU40M3 (5)	GV2 LE32	32	-	LC1 D18e¢
4	5	ATV 61HU55M3 (5)	NS80HMA50	50	300	LC1 D40¢0
5.5	7.5	ATV 61HU75M3 (5)	NS80HMA50	50	300	LC1 D40¢0

(1) Standard power ratings for 4-pole motors 230 V $50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS8OHMA: product sold under the Merlin Gerin brand.

Breaking capacity of circuit-breakers according to standard IEC 60947-2:

Circuit-breaker	Icu
GV2 L14, GV2 L16, GV2 LE14...GV2 LE20	100
GV2 L20, GV2 L32, GV2 LE32	50
NS80HMA	100

(3) Composition of contactors:

LC1 K06: 3 poles + 1 " N / O^{\prime} " auxiliary contact and 1 " N / C " auxiliary contact.
LC1 D09 to LC1 D50: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact.
(4) Replace \bullet with the control circuit voltage reference indicated in the table below.

	Volts ~	$\mathbf{2 4}$	$\mathbf{4 8}$	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$
LC1 K06	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 De•	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$60 / 60 ~ H z$	B7	E7	F7	M7	P7	U7

For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.
(5) A line choke must be added (see page 68).

Variable speed drives

 customer assembly for asynchronous motorsAltivar 61
Motor starters: supply voltage 200... 240 V

(3) Composition of contactors:

LC1 K06: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact.
LC1 D09 to LC1 D150: 3 poles + 1 " N / O " auxiliary contact and 1 " N / C " auxiliary contact.
LC1 Feoe: 3 poles. To add auxiliary contacts or other accessories, please consult our specialist catalogue "Motor-starter solutions. Control and protection components".
(4) Replace \bullet with the control circuit voltage reference indicated in the table below.

	Volts ~	24	48	110	220	230	240
LC1 K06	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 D09...D150	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 F185, F225	50 Hz (LX1 coil)	B5	E5	F5	M5	P5	U5
	60 Hz (LX1 coil)	-	E6	F6	M6	-	U6
	$40 . .400 \mathrm{~Hz}$ (LX9 coil)	-	E7	F7	M7	P7	U7
LC1 F265, LC1 F330	$40 . .400 \mathrm{~Hz}$ (LX1 coil)	B7	E7	F7	M7	P7	U7

[^6]
Variable speed drives for asynchronous motors

 for asynchronous motors} customer assembly
(continued)
Altivar 61
Motor starters: supply voltage 380... 415 V

NS160•MA150 LC1 D11500 $\stackrel{+}{\text { ATV 61HD55N4 }}$

Motor starters for UL Type 1/IP 20 drives						
Motor Power (1)		Drive	Circuit-breaker			Line contactor Reference (3) (4)
		Reference	Reference (2)	Rating	Im	
kW	HP			A	A	
3-phase supply voltage: $380 . .415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 2 coordination						
0.75	1	ATV 61H075N4	GV2 L08	4	-	LC1 D09•e
1.5	2	ATV 61HU15N4	GV2 L10	6.3	-	LC1 D09•e
2.2	3	ATV 61HU22N4	GV2 L14	10	-	LC1 D09•e
3	-	ATV 61HU30N4	GV2 L16	14	-	LC1 D18ee
4	5	ATV 61HU40N4	GV2 L16	14	-	LC1 D18ee
5.5	7.5	ATV 61HU55N4	GV2 L22	25	-	LC1 D25ee
7.5	10	ATV 61HU75N4	$\begin{aligned} & \text { GV2 L32 } \\ & \text { NS80HMA50 } \end{aligned}$	$\begin{aligned} & 32 \\ & 50 \\ & \hline \end{aligned}$	300	$\begin{aligned} & \text { LC1 D32e๗ } \\ & \text { LC1 D32ee } \end{aligned}$
11	15	ATV 61HD11N4	NS80HMA50	50	300	LC1 D40*e
15	20	ATV 61HD15N4	NS80HMA50	50	300	LC1 D50ee
18.5	25	ATV 61HD18N4	NS80HMA50	50	300	LC1 D50^e
22	30	ATV 61HD22N4	NS80HMA80	80	480	LC1 D50^e
30	40	ATV 61HD30N4	NS80HMA80	80	480	LC1 D650e
37	50	ATV 61HD37N4	NS80HMA80	80	480	LC1 D80॰๑
45	60	ATV 61HD45N4	NS100•MA100	100	600	LC1 D11500
55	75	ATV 61HD55N4	NS160•MA150	150	1350	LC1 D11500
75	100	ATV 61HD75N4	NS2500MA220	220	1980	LC1 F18500
90	125	ATV 61HD90N4	NS250^MA220	220	1980	LC1 F1850॰
110	150	ATV 61HC11N4	NS2500MA220	220	1980	LC1 F22500
132	200	ATV 61HC13N4	NS250^MA220	220	1980	LC1 F2650॰
160	250	ATV 61HC16N4	NS4000MA320	320	1920	LC1 F330॰
200	300	ATV 61HC22N4	NS630^MA500	500	3000	LC1 F400*0
220	350	ATV 61HC22N4	NS6300MA500	500	3000	LC1 F40000
250	400	ATV 61HC25N4	NS630@MA500	500	3000	LC1 F500*e
280	450	ATV 61HC31N4	NS630@MA500	500	3000	LC1 F500**
315	500	ATV 61HC31N4	NS800L Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630*0
355	-	ATV 61HC40N4	NS800L Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630*
400	600	ATV 61HC40N4	NS800L Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F63000
500	700	ATV 61HC50N4	NS1000L Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F63000
560	800	ATV 61HC63N4	NS1000L Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F78000

(1) Standard power ratings for 4-pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS8OHMA \bullet, NScoe0: products sold under the Merlin Gerin brand.

For references to be completed, replace the dot with the letter corresponding to the circuit-breaker breaking performance (N, H, L). Breaking capacity of circuit-breakers according to standard IEC 60947-2:

Circuit-breaker	Icu (kA) for 400 V			
		N	H	L
GV2 L08...L14	100	-	-	-
GV2 L16...L32	50	-	-	-
NS80HMA	70	-	-	-
NS100^MA	-	25	70	150
NS160^MA, NS250^MA	-	36	70	150
NS400^MA, NS630^MA	-	45	70	150
NS800L Micrologic 2 or 5, NS1000L Micrologic 2 or 5	-	-	-	150

(3) Composition of contactors:

LC1 D09 to LC1 D115: 3 poles + 1 " N / O " auxiliary contact and 1 " N / C " auxiliary contact.
LC1 Foos: 3 poles. To add auxiliary contacts or other accessories, please consult our specialist catalogue "Motor-starter solutions. Control and protection components".
(4) Replace \bullet with the control circuit voltage reference indicated in the table below.

	Volts ~	24	48	110	220	230	240
LC1 D09...D115	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 F185, F225	50 Hz (LX1 coil)	B5	E5	F5	M5	P5	U5
	60 Hz (LX1 coil)	-	E6	F6	M6	-	U6
	$40 . . .400 \mathrm{~Hz}$ (LX9 coil)	-	E7	F7	M7	P7	U7
LC1 F265, F330	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	B7	E7	F7	M7	P7	U7
LC1 F400...F630	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	-	E7	F7	M7	P7	U7
LC1 F780	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	-	-	F7	P7	P7	P7

For other voltages available between 24 V and 660 V, or a DC control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

 customer assemblyAltivar 61
Motor starters: supply voltage $380 \ldots 415 \mathrm{~V}$

NS160•MA150
LC1 D80•0
$+\stackrel{+}{\text { ATV 61HD55N4 }}$

Motor starters for UL Type 1/IP 20 drives						
Motor Power (1)		Drive	Circuit-breaker			Line contactor Reference (3) (4)
		Reference	Reference (2)	Rating	Im	
kW	HP			A	A	
3-phase supply voltage: $380 . . .415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 1 coordination						
0.75	1	ATV 61H075N4	GV2 LE08	4	-	LC1 K06ee
1.5	2	ATV 61HU15N4	GV2 LE10	6.3	-	LC1 K06e॰
2.2	3	ATV 61HU22N4	GV2 LE14	10	-	LC1 K06e•
3	-	ATV 61HU30N4	GV2 LE16	14	-	LC1 K06e*
4	5	ATV 61HU40N4	GV2 LE16	14	-	LC1 K06ee
5.5	7.5	ATV 61HU55N4	GV2 LE22	25	-	LC1 D09**
7.5	10	ATV 61HU75N4	GV2 LE32	32	-	LC1 D180॰
11	15	ATV 61HD11N4	NS80HMA50	50	300	LC1 D250॰
15	20	ATV 61HD15N4	NS80HMA50	50	300	LC1 D320*
18.5	25	ATV 61HD18N4	NS80HMA50	50	300	LC1 D3200
22	30	ATV 61HD22N4	NS80HMA80	50	300	LC1 D3200
30	40	ATV 61HD30N4	NS80HMA80	80	480	LC1 D500e
37	50	ATV 61HD37N4	NS80HMA80	80	480	LC1 D800॰
45	60	ATV 61HD45N4	NS100@MA100	100	600	LC1 D800॰
55	75	ATV 61HD55N4	NS160@MA150	150	1350	LC1 D800e
75	100	ATV 61HD75N4	NS250•MA220	220	1980	LC1 D115ee
90	125	ATV 61HD90N4	NS2500MA220	220	1980	LC1 D11500
110	150	ATV 61HC11N4	NS250@MA220	220	1980	LC1 F150ee
132	200	ATV 61HC13N4	NS2500MA220	220	1980	LC1 F150e॰
160	250	ATV 61HC16N4	NS400@MA320	320	1920	LC1 F225e日
200	300	ATV 61HC22N4	NS6300MA500	500	3000	LC1 F33000
220	350	ATV 61HC22N4	NS630^MA500	500	3000	LC1 F330^e
250	400	ATV 61HC25N4	NS630@MA500	500	3000	LC1 F400ee
280	450	ATV 61HC31N4	NS630@MA500	500	3000	LC1 F400ee
315	500	ATV 61HC31N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F500ee
355	-	ATV 61HC40N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F500ee
400	600	ATV 61HC40N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630e॰
500	700	ATV 61HC50N4	NS1000 Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630e॰
560	800	ATV 61HC63N4	NS1000 Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630ee
630	900	ATV 61HC63N4	NS1250 Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630S011

(1) Standard power ratings for 4-pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS80HMA 00, NS $\bullet 00$: products sold under the Merlin Gerin brand.

For references to be completed, replace the dot with the letter corresponding to the circuit-breaker breaking performance (N, H, L).
Breaking capacity of circuit-breakers according to standard IEC 60947-2:

Circuit-breaker	Icu (kA) for 400 V			
		N	H	L
GV2 LE08...LE22	15	-	-	-
GV2 LE32	10	-	-	-
NS80HMA	70	-	-	-
NS100^MA	-	25	70	150
NS160॰MA, NS250^MA	-	36	70	150
NS400^MA, NS630^MA	-	45	70	150
NS800 Micrologic 2 or 5, NS1000 Micrologic 2 or 5, NS1250 Micrologic 2 or 5	-	50	70	-

NS1250 Micrologic 2 or 5
(3) Composition of contactors:

LC1 K06, LC1 D09 to LC1 D115: 3 poles + 1 " N / O " auxiliary contact and 1 " N / C " auxiliary contact.
LC1 Fooe: 3 poles. To add auxiliary contacts or other accessories, please consult our specialist catalogue "Motor-starter solutions. Control and protection components".

	Volts ~	24	48	110	220	230	240
LC1 K06	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 D09...D115	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 F150, F225	50 Hz (LX1 coil)	B5	E5	F5	M5	P5	U5
	60 Hz (LX1 coil)	-	E6	F6	M6	-	U6
	$40 . .400 \mathrm{~Hz}$ (LX9 coil)	-	E7	F7	M7	P7	U7
LC1 F330	$40 . .400 \mathrm{~Hz}$ (LX1 coil)	B7	E7	F7	M7	P7	U7
LC1 F400...F630	$40 \ldots . .400 \mathrm{~Hz}$ (LX1 coil)	-	E7	F7	M7	P7	U7

For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.

for asynchronous motors

Altivar 61
Motor starters: supply voltage 380... 415 V

For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

 customer assembly（continued）
Altivar 61
Motor starters：supply voltage 380．．． 415 V

NS160•MA150
LC1 D11500
$\stackrel{+}{\text { ATV 61WD75N4 }}$

Motor starters for UL Type 12／IP 54 drives						
Motor Power（1）		Drive	Circuit－breaker			Line contactor Reference（3）（4）
		Reference	Reference（2）	Rating	Im	
kW	HP			A	A	
3－phase supply voltage： $380 . .415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ Type 1 coordination						
0.75	1	ATV 61W075N4 ATV 61W075N4C	GV2 LE07	2.5	－	LC1 K06eャ
1.5	2	ATV 61WU15N4 ATV 61WU15N4C	GV2 LE08	4	－	LC1 K06eャ
2.2	3	ATV 61WU22N4 ATV 61WU22N4C	GV2 LE10	6.3	－	LC1 K06eャ
3	－	ATV 61WU30N4 ATV 61WU30N4C	GV2 LE14	10	－	LC1 K06eャ
4	5	ATV 61WU40N4 ATV 61WU40N4C	GV2 LE14	10	－	LC1 K06eャ
5.5	7.5	ATV 61WU55N4 ATV 61WU55N4C	GV2 LE16	14	－	LC1 K06eャ
7.5	10	ATV 61WU75N4 ATV 61WU75N4C	GV2 LE20	18	－	LC1 K06eャ
11	15	ATV 61WD11N4 ATV 61WD11N4C	GV2 LE22	25	－	LC1 D090॰
15	20	ATV 61WD15N4 ATV 61WD15N4C	GV2 LE32	32	－	LC1 D1800
18.5	25	ATV 61WD18N4 ATV 61WD18N4C	NS80HMA50	50	300	LC1 D2500
22	30	ATV 61WD22N4 ATV 61WD22N4C	NS80HMA50	50	300	LC1 D3200
30	40	ATV 61WD30N4 ATV 61WD30N4C	NS80HMA80	80	480	LC1 D400॰
37	50	ATV 61WD37N4 ATV 61WD37N4C	NS80HMA80	80	480	LC1 D50＾॰
45	60	ATV 61WD45N4 ATV 61WD45N4C	NS100＠MA100	100	600	LC1 D800॰
55	75	ATV 61WD55N4 ATV 61WD55N4C	NS160＠MA150	150	1350	LC1 D80＾®
75	100	ATV 61WD75N4 ATV 61WD75N4C	NS160＠MA150	150	1350	LC1 D1150॰
90	125	ATV 61WD90N4 ATV 61WD90N4C	NS250＠MA220	220	1980	LC1 D11500

（1）Standard power ratings for 4－pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ ．
The values expressed in HP comply with the NEC（National Electrical Code）．
（2）NS8OHMA \bullet ，NS $\bullet \bullet 0$ ：products sold under the Merlin Gerin brand．
For references to be completed，replace the dot with the letter corresponding to the circuit－breaker breaking performance（ N, H, L ）．
Breaking capacity of circuit－breakers according to standard IEC 60947－2：

Circuit－breaker	Icu（kA）for 400 V		H	L
		\mathbf{N}	-	-
GV2 LE07．．．LE14	100	-	-	-
GV2 LE16．．．LE22	15	-	-	-
GV2 LE32	10	70	-	75
NS80HMA	-	76	70	150
NS100＠MA			-	150

（3）Composition of contactors：
LC1 K06： 3 poles＋ 1 ＂N / O＂auxiliary contact and 1 ＂N / C＂auxiliary contact．
LC1 D09 to LC1 D115： 3 poles＋ 1 ＂N / O＂auxiliary contact and 1 ＂N / C＂auxiliary contact．
Replace \bullet with the control circuit voltage reference indicated in the table below．

	Volts～	24	48	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	$\mathbf{2 4 0}$
LC1 K06	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 D09．．．D115	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 ~ H z$	B7	E7	F7	M7	P7	U7

For other voltages available between 24 V and 660 V，or a DC control circuit，please consult your Regional Sales Office．

for asynchronous motors

(continued)
Altivar 61
Motor starters: supply voltage 440... 480 V

NS160@MA150

+ $+$ ATV 61HD75N4

Motor starters for UL Type 1/IP 20 drives						
Motor Power (1)		Drive Reference	Circuit-breaker			Line contactor Reference (3) (4)
			Reference (2)	Rating		
kW	HP			A	A	
3-phase supply voltage: $440 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 2 coordination						
0.75	1	ATV 61H075N4	GV2 L08	4	-	LC1 D09•e
1.5	2	ATV 61HU15N4	GV2 L10	6.3	-	LC1 D09•e
2.2	3	ATV 61HU22N4	GV2 L14	10	-	LC1 D09•e
3	-	ATV 61HU30N4	GV2 L14	10	-	LC1 D09•e
4	5	ATV 61HU40N4	GV2 L16	14	-	LC1 D1800
5.5	7.5	ATV 61HU55N4	GV2 L20	18	-	LC1 D1800
7.5	10	ATV 61HU75N4	GV2 L22	25	-	LC1 D2500
11	15	ATV 61HD11N4	$\begin{aligned} & \text { GV2 L32 } \\ & \text { NS80HMA50 } \end{aligned}$	$\begin{aligned} & 32 \\ & 50 \\ & \hline \end{aligned}$	300	$\begin{aligned} & \text { LC1 D32•๗ } \\ & \text { LC1 D40॰ } \end{aligned}$
15	20	ATV 61HD15N4	NS80HMA50	50	300	LC1 D40ee
18.5	25	ATV 61HD18N4	NS80HMA50	50	300	LC1 D400e
22	30	ATV 61HD22N4	NS80HMA50	50	300	LC1 D5000
30	40	ATV 61HD30N4	NS80HMA80	80	480	LC1 D650e
37	50	ATV 61HD37N4	NS80HMA80	80	480	LC1 D80*e
45	60	ATV 61HD45N4	NS100HMA100	100	600	LC1 D11500
55	75	ATV 61HD55N4	NS100HMA100	100	600	LC1 D11500
75	100	ATV 61HD75N4	NS1600MA150	150	1350	LC1 D11500
90	125	ATV 61HD90N4	NS1600MA150	150	1350	LC1 D11500
110	150	ATV 61HC11N4	NS250@MA220	220	1980	LC1 F18500
132	200	ATV 61HC13N4	NS250•MA220	220	1980	LC1 F26500
160	250	ATV 61HC16N4	NS4000MA320	320	1920	LC1 F330॰
200	300	ATV 61HC22N4	NS630@MA500	500	3000	LC1 F330*0
220	350	ATV 61HC22N4	NS630^MA500	500	3000	LC1 F400*e
250	400	ATV 61HC25N4	NS630^MA500	500	3000	LC1 F500*e
280	450	ATV 61HC31N4	NS630^MA500	500	3000	LC1 F500**
315	500	ATV 61HC31N4	NS800L Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630*
355	-	ATV 61HC40N4	NS800L Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630*0
400	600	ATV 61HC40N4	NS800L Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F63000
500	700	ATV 61HC50N4	NS1000L Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630*॰
560	800	ATV 61HC63N4	NS1000L Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630*0
630	900	ATV 61HC63N4	NS1000L Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F63000

(1) Standard power ratings for 4-pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS80HMAco, NSooes: products sold under the Merlin Gerin brand.

For references to be completed, replace the dot with the letter corresponding to the circuit-breaker breaking performance (N, H, L). Breaking capacity of circuit-breakers according to standard IEC 60947-2:

Circuit-breaker	Icu (kA) for 440 V			
		N	H	L
GV2 L08, GV2 L10	100	-	-	-
GV2 L14...L32	20	-	-	-
NS80HMA	65	-	-	-
NS1000MA	-	25	65	130
NS160॰MA, NS250@MA	-	35	65	130
NS400॰MA, NS600^MA	-	42	65	130
NS800L Micrologic 2 or 5, NS1000L Micrologic 2 or 5	-	-	-	130

(3) Composition of contactors:

LC1 D09 to LC1 D115: 3 poles + 1 "N/O" auxiliary contact and 1 " N / C " auxiliary contact.
LC1 Feoe: 3 poles. To add auxiliary contacts or other accessories, please consult our specialist catalogue "Motor-starter solutions. Control and protection components".
(4) Replace with the control circuit voltage reference indicated in the table below.

	Volts ~	24	48	110	220	230	240
LC1 D09...D115	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 F185	50 Hz (LX1 coil)	B5	E5	F5	M5	P5	U5
	60 Hz (LX1 coil)	-	E6	F6	M6	-	U6
	$40 . . .400 \mathrm{~Hz}$ (LX9 coil)	-	E7	F7	M7	P7	U7
LC1 F265, LC1 F330	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	B7	E7	F7	M7	P7	U7
LC1 F400...F630	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	-	E7	F7	M7	P7	U7

For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.

Variable speed drives for asynchronous motors

Altivar 61
Motor starters: supply voltage $440 \ldots 480 \mathrm{~V}$

NS160•MA150

+ $+\quad$ LC1 D11500
ATV 61HD75N4

Motor starters for UL Type 1/IP 20 drives						
Motor Power (1)		Drive Reference	Circuit-breaker			Line contactor Reference (3) (4)
			Reference (2)	Ratin		
kW	HP			A	A	
3-phase supply voltage: $440 . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 1 coordination						
0.75	1	ATV 61H075N4	GV2 LE08	4	-	LC1 K06ee
1.5	2	ATV 61HU15N4	GV2 LE10	6.3	-	LC1 K06ee
2.2	3	ATV 61HU22N4	GV2 LE14	10	-	LC1 K06ee
3	-	ATV 61HU30N4	GV2 LE14	10	-	LC1 K06eө
4	5	ATV 61HU40N4	GV2 LE16	14	-	LC1 D09ee
5.5	7.5	ATV 61HU55N4	GV2 LE20	18	-	LC1 D09ee
7.5	10	ATV 61HU75N4	GV2 LE22	25	-	LC1 D180ө
11	15	ATV 61HD11N4	GV2 LE32	32	-	LC1 D25ee
15	20	ATV 61HD15N4	NS80HMA50	50	300	LC1 D40ee
18.5	25	ATV 61HD18N4	NS80HMA50	50	300	LC1 D40ee
22	30	ATV 61HD22N4	NS80HMA50	50	300	LC1 D40ee
30	40	ATV 61HD30N4	NS80HMA80	80	300	LC1 D50e*
37	50	ATV 61HD37N4	NS80HMA80	80	300	LC1 D65ee
45	60	ATV 61HD45N4	NS100HMA100	100	600	LC1 D80ee
55	75	ATV 61HD55N4	NS100HMA100	100	600	LC1 D80eө
75	100	ATV 61HD75N4	NS160@MA150	150	1350	LC1 D115e0
90	125	ATV 61HD90N4	NS160@MA150	150	1350	LC1 D115e0
110	150	ATV 61HC11N4	NS250@MA220	220	1980	LC1 D115e0
132	200	ATV 61HC13N4	NS250@MA220	220	1980	LC1 F265e*
160	250	ATV 61HC16N4	NS400@MA320	320	1920	LC1 F330e*
200	300	ATV 61HC22N4	NS630@MA500	500	3000	LC1 F330e*
220	350	ATV 61HC22N4	NS630@MA500	500	3000	LC1 F400e*
250	400	ATV 61HC25N4	NS630^MA500	500	3000	LC1 F500e*
280	450	ATV 61HC31N4	NS630@MA500	500	3000	LC1 F500e*
315	500	ATV 61HC31N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630e*
355	-	ATV 61HC40N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630e*
400	600	ATV 61HC40N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630**
500	700	ATV 61HC50N4	NS800 Micrologic 2 or 5 (LR OFF)	800	1600	LC1 F630e*
560	800	ATV 61HC63N4	NS1000 Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630ee
630	900	ATV 61HC63N4	NS1000 Micrologic 2 or 5 (LR OFF)	1000	2000	LC1 F630e*

(1) Standard power ratings for 4-pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS8OHMA \bullet, NS $\bullet 00$: products sold under the Merlin Gerin brand.

For references to be completed, replace the dot with the letter corresponding to the circuit-breaker breaking performance (N, H, L).
Breaking capacity of circuit-breakers according to standard IEC 60947-2:

Circuit-breaker	Icu (kA) for 440 V			
		N	H	L
GV2 LE08	100	-	-	-
GV2 LE10	50	-	-	-
GV2 LE14	15	-	-	-
GV2 LE16, GV2 LE20	8	-	-	-
GV2 LE22, GV2 LE32	6	-	-	-
NS80HMA	65	-	-	-
NS100^MA	-	25	65	130
NS160@MA, NS250^MA	-	35	65	130
NS400@MA, NS600॰MA	-	42	65	130
NS800 Micrologic 2 or 5, NS1000 Micrologic 2 or 5	-	50	65	-

(3) Composition of contactors:

LC1 K06, LC1 D09 to LC1 D115: 3 poles + 1 " N / O " auxiliary contact and 1 " N / C " auxiliary contact.
LC1 Fooe: 3 poles. To add auxiliary contacts or other accessories, please consult our specialist catalogue "Motor-starter solutions. Control and protection components".

	Volts ~	24	48	110	220	230	240
LC1 K06	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 D09...D115	50 Hz	B5	E5	F5	M5	P5	U5
	60 Hz	B6	E6	F6	M6	-	U6
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7
LC1 F265, LC1 F330	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	B7	E7	F7	M7	P7	U7
LC1 F400...F630	$40 . . .400 \mathrm{~Hz}$ (LX1 coil)	-	E7	F7	M7	P7	U7

$\frac{4}{\text { For other voltages available between } 24 \mathrm{~V} \text { and } 660 \mathrm{~V} \text {, or a DC control circuit, please consult your Regional Sales Office. }}$

NS100•MA100
LC1 D11500 $\stackrel{+}{\text { ATV 61WD55N4 }}$

Motor starters for UL Type 12/IP 54 drives						
Motor Power (1)		Drive	Circuit-breaker			
		Reference	Reference (2)	Rati	Im	Reference (3) (4)
kW	HP			A	A	
3-phase supply voltage: $440 . . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 2 coordination						
0.75	1	ATV 61W075N4 ATV 61W075N4C	GV2 L07	2.5	-	LC1 D09•e
1.5	2	ATV 61WU15N4 ATV 61WU15N4C	GV2 L08	4	-	LC1 D09•e
2.2	3	ATV 61WU22N4 ATV 61WU22N4C	GV2 L10	6.3	-	LC1 D09•e
3	-	ATV 61WU30N4 ATV 61WU30N4C	GV2 L10	6.3	-	LC1 D09•e
4	5	ATV 61WU40N4 ATV 61WU40N4C	GV2 L14	10	-	LC1 D09•e
5.5	7.5	ATV 61WU55N4 ATV 61WU55N4C	GV2 L14	10	-	LC1 D18•๑
7.5	10	ATV 61WU75N4 ATV 61WU75N4C	GV2 L20	18	-	LC1 D18e¢
11	15	ATV 61WD11N4 ATV 61WD11N4C	GV2 L22	25	-	LC1 D25ee
15	20	ATV 61WD15N4 ATV 61WD15N4C	GV2 L32	32	-	LC1 D400॰
18.5	25	ATV 61WD18N4 ATV 61WD18N4C	NS80HMA50	50	300	LC1 D400e
22	30	ATV 61WD22N4 ATV 61WD22N4C	NS80HMA50	50	300	LC1 D40^e
30	40	ATV 61WD30N4 ATV 61WD30N4C	NS80HMA50	50	300	LC1 D50@
37	50	ATV 61WD37N4 ATV 61WD37N4C	NS80HMA80	80	480	LC1 D80^e
45	60	ATV 61WD45N4 ATV 61WD45N4C	NS80HMA80	80	480	LC1 D80^e
55	75	ATV 61WD55N4 ATV 61WD55N4C	NS100@MA100	100	600	LC1 D1150e
75	100	ATV 61WD75N4 ATV 61WD75N4C	NS160@MA150	150	1350	LC1 D1150e
90	125	ATV 61WD90N4 ATV 61WD90N4C	NS250•MA220	220	1980	LC1 F18500

(1) Standard power ratings for 4-pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS80HMA 0, NSeco: products sold under the Merlin Gerin brand.

For references to be completed, replace the dot with the letter corresponding to the circuit-breaker breaking performance (N,
$H, L)$.
Breaking capacity of circuit-breakers according to standard IEC 60947-2.

For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.

NS100•MA100

+ +1 D80e0
$\stackrel{+}{\text { ATV } 61 W D 55 N 4}$

Motor starters for UL Type 12/IP 54 drives						
Motor Power (1)		Drive	Circuit-breaker			Line contactor Reference (3) (4)
		Reference	Reference (2)	Rating		
kW	HP			A	A	
3-phase supply voltage: $440 . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$. Type 1 coordination						
0.75	1	ATV 61W075N4 ATV 61W075N4C	GV2 LE07	2.5	-	LC1 K06ee
1.5	2	ATV 61WU15N4 ATV 61WU15N4C	GV2 LE08	4	-	LC1 K06e॰
2.2	3	ATV 61WU22N4 ATV 61WU22N4C	GV2 LE10	6.3	-	LC1 K06e॰
3	-	ATV 61WU30N4 ATV 61WU30N4C	GV2 LE10	6.3	-	LC1 K06e॰
4	5	ATV 61WU40N4 ATV 61WU40N4C	GV2 LE14	10	-	LC1 K06e•
5.5	7.5	ATV 61WU55N4 ATV 61WU55N4C	GV2 LE14	10	-	LC1 K06e॰
7.5	10	ATV 61WU75N4 ATV 61WU75N4C	GV2 LE20	18	-	LC1 D090॰
11	15	ATV 61WD11N4 ATV 61WD11N4C	GV2 LE22	25	-	LC1 D090॰
15	20	ATV 61WD15N4 ATV 61WD15N4C	GV2 LE32	32	-	LC1 D180॰
18.5	25	ATV 61WD18N4 ATV 61WD18N4C	NS80HMA50	50	300	LC1 D3200
22	30	ATV 61WD22N4 ATV 61WD22N4C	NS80HMA50	50	300	LC1 D3200
30	40	ATV 61WD30N4 ATV 61WD30N4C	NS80HMA50	50	300	LC1 D400॰
37	50	ATV 61WD37N4 ATV 61WD37N4C	NS80HMA80	80	480	LC1 D500॰
45	60	ATV 61WD45N4 ATV 61WD45N4C	NS80HMA80	80	480	LC1 D650॰
55	75	ATV 61WD55N4 ATV 61WD55N4C	NS100@MA100	100	600	LC1 D800॰
75	100	ATV 61WD75N4 ATV 61WD75N4C	NS160@MA150	150	1350	LC1 D1150॰
90	125	ATV 61WD90N4 ATV 61WD90N4C	NS250@MA220	220	1980	LC1 D1150॰

(1) Standard power ratings for 4-pole motors $400 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

The values expressed in HP comply with the NEC (National Electrical Code).
(2) NS80HMA \bullet, NS $\bullet 00$: products sold under the Merlin Gerin brand.

For references to be completed, replace the dot with the letter corresponding to the circuit-breaker breaking performance (N, H, L).
Breaking capacity of circuit-breakers according to standard IEC 60947-2:

Circuit-breaker	Icu (kA) for 440 V		H	
		\mathbf{N}	-	-
GV2 LE07...LE10	100	-	-	-
GV2 LE14...LE32	20	-	-	-
NS80HMA	65	25	65	130
NS100•MA	-	35	65	130
NS160•MA, NS250@MA	-			

(3) Composition of contactors:

LC1 K06, LC1 D09 to LC1 D115: 3 poles + 1 " N / O " auxiliary contact and 1 " N / C " auxiliary contact.
(4) Replace $\bullet 0$ with the control circuit voltage reference indicated in the table below.

	Volts \sim	24	48	$\mathbf{1 1 0}$	$\mathbf{2 2 0}$	$\mathbf{2 3 0}$	240
LC1 D09...D115	50 Hz	B5	E5	F5	M5	P5	U5
60 Hz	B6	E6	F6	M6	-	U6	
	$50 / 60 \mathrm{~Hz}$	B7	E7	F7	M7	P7	U7

For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.

Mounting and installation recommendations

Variable speed drives for asynchronous motors
 Altivar 61
 UL Type 1/IP 20 drives

Removing the protective blanking cover for: ATV 61HoooM3, ATV 61HD11M3X, HD15M3X, ATV 61HD075N4...HD18N4

Removing the protective blanking cover for: ATV 61HD18M3X...HD45M3X, ATV 61HD22N4...HD75N4

Mounting recommendations

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Do not place it close to heating elements.

■ Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

ATV 61HeeeM3, ATV 61HD11M3X...HD45M3X, ATV 61H075N4...HD75N4

Mounting types

- Type A mounting

- Type B mounting

- Type C mounting

By removing the protective blanking cover from the top of the drive, the degree of protection for the drive becomes IP 20. The protective blanking cover may vary according to the drive model, see opposite.

Presentation: pages 4 to 7	Characteristics:	References:	Dimensions:	Schemes:
pages 8 to 15				

Mounting recommendations (continued) Derating curves

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type.

For intermediate temperatures ($55^{\circ} \mathrm{C}$ for example) interpolate between 2 curves.
ATV 61HeeoM3, ATV 61HD11M3X, HD15M3X and ATV 61H075N4...HD18N4

ATV 61HD22N4 and ATV 61HD30N4 (1)

ATV 61HD18M3X...HD45M3X and ATV 61HD37N4...HD75N4 (1)

(1) Above $50^{\circ} \mathrm{C}$, ATV 61HD18M3X...HD45M3X, ATV 61HD22N4...HD75N4 drives should be equipped with a control card fan kit. See page 22.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Mounting recommendations (continued) ATV 61HD55M3X...HD90M3X, ATV 61HD90N4...HC63N4

These drives can be mounted side by side, observing the following mounting recommendations:

Presentation:	Characteristics:	References:	Dimensions:	Schemes:
pages 4 to 7	pages 8 to 15:	pages 18 to 21	pages 90 to 111	pages 112 to 127

Variable speed drives for asynchronous motors
 Altivar 61
 UL Type 1/IP 20 drives

Mounting recommendations (continued) Derating curves

ATV 61HD55M3X

ATV 61HD90M3X

ATV 61HC11N4

The derating curves for the drive nominal current (In) depend on the temperature, the switching frequency and the mounting type.

For intermediate temperatures $\left(55^{\circ} \mathrm{C}\right.$ for example), interpolate between 2 curves.

ATV 61HD75M3X

ATV 61HD90N4

ATV 61HC13N4

Presentation:	Characteristics:	References:	Dimensions:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pages 90 to 111

Derating curves (continued) ATV 61HC16N4

ATV 61HC22N4 combined with a 220 kW motor

ATV 61HC31N4 combined with a 280 kW motor

ATV 61HC22N4 combined with a 200 kW motor

ATV 61HC25N4

ATV 61HC31N4 combined with a 315 kW motor

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61
 UL Type 1/IP 20 drives

Derating curves (continued)
ATV 61HC40N4 combined with a 355 kW motor

ATV 61HC50N4

ATV 61HC63N4 combined with a 630 kW motor

ATV 61HC40N4 combined with a 400 kW motor

ATV 61HC63N4 combined with a 560 kW motor

Mounting recommendations (continued)

Depending on the conditions in which the drive is to be used, its installation will require certain precautions and the use of appropriate accessories.
Install the unit vertically:

- Do not place it close to heating elements.

■ Leave sufficient free space to ensure that the air required for cooling purposes can circulate from the bottom to the top of the unit.

ATV 61WeeoN4, ATV 61WeeoN4C

Derating curves

ATV 61W075N4...WU55N4, ATV 61W075N4C...WU55N4C
ATV 61WU75N4, WD11N4, ATV 61WU75N4C, WD11N4C

Presentation: pages 4 to 7	Characteristics: pages 8 to 15	References: pages 18 to 21	Dimensions:	Schemes:

Variable speed drives for asynchronous motors
 Altivar 61
 UL Type 12/IP 54 drives

Derating curves (continued)
ATV 61WD15N4, ATV 61WD15N4C

ATV 61WD30N4, ATV 61WD30N4C

ATV 61WD55N4...WD90N4, ATV 61WD55NC4...WD90N4C

ATV 61WD18N4, WD22N4, ATV 61WD18N4C, WD22N4C

ATV 61WD37N4, WD45N4, ATV 61WD37N4C, WD45N4C

Presentation:	Characteristics:	References: pages 4 to 7	pages 18 to 21	Dimensions:

Specific recommendations for mounting in an enclosure (1)

Follow the mounting recommendations described on pages 138 to 143.
To ensure proper air circulation in the drive:

- Fit ventilation grilles.
- Ensure that there is sufficient ventilation. If there is not, install forced ventilation with a filter. The openings and/or fans must provide a flow rate at least equal to that of the drive fans (see page 147)
- Use special filters with IP 54 protection
- Remove the blanking cover from the top of the drive, see page 138.

Power dissipated inside the enclosure (1)		
For drives	Dissipated power (2)	
	Mounted in the enclosure (power section inside the enclosure)	Dust and damp proof flushmounting (power section outside the enclosure)
	W	W
3-phase supply voltage: 200... $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$		
ATV 61H075M3	66	28
ATV 61HU15M3	101	30
ATV 61HU22M3	122	38
ATV 61HU30M3	154	38
ATV 61HU40M3	191	42
ATV 61HU55M3	293	52
ATV 61HU75M3	363	60
ATV 61HD11M3X	566	73
ATV 61HD15M3X	620	76
ATV 61HD18M3X	799	119
ATV 61HD22M3X	865	124
ATV 61HD30M3X	1134	151
ATV 61HD37M3X	1337	166
ATV 61HD45M3X	1567	184
ATV 61HD55M3X	1715	154
ATV 61HD75M3X	2233	154
ATV 61HD90M3X	2694	154

3-phase supply voltage: $380 . .480 \mathrm{~V} 50 / 60 \mathrm{~Hz}$

ATV 61H075N4	44	26
ATV 61HU15N4	64	28
ATV 61HU22N4	87	30
ATV 61HU30N4	114	35
ATV 61HU40N4	144	40
ATV 61HU55N4	178	50
ATV 61HU75N4	217	55
ATV 61HD11N4	320	65
ATV 61HD15N4	392	86
ATV 61HD18N4	486	86
ATV 61HD22N4	717	110
ATV 61HD30N4	976	135
ATV 61HD37N4	1174	137
ATV 61HD45N4	1360	165
ATV 61HD55N4	1559	178
ATV 61HD75N4	2326	225
ATV 61HD90N4	2403	237
ATV 61HC11N4	3056	269
ATV 61HC13N4	3583	304
ATV 61HC16N4	4036	362
ATV 61HC22N4	5482	452
ATV 61HC25N4	6379	606
ATV 61HC31N4	7867	769
ATV 61HC40N4	9598	-
ATV 61HC50N4	12055	-
ATV 61HC63N4	15007	-

(1) Only for ATV 61HoooM3, ATV 61HoooM3X and ATV 61 HoooN4 drives.
(2) This value is given for operation at nominal load and for a switching frequency of 2.5 or 4 kHz depending on the rating.
Add 7 W to this value for each additional option card.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

For drive	Flow rate $\mathrm{m}^{3} / \mathrm{hour}$
ATV 61H075M3...HU15M3, ATV 61H075N4...HU22N4	17
ATV 61HU22M3...HU40M3, ATV 61HU30N4, HU40N4	56
ATV 61HU55M3, ATV 61HU55N4, HU75N4	112
ATV 61HU75M3, ATV 61HD11N4	163
ATV 61HD11M3X, HD15M3X ATV 61HD15N4, HD18N4	252
ATV 61HD18M3X, HD22M3X, ATV 61HD22N4...HD37N4	203
ATV 61HD30M3X...HD45M3X, ATV 61HD45N4...HD75N4	406
ATV 61HD55M3X, HD75M3X, ATV 61HD90N4, HC11N4	402
ATV 61HD90M3X, ATV 61HC13N4	774
ATV 61HC16N4	745
ATV 61HC22N4	860
ATV 61HC25N4, HC31N4	1260
ATV 61HC40N4, HC50N4	2100
ATV 61HC63N4	2400

Sealed metal enclosure (IP 54 degree of protection)
The drive must be mounted in a dust and damp proof enclosure in certain environmental conditions: dust, corrosive gases, high humidity with risk of condensation and dripping water, splashing liquid, etc.
This enables the drive to be used in an enclosure where the maximum internal temperature reaches $50^{\circ} \mathrm{C}$.

Calculating the enclosure dimensions (1)

Maximum thermal resistance Rth (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
R th $=\frac{\theta-\theta \mathrm{e}}{\mathrm{P}} \quad \begin{aligned} & \theta=\text { maximum temperature inside enclosure in }{ }^{\circ} \mathrm{C} \\ & \theta \mathrm{e}=\text { maximum external temperature in }{ }^{\circ} \mathrm{C}\end{aligned} \mathrm{P=} \mathrm{total} \mathrm{power} \mathrm{dissipated} \mathrm{in} \mathrm{the} \mathrm{enclosure} \mathrm{in} \mathrm{W}$
Power dissipated by drive: see page 146 (mounting in an enclosure or flushmounting in an enclosure).
Add the power dissipated by the other equipment components.

Useful heat dissipation surface of enclosure $S\left(\mathrm{~m}^{2}\right)$
(sides + top + front panel if wall-mounted)
$S=\frac{\mathrm{K}}{\mathrm{Rth}} \quad \mathrm{K}=$ enclosure thermal resistance per m^{2}
For a metal enclosure:
■ $K=0.12$ with internal fan
■ $\mathrm{K}=0.15$ without fan
Note: Do not use insulated enclosures, as they have a poor level of conductivity.
(1) Only for ATV 61H000M3, ATV 61H000M3X and ATV 61Ho00N4 drives.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

Summary of functions	
Remote graphic display terminal functions	
Description	page 150
Navigation	page 151
Password	page 151
Integrated 7-segment display terminal	
Presentation	page 152
Start-up	
Simply Start menu	page 152
Programming using macro-configurations	page 153
MONITORING menu	page 154
Configuration and settings	
Presentation	page 154
Operation	
Presentation	page 154
Maintenance, diagnostics	
Response to faults or alarms	page 155
Fault history and help	page 155
IDENTIFICATION menu	page 155
Test functions	page 155
Oscilloscope function	page 155
Controlling the drive	
Via the drive I/O	page 156
Via the remote graphic display terminal	page 156
Via a communication network	
- I/O profile	page 157
- CiA DSP 402 profile	page 157
- ODVA profile	page 157

Functions suitable for pumping and ventilation applications Motor control profiles

- Energy saving ratio	page 158
- Quadratic ratio $\left(\mathrm{Kn}^{2}\right)$	page 158

$\overline{\text { PID regulator }}$	Quadral	
	- Internal references	page 158
	- Preset PID references	page 158
	- PID feedback	page 159
	- Pl feedback supervision	page 159
	- Sleep/wake-up	page 159
	- Activate sleep mode by flow detection	page 159
	- Alarms	page 159
	- Predictive speed reference	page 159
	- Auto/Man.	page 159
Forced operation		page 159
Flow limit		page 159
Other applicat	on functions	

2-wire control

	- State detection	page 160
	- Transition detection	page 160
	- Forward operation as priority	page 160
3-wire control		page 160
Phase rotation		page 160
Ramps		
	- Time	page 160
	- Profile (linear, S, U or customized)	page 161
	- Switching	page 161
	- Automatic adaptation	page 161
Preset speeds		page 162
JOG operation		page 162
Limiting low speed operating time		page 162

Presentation: pages 4 to 7	Characteristics: pages 8 to 15	References: pages 18 to 21	Dimensions:	Schemes:

Summary of functions (continued)	
Other application functions (continued)	
Motor control types	
- Flux Vector Control with sensor (FVC)	page 163
- Sensorless Flux Vector Control	page 163
- 2-point Vector Control	page 163
- Voltage/frequency ratio	page 163
- Synchronous motor	page 163
Limiting motor overvoltage	page 163
Auto-tuning	page 163
Switching frequency, noise reduction	page 163
Motor fluxing	page 164
Output contactor command	page 164
Stop on thermal alarm	page 164
Uncontrolled output cut	page 165
+/-speed	
- Single action buttons	page 165
- Double action buttons	page 165
- Reference saving	page 166
- Around a reference	page 166
Automatic catching of a spinning load with speed detection	page 166
Undervoltage management	page 167
Braking balance	page 167
Braking resistor thermal protection	page 167
Parameter set switching	page 168
Motor or configuration switching	page 168
Reference switching	page 168
Operations on the references	
- Summing inputs	page 169
- Subtraction inputs	page 169
- Multiplication inputs	page 169
Torque limit	page 170
Torque or current limit detection	page 170
Current limit	page 170
Reference saving	page 171
Stop types	
- Freewheel stop	page 171
- Fast stop	page 171
- Fastest possible stop	page 171
- DC injection stop	page 171
Motor thermal protection	page 172
Drive thermal protection	page 172
IGBT thermal protection	page 172
Machine protection	page 172
Configuring the drive's fault response	page 173
Resetting resettable faults	page 173
General reset (disables all faults)	page 173
Automatic restart	page 174
PTC probe protection	page 174
IGBT testing	page 174
Resetting operating time to zero	page 174
External fault	page 174
Line contactor control	page 175
Forced local mode	page 175

Presentation: pages 4 to 7	Characteristics: pages 8 to 15	References: pages 18 to 21	Dimensions: pages 90 to 111	Schemes: pages 112 to 127

Variable speed drives for asynchronous motors

Altivar 61

Remote graphic display terminal functions

This display terminal is attached to the front of the drive. It includes the integrated 7 -segment display terminal for drives supplied without a graphic display terminal.

- Description

- Description of graphic display terminal

1 Graphic display unit:
-8 lines, 240×160 pixels

- large digit display that can be read from 5 m away
- bar chart display

2 Assignable functions keys F1, F2, F3, F4:

- dialogue functions: direct access, help screens, navigation
- application functions: Local/Remote, preset speed.

3 STOP/RESET key: local control of motor stopping/fault clearing
4 RUN key: local control of motor operation
5 Navigation button:

- Press to save the current value (ENT)
- Turn \pm to increase or decrease the value, or go to the next or previous line 6 FWD/REV key: reverses the direction of rotation of the motor
7 ESC key: aborts a value, parameter or menu to return to the previous option.
Note: Keys 3, 4 and 6 can be used to control the drive directly.

Description of graphic display unit

1 Display line. Its content can be configured; the factory settings show:

- the drive status (example: RUN)
- the active control channel (example: "Term": Terminals),
- the frequency reference
- Type of control (example: "LOC/REM").

Menu line. Indicates the current menu or submenu.
Area displaying menus, submenus, parameters, values, bar charts, in the form of a scrolling window, with a maximum of 5 lines.
The line or value selected using the navigation button is displayed in reverse video (see opposite).
4 Section displaying the functions assigned to the keys F1 to F4 and aligned with them, for example:

- >> : Horizontal scrolling to the right, or proceeding to the next menu or submenu, or, in the case of a value, decreasing the value, displayed in reverse video (see example opposite)
$-\ll$: Horizontal scrolling to the left, or proceeding to the next menu or submenu, or, in the case of a value, increasing the value, displayed in reverse video
- "T/K" : Local Remote function assigned to key F4,
- HELP: Contextual help
- Code: Displays the selected parameter code
- Other functions (application functions) can be assigned to these keys via the 1.6 COMMAND menu.

Means that this display window does not scroll further down.
: Means that this display window can scroll further down.
6Means that this display window does not scroll further up.

Presentation:	Characteristics:	References:	Schemes:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pagensions:

Remote graphic display terminal functions (continued)
 ■ Navigation: accessing menus and parameters
 Structure of main menus:

1 Drive menu:	Function
Menu type	Simplified menu for fast startup
1.1 SIMPLY START	Displays current values for motor, inputs/outputs and communication (command words, status words, etc.)
1.2 MONITORING	Accesses the adjustment parameters, which can be modified during operation
1.3 SETTINGS	Accesses the motor parameters, including adjustment of motor control profiles
1.4 MOTOR CONTROL	Configures the I/O and transforms signals
1.5 INPUTS/OUTPUTS CFG	Configures the command and reference channels

2 Display line
3 Display screen: Displays values in the form of bar charts or digital values, depending on the extent of customization.

4 Main menu:	
Menu type	Function
1. DRIVE MENU	See above (1 Drive menu)
2. ACCESS LEVEL	4 access levels: basic, limited, advanced, expert
3. OPEN / SAVE AS	Transfers files between the graphic display terminal and the drive
4. PASSWORD	Provides password protection for the configuration
5. LANGUAGE	Choice of 6 languages available (English, German, Spanish, French, Italian and Chinese)
6. MONITORING CONFIG.	Customizes the display line 2 and the display screen 3 (bar charts, digital values)
7. DISPLAY CONFIG.	Configures how parameters are displayed: customization, selection for User menu, visibility, accessibility

■ Password

Altivar 61 drives allow individual parameters to be selected for password protection.
Rights can be set for save operations and for loading the configuration.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

Integrated 7-segment display terminal

ATV 61•0000M3, ATV 61HD11M3X...HD45M3X and ATV 61H075N4...HD75N4 drives can be supplied without a graphic display terminal. In this case, they are equipped with an integrated 7 -segment display terminal.
This can be used to:

- Display status and faults
\square Access and modify parameters

Start-up

The Altivar 61 drive is supplied ready for use for most applications.
When the drive is switched on, the menus for setting the language and access level appear automatically.

RUN	Term	$+50.00 \mathrm{~Hz}$	5.4A
1.1 SIMPLY START			
2/3 wire control			2 wire
Macro-configuration		Pum	s.Fans
Standard mot. Freq. :			Hz IEC
Rated motor power			2.2 kW
Rated motor volt.			400 V
Code	<<	>> Qu	ck ${ }^{\text {a }}$

Simply Start menu

■ Simply Start menu

By accessing the Simply Start menu directly, it is possible to:

- Pre-program the drive for an application:
- Select the relevant macro-configuration
- 2-wire/3-wire control
\square Benefit from optimum motor performance:
- Enter data from the motor rating plate
- Auto-tuning.
- Protect the motor by setting the drive's integrated electronic thermal overload relay

Variable speed drives for asynchronous motors

 Altivar 61

 Altivar 61}

Start-up (continued)

- Programming using macro-configurations

Programming using macro-configurations offers the choice of five options corresponding to the various business areas and applications:

- Start/stop
\square General use
- PID regulation
- Communication network connectivity
- Ventilation pump.

Choosing one of these macro-configurations automatically assigns the functions, parameters and I/O, even in the case of option cards. Although the configuration is preset, it can still be modified, if necessary.

The Ventilation pump macro-configuration is set as the factory configuration.
The preset functions for each macro-configuration are given in the table below.

Type of macro-configuration		Start/stop	General use	PID regulation	Communication	Ventilation pump.
Altivar 61 drive I/O						
Al1		Ref. 1 channel	Ref. 1 channel	PID reference	Ref. 2 channel Ref. 1 channel by bus	Ref. 1 channel
Al2		Not assigned	Sum ref. 2	PID feedback	Not assigned	Ref. 1B channel
A01		Motor freq.				
2-wire	LI1	Forward	Forward	Forward	Forward	Forward
	LI2	Fault reset	Reverse	Fault reset	Fault reset	Freewheel
	LI3	Not assigned	JOG	PID integral reset	Ref. 2 switching	Ref. 1B switching
	LI4	Not assigned	Fault reset	PID 2 preset ref.	Fault reset	Fault reset
	LI5	Not assigned	Torque limit	PID 4 preset ref.	Not assigned	Not assigned
	LI6	Not assigned				
3-wire	LI1	Stop	Stop	Stop	Stop	Stop
	LI2	Forward	Forward	Forward	Forward	Forward
	LI3	Reverse	Reverse	Reverse	Reverse	Freewheel
	LI4	Not assigned	JOG	PID integral reset	Ref. 2 switching	Ref. 1B switching
	LI5	Not assigned	Fault reset	PID 2 preset ref.	Forced local	Fault reset
	LI6	Not assigned	Torque limit	PID 4 preset ref.	Not assigned	Not assigned
R1		Faulty	Faulty	Faulty	Faulty	Faulty
R2		Not assigned	Not assigned	Not assigned	Not assigned	Drive operation
I/O extension card I/O						
2-wire	LI7	Not assigned				
3-wire	LI7	Not assigned				
LI8 to LI14		Not assigned				
LO1 to LO4		Not assigned				
R3/R4		Not assigned				
Al3, Al4		Not assigned				
RP		Not assigned				
AO2		Motor current				
AO3		Not assigned	Not assigned	PID error	Not assigned	Not assigned
Graphic display terminal keys						
F1 key		Not assigned	Not assigned	Not assigned	Control via graphic display terminal	Not assigned
F2, F3, F4 keys		Not assigned	Not assigned	Not assigned	Not assigned	T/K (control via graphic display terminal)

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

RUN	Term	+43		5.4A
1.2 MONITORING				
Frequency Ref.				3.3 Hz
Motor current				5.4 A
Motor speed				0 rpm
Motor thermal state				80 \%
Drv thermal state				85 \%
Code	<<	>>	Quic	$\mathrm{k} \nabla$

Displaying physical values

1 bar chart

Start-up (continued)

- MONITORING menu

The MONITORING menu can be used to display commands, the operation of the motor and application through the drive of its I/O or of the communication network connections.

Logic input map

RUN \quad Mod.	+50.00 Hz	5.4 A	
COMMUNICATION MAP	\square		
Cmd channel	$:$		Modbus
Cmd Value	$:$		ABCD Hex
Active ref. channel :		CANopen	
Frequency ref.	$:$		+50.00 Hz
ETA status word	$:$	2153 Hex	
Code	\ll		\gg

Communication map

One of the uses of this menu is to display the alarm groups, thermal states and electrical values such as:

- electrical power consumed by the drive
\square the drive's cumulative electrical power, etc.

Configuration and settings

The SETTINGS menu can be used to configure all the drive's settings. Activating a function automatically provides access to the related settings on the same screen (the application functions are described on pages 158 to 175).

RDY	Term	+0.00 Hz
PRESET SPEEDS		0.0 A
2 preset speeds $\quad:$	\square	
4 preset speeds	$:$	LI 3
8 preset speeds	$:$	LI 4
Preset speed 2	$:$	LI 5
Preset speed 3	$:$	10.0 Hz
Code	\ll	

Setting a function

Configuring a value

Operation

The display screen appears automatically every time the drive is turned on.
There are different possible scenarios:
■ One or two bar charts are displayed.
■ One, two or five digital values are displayed.

1 digital value

RUN	Term	
1.2 MONITORING		\square
Frequency Ref.	$:$	43.3 Hz
Motor current	$:$	5.4 A
Motor speed	$:$	1300 rpm
Motor thermal state :	80%	
Drv thermal state	$:$	85%
Code $\quad \ll$	\gg	Quick \square

5 digital values

Presentation: pages 4 to 7	Characteristics:	References:	Dimensions:	Schemes:

Variable speed drives for asynchronous motors
 Altivar 61

SCF1	Term	$+50.00 \mathrm{~Hz}$	0.0A
FAULT HISTORY			
Short circuit			
Overcurrent			
External FLT			
Overvoltage			
Undervoltage			
Help			$\mathrm{k} \square$

Fault history

Troubleshooting screen

Identification screen

RUN	Term	$+50.00 \mathrm{~Hz}$	5.4A
SERVICE MESSAGE			
For technical support, dial 321275			
Quick ${ }^{\text {® }}$			

Example of a customized message

Maintenance, diagnostics

New functions have been added to the Altivar 61 drive to enable it to provide quick and simple maintenance, ultimately boosting productivity:

- Response to faults or alarms

It is possible to use the alarm management or drive operation configuration functions to take corrective measures before stopping the machine.

■ Fault history and help

When a fault occurs, a help screen is available to quickly identify the cause of the fault.
As soon as the fault occurs, values such as speed, current, thermal state, timer are saved and restored in the fault history.
The last 8 faults are stored.

- IDENTIFICATION menu

The IDENTIFICATION menu can be used to display the relevant serial numbers and software versions, thereby helping to manage the equipment base. This information, also available from the PowerSuite software workshop, can be exported to other database-type software applications.

- Test functions

The Altivar 61 drive includes the following test functions:

- Identifying any motor short-circuit before start-up
\square Running, via the graphic display terminal or PowerSuite software workshop,
automatic procedures during maintenance operations aimed at testing:
- the motor
- the drive power components

The test results are shown on the graphic display terminal or using the PowerSuite software workshop.
It is also possible to write and read messages in the drive using the graphic display terminal or the PowerSuite software workshop.

■ Oscilloscope function

The Altivar 61 drive has an oscilloscope function, which produces traces that can be viewed using the PowerSuite software workshop.
The PowerSuite software workshop can also be used to carry out remote diagnostics via modem.

Presentation:	Characteristics:	
pages 4 to 7 pages 8 to 15	References: pages 18 to 21	Dimensions:

Controlling the drive

■ Via the drive I/O

Control signals are transmitted via cable to the I/O. Functions are assigned to logic inputs, analog inputs, etc.
A logic input can be assigned to more than one function. This means that two functions can be controlled using a single signal, thereby limiting the number of inputs required.

The Altivar 61 drive I/O can be configured independently from each other. For instance,

- A time delay can be applied when it comes to reading the logic inputs, so as to avoid any bounce-back from certain switches.
- Transforming incoming signals on the analog inputs can help the drive fully adapt to the control devices and applications:
- Minimum and maximum values for the input signal
- Input filtering in order to eliminate unwanted interference from the signals received
- Magnifying glass effect through delinearizing the input signal in order to increase the precision with small amplitude signals
- "Pedestal" and "Deadband" functions for signals in order to prevent low speed operations which can have an adverse effect on the application
- "Mid-point" function, which can be used from a unipolar input signal to obtain a bipolar output signal to control the speed and direction of rotation
- Transforming analog outputs which transfer information sent by the drive to other devices (display units, drives, PLCs, etc.):
- voltage or current output signal
- minimum and maximum values for the output signal
- output signal filtering

Logic outputs can be delayed on activation and deactivation. The output state can also be configured when the signal is active.
The frequency control signals are also transformed by the drive: \square signal frequency minimum and maximum values (30 kHz on the extended I/O card's RP input).

- Via the remote graphic display terminal

The rotation commands and references (speed or PID) can be controlled via the graphic display terminal. Some application functions can also be assigned to the function keys F1, F2, F3 and F4 on the graphic display terminal. It is possible to manage a change in command and/or reference source (bumpless function) in different ways.
Example: two options are offered when switching control from via the terminals to via the graphic display terminal:

- stop the Altivar 61 drive, or
- continue operation with a copy of the direction of rotation and reference

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Controlling the drive (continued)

- Via a communication network
- I/O profile

The I/O profile, which is easy and quick to use, can be used to control the Altivar 61 drive via the communication network, in the same way as via the I/O terminals. When commands are sent via a network they are written in a command word. This word behaves like virtual terminals containing logic inputs.
Application functions can be assigned to the bits of this word. More than one function can be assigned to the same bit.

The commands and references can come from different sources, such as the terminals, graphic display terminal or communication networks.
Each source can be set or switched individually using logic inputs or command word bits.

The I/O profile is supported by all integrated communication ports (Modbus, CANopen), as well as by all the communication cards available (Ethernet TCP/IP, Fipio, Profibus DP, etc.).

- CiA DSP 402 profile ("Device Profile Drives and Motion Control")

This profile from the organization CiA (CAN in Automation) describes standard functions, parameters and operation for variable speed drives.
This standard is an extension of the Drivecom profile. The Altivar 61 drive complies with the CiA DSP 402 standard and it supports the following 2 modes in this profile: separate and not separate.

Separate mode

The Start/Stop commands and references can come from different sources. Example: the speed reference is transmitted by the Ethernet TCP/IP network and the Start/Stop commands by the logic signals wired on the terminals.

Each source can be set or switched individually using logic inputs or command word bits.

Not separate mode

The Start/Stop commands and references (speed, torque, PID, etc.) come from the same source (example: CANopen bus).

It is possible to replace this source by another one, using a logic input or command word bit.

The CiA DSP 402 profile is supported by all integrated communication ports (Modbus, CANopen), as well as by all the communication cards available (Ethernet TCP/IP, Fipio, Profibus DP, etc.).

- ODVA profile

The ODVA profile is supported by the DeviceNet communication card.

Presentation:	Characteristics:	References:	
pages 4 to 7	pages 8 to 15	pages 18 to 21	Dimensions:

Variable speed drives for asynchronous motors
 Altivar 61

Functions suitable for pumping and ventilation applications

■ Motor control profiles

- Energy saving ratio

This type of command makes it possible to optimize the energy consumed based on the load applied to the machine.
\square Quadratic ratio ($\mathbf{K n}^{\mathbf{2}}$)
This type of command is optimized for centrifugal pumps and ventilators.

- PID regulator

This can be used to regulate a process with a reference and feedback given by a sensor.
Function suitable for controlling traction on a winder.

ACC: acceleration, dEC: deceleration, LI: logic inputs, B: Speed reference.

- Internal references

-rPI: reference transmitted by the graphic display terminal or a communication network.

- A: reference given by Fr1 or Fr1b with the summing, subtraction and multiplication functions, as appropriate.
The "PII" parameter is used to choose between these two references.

- Preset PID references

2 or 4 PID references are available. Table showing combinations of selected PID references:

LIx (Pr4)	Lly (Pr2)	Reference
0	0	rPI or A
0	1	rP2
1	0	$\mathrm{rP3}$
1	1	$\mathrm{rP4}$

Presentation:	Characteristics:	References:	
pages 4 to 7	pages 18 to 21	Dimensions: pages 8 to 15:	pag to 111

Variable speed drives for asynchronous motors Altivar 61

LSP: Low speed

SLE: Adjustable restart threshold
tLS: Maximum low speed operating time
rSL: Restart error threshold
Example of operation of sleep/wake-up function

- PID regulator (continued)

- PID feedback

PID feedback can be assigned to one of the analog inputs (Al1 to AI4) or the frequency control input (RP), depending on the option cards present. It can also be transmitted by a communication network (network AI).

The following 4 functionalities can be used in combination with the PID regulator:

- PI feedback supervision

- Sleep/wake-up

This function is used in addition to the PID regulator to avoid extended operation at too low speeds that is unnecessary or undesirable.
It stops the motor following a period of reduced speed operation. This duration (tLS parameter) and this speed (LSP + SLE parameters) can be adjusted.
It restarts the motor if the error or the PID feedback exceeds an adjustable threshold (rSL or UPP parameters depending on the threshold).

- Activate sleep mode by flow detection

This function is used in applications where zero flow cannot be detected by the sleep function alone.

- Alarms

Minimum and maximum monitoring thresholds of the PID regulator feedback and monitoring threshold of the PID regulator error.

- Predictive speed reference

This reference can come from the terminals (analog inputs, etc.), the graphic display terminal or a communication network.
This speed input gives an initial reference for starting.

a Auto/Man.

This can be used to switch from speed regulation mode (Man.) to PID regulation mode (Auto). A logic input or command word bit is used for switching.

Speed regulation mode (Man.)

The manual reference is transmitted via the terminals (analog inputs, preset speeds, etc.).
With manual switching, the speed reference changes according to the ramp times ACC and dEC.

PID regulation mode (Auto)

In automatic mode it is possible to:

- Adapt the references and feedback to the process (transformation)
- Correct a PID inversion
- Adjust the proportional, integral and derivative gains (Kp, Ki and Kd)
- Shunt the integral
- Use the "alarm" on the logic output or display it on the graphic display terminal, if the threshold is exceeded (Max. feedback, Min. feedback and PID error)
- Display the PID reference, PID feedback, PID error and PID output on the graphic display terminal and assign them to an analog output
- Apply a ramp (time $=$ PrP) to the PID reference.

The motor speed is limited to between LSP and HSP.
It is displayed as process values.

- Forced operation

In combination with the function inhibiting all faults, this function allows the run command to be forced in a defined direction and the reference to be forced to a configured value.

- Flow limit

Allows the flow of a fluid to be limited, for pumps.

Presentation:	Characteristics:	References:	Dimensions:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pages 90 to 111

Variable speed drives for asynchronous motors
 Altivar 61

Example of 3-wire control operation

Other application functions

■ 2-wire control

This can be used to control the direction of operation by means of a stay-put contact. It is enabled by means of 1 or 2 logic inputs (non-reversing or reversing).

This function is suitable for all non-reversing and reversing applications.
3 operating modes are possible:

- Detection of the state of the logic inputs
\square Detection of a change in state of the logic inputs
- Detection of the state of the logic inputs with forward operation always having priority over reverse

LII: forward
LIx: reverse

■ 3-wire control
This can be used to control the operating and stopping direction by means of pulsed contacts.
It is enabled by means of 2 or 3 logic inputs (non-reversing or reversing).
This function is suitable for all non-reversing and reversing applications.

■ Phase rotation

This function can be used to reverse the direction of rotation without modifying the drive wiring.

■ Ramps

- Acceleration and deceleration ramp times

This can be used to define acceleration and deceleration ramp times according to the application and the machine dynamics.

Linear acceleration ramp
FrS: Nominal motor frequency
t1: Acceleration time
t2: Deceleration time
t 1 and t 2 can be set independently from 0.01 to 9000 s (according to one of the following ramp increments:
$0.01 \mathrm{~s}, 0.1 \mathrm{~s}$ or 1 s);
Factory setting: 3 s .

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors

 Altivar 61

 Altivar 61}

- Ramp switching

This can be used to switch 2 acceleration and deceleration ramp times, which can be adjusted separately.
Ramp switching can be enabled by:

- a logic input
- a frequency threshold
- a combination of the logic input (or a command word bit) and the frequency threshold
- a command word bit

Function suitable for:

- material handling with smooth starting and approach
- machines with fast steady state speed correction

- Automatic adaptation of deceleration ramp

This can be used to automatically adapt the deceleration ramp if the initial setting is too low when the load inertia is taken into account. This function prevents the drive from locking in the event of an overbraking fault.
When this function is active and a short deceleration time has been set, the drive
-adjustment 0.01 to 9000 s

- factory setting 3 s

Acceleration 2 (AC2) and deceleration 2 (dE2):

- adjustment 0.01 to 9000 s
- factory setting 5 s

HSP: high speed.

U ramps

FrS: Nominal motor frequency
1: Ramp time set
$\mathrm{t} 2=0.5 \times \mathrm{t} 1$
The curve coefficient is fixed.

Customized ramps

FrS: Nominal motor frequency
tA1: Can be set between 0 and 100% (of ACC or AC2)
tA2: Can be set between 0 and (100% - tA1) (of ACC or AC2)
tA3: Can be set between 0 and 100% (of dEC or dE2)
tA4: Can be set between 0 and (100% - tA3) (of dEC or dE2)
ACC: Acceleration ramp 1 time
AC2: Acceleration ramp 2 time
dEC: Deceleration ramp 1 time
dE2: Deceleration ramp 2 time

- Acceleration and deceleration ramp profile

This can be used to gradually increase the output frequency starting from a speed reference, following a linear profile or a preset profile.

In the case of applications involving handling, packaging and passenger transport, the use of S ramps takes up mechanical play and eliminates jolts and also limits "non-following" of speed during rapid transient operation of high-inertia machines. Selecting "linear", " S ", " U " or customized profiles assigns both the acceleration and deceleration ramps.

Example of switching using logic input LI4
optimizes the motor power supply in order to achieve a high braking torque.

Function suitable for all applications which do not need to stop at a precise moment and do not use braking resistors.

Automatic adaption must be disabled for machines with a stop position on a ramp and using a braking resistor.

Presentation:	Characteristics:	References:	Schemes:
pages 4 to 7	pages 8 to 15	pages 18 to 21	Dimensions:

Variable speed drives for asynchronous motors

Altivar 61

RDY Term	+0.00Hz	0.0A
PRESET SPEEDS		\square
2 preset speeds		LI3
4 preset speeds		LI4
8 preset speeds		LI5
Preset speed 2		10.0 Hz
Preset speed 3		15.0 Hz
Code \ll	>> Qu	ick $\boldsymbol{\square}$

Preset speed settings

Preset speeds

This can be used to switch preset speed references.
Choose between two, four or eight preset speeds.
Enabled by means of 1, 2 or 3 logic inputs.
Preset speeds can be set in increments of 0.1 Hz , from 0 Hz to 500 Hz or 1000 Hz , depending on the rating.

Function suitable for material handling and machines with several operating speeds.

Example of operation with 4 preset speeds and 2 logic inputs

- JOG operation

This can be used for pulse operation with minimum ramp times (0.1 s), limited speed reference and minimum time between 2 pulses.
It is enabled by 1 logic input and pulses given by the operating direction command.

Function suitable for machines with product insertion in manual mode (example: gradual movement of the mechanism during maintenance operations).

The motor is stopped automatically after a period of operation at low speed (LSP) with a zero reference and a run command present.
This time can be set between 0.1 and 999.9 seconds (0 corresponds to an unlimited time). Factory setting 0 s . The motor restarts automatically on the ramp when the reference reappears or if the run command is interrupted and then re-established.

Function suitable for automatic Stops/Starts.

Presentation:	Characteristics:	References:	Schemes:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pagensions:

Variable speed drives for asynchronous motors Altivar 61

- Motor control types
- Flux Vector Control with sensor (FVC)

In voltage mode, this control type can be used to obtain the best static and dynamic torque performance.

- Sensorless Flux Vector Control

In voltage mode, this control type can be used with a single motor or motors connected in parallel.
In current mode, this profile performs better than the previous type, but it cannot supply power to motors connected in parallel.

- 2-point Vector Control

The zone for operating at constant power can be optimized by defining an additional point in the control profile.
This function should be used with motors offering a two-part defluxing zone. It can be used to limit the voltage at the motor terminals when the motor is being powered by a high line supply.

- Voltage/frequency ratio

This control type is particularly suitable for special motors (high-speed motors, synchronized asynchronous motors, etc.). The ratio can be adjusted by 2 or 5 points and used to achieve output frequencies of up to 1000 Hz .

\square Synchronous motor

This control type is exclusively reserved for controlling open loop synchronous permanent magnet motors with sinusoidal electromotive force (EMF).

- Limiting motor overvoltage

The Altivar 61 drive inverter bridge control can be used to limit overvoltage in the motor terminals, which is double the voltage level in the DC bus (Stressless PWM). This function is useful in cases where long lengths of cabling, rewound motors or motors in a low isolation class are involved.

- Auto-tuning

Auto-tuning can be performed:

- using a dialogue tool (graphical display terminal, PowerSuite software workshop, integrated 7 -segment display terminal)
- via a communication network
\square automatically every time the drive is switched on
\square by enabling a logic input.
Auto-tuning can be used to enhance application performance.
In Flux Vector Control mode (FVC open loop with voltage regulation), certain parameters are measured periodically.
Saving the motor thermal state can help to compensate exactly for the motor resistors, even after the drive has been switched off.

- Switching frequency, noise reduction

The switching frequency setting permits a reduction in the noise generated by the motor for any application requiring a low level of noise.
The switching frequency is modulated randomly in order to avoid resonance. This function can be disabled if it causes instability.
Switching the intermediate DC voltage at high frequency is useful for supplying the motor with a current wave having little harmonic distortion.
The switching frequency is adjustable during operation to reduce the noise generated by the motor.
Value: 1 to 16 kHz depending on rating

Presentation:	Characteristics:	References:	Dimensions:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pages 90 to 111

Variable speed drives for asynchronous motors
 Altivar 61

Output contactor command

Motor fluxing

This can be used to obtain rapid high torque on start-up; magnetic flux needs to be already established in the motor.
There is a choice between open loop or closed loop operation.

In continuous mode, the drive automatically establishes the flux when it is powered up.

In non-continuous mode:

- If a logic input or command word bit is assigned to the motor fluxing command, flux is established when the command is confirmed.
- If neither a logic input nor command word bit has been assigned, or if the latter are not active when a run command is given, fluxing occurs when the motor starts.

Fluxing is accelerated if a higher current than the nominal motor current is applied, then it is set to the value of the motor no-load current.

■ Output contactor command

This allows the drive to control a contactor located between the drive and the motor. The request to close the contactor is made when a run command appears. The request to open the contactor is made when there is no current in the motor.
Note: If a DC injection braking function has been configured it should not be left operating too long in stop mode, as the contactor only opens at the end of braking.

■ Stop on thermal alarm

This can be used to:
\square Allow a movement to end before examining a thermal fault. There are two adjustable thresholds used to define the thermal state level which, when exceeded, makes a machine stop;

- Prevent a new run command from being accepted as long as the drive and motor temperatures are not less than 100\%.

Presentation:	Characteristics:	References: pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors

 Altivar 61

 Altivar 61}

RDY	Term	+0.00 Hz
+ - SPEED		0.0 A
+ speed assign.:	\square	
- speed assign. :	LI3	
Ref. saved $\quad:$	RI4	
Code		Quick
\square		

+/- speed function settings

- Uncontrolled output cut

It is possible to configure output phase loss protection, which will allow the drive or motor circuit to be broken without the drive becoming locked in fault mode and facilitate a smooth restart after the motor has been reconnected. The output phase loss may also lock the drive, depending on the configuration.

■ +/- speed

This can be used to increase or decrease a speed reference by means of 1 or 2 logic inputs, with or without the last reference being saved (motorized potentiometer function).
This function is suitable for centralized control of a machine with several sections operating in one direction or for control by a handling crane pendant control station with two operating directions.

Two types of operation are available:
\square Use of single action buttons: 2 logic inputs are required in addition to the operating direction(s).
\square Use of double action buttons: only 1 logic input assigned to + speed is required.
\square Use of single action buttons: 2 logic inputs are required in addition to the operating direction(s).

LSP: low speed, HSP: high speed
Example of " + - speed" with 2 logic inputs, single action buttons and reference saving
\square Use of double action buttons: only 1 logic input assigned to + speed is required.
Logic inputs:

Forward 9	Reverse	+ speed		Released (- speed)	$1^{\text {st }}$ press (speed maintained)	$2^{\text {nd }}$ press (+ speed)
a	c^{1}		Forward button	-	a	a and b
a and b : c and d :	press press		Reverse button	-	C	c and d

LSP: low speed, HSP: high speed
Example with double action buttons and 1 logic input
Note: This type of +/- speed control is incompatible with 3-wire control.

Presentation:	Characteristics:	References:	Schemes:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pagensions:

Variable speed drives for asynchronous motors
 Altivar 61

Example of +/-speed around a 2-wire control reference

- Reference saving

This function is associated with $+/$ - speed control.
This can be used for reading and saving the last speed reference prior to the loss of the run command or line supply. The reference saved is applied the next time a run command is received.

- +/- speed around a reference

The reference is given by Fr1 or Fr1b, including, if relevant, the summing, subtraction and multiplication functions, as well as the preset speeds.
During the run command the drive goes to the reference, following the acceleration and deceleration ramps (pressing + -/-speed makes the speed vary around this reference according to acceleration ramp 2 and deceleration ramp 2).

+ or - speed variation around the reference is limited to a percentage of the reference (SRP parameter). When operation has stopped, the amended reference is not saved.
The maximum total reference is always limited by high speed (HSP parameter) and the minimum reference (LSP parameter).

■ Automatic catching of a spinning load with speed detection ("catch on the fly") This function can be used to restart the motor smoothly after one of the following events, provided the run command is still present:

- loss of line supply or power off
\square fault reset or automatic restart
- freewheel stop.

Once the event is over, the effective speed of the motor is detected in order to restart on a ramp at this speed and return to the reference speed. The speed detection time can reach 0.5 s .

This function is suitable for machines which suffer low motor speed loss during a power failure (high-inertia machines such as centrifuges, etc.).

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

- Undervoltage management

Depending on the application, it is possible to configure the Altivar 61's response to undervoltages or power failures.
If undervoltage occurs:

- The Altivar 61 drive can continue operating with undervoltage levels up to - 50% (adjustable threshold)
- If the drive locks as a result, management of the fault relay can be configured (open or not). If the fault relay does not open an alarm is shown.

The Altivar 61 drive can also be configured to prevent the drive locking (using an alarm):

- Controlled stop according to the type of stop configured
- Deceleration based on a ramp which it automatically adapts to maintain the

DC bus voltage, thereby preventing the drive from locking in fault mode - Instant IGBT (inverter bridge) loss followed by power supplied to the motor as soon as the line voltage has reappeared. This function can be used to prevent the Altivar 61 drive being reinitialized.

- Braking balance

When several drives are connected on a common DC bus, this function can be used to adjust the braking thresholds in order to balance the braking powers among the various drives or braking units.

- Braking resistor thermal protection

The Altivar 61 drive incorporates thermal protection for braking resistors if it is not equipped with a thermal switch. If the resistor thermal state is too high an alarm can be assigned to the logic output or the drive may lock in fault mode, depending on how the function is programmed

Variable speed drives for asynchronous motors

Altivar 61

Schematic diagram for multi-motor mode

Example of reference switching

Parameter set switching (multi-parameter)

This can be used to switch 3 sets of 15 parameters maximum when the motor is running.
Each set can contain a different value for each of the parameters. The sets are switched using 1 or 2 logic inputs or command word bits.

Function suitable for machines involving 2 or 3 manufacturing processes.
■ Motor or configuration switching (multi-motor or multi-configuration)
The Altivar 61 drive can have 3 configurations, which can be activated remotely, allowing it to adapt to:

- 2 or 3 different motors or mechanisms in multi-motor mode. In this instance, the thermal state for all the motors is calculated and saved. This means that each motor is protected thermally.
- 2 or 3 configurations for the same motor in multi-configuration mode. This function can also be used to save the current configuration in another memory zone, which it can be retrieved from.
Switching is carried out using 1 or 2 logic inputs, depending on the number of motors or configurations chosen (2 or 3).

Multi-motor and multi-configuration modes cannot be used together.

Reference switching

Switching between two references (speed, PID, etc.) can be enabled by: \square a logic input

- a command word bit

Reference $1(\mathrm{Fr} 1)$ is active if the logic input (or command word bit) is at 0 ; reference 2 (Fr1b) is active if the logic input (or command word bit) is at 1.
References can be switched with the motor running.
Reference Fr1b, like Fr1, can originate from:口 an analog input (AI)

- a frequency control input (RP)
\square the graphic display terminal
- the Modbus or CANopen bus
- a communication card
- the "Controller Inside" programmable card

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

A: drive reference
SA2, SA3: summing inputs
dA2, dA3: subtraction inputs
MA2, MA3: multiplication inputs.

Operations on the references (summing, subtraction, multiplication)
Summing, subtraction and multiplication inputs can be activated simultaneously.
The drive reference is thus:
\square reference of drive $A=(F r 1$ or $\mathrm{Fr} 1 \mathrm{~b}+\mathrm{SA} 2+\mathrm{SA} 3-\mathrm{dA} 2-\mathrm{dA} 3) \times \mathrm{MA} 2 \times \mathrm{MA} 3$

\square Summing inputs

They can be used to add 2 to 3 references from different sources to Fr1 or Fr1b (see "Reference switching").
The references to be added together are selected from all the possible types of reference.

Example:
Reference Fr1 or Fr1b from Al1
Reference SA2 from CANopen
Reference SA3 from a communication card
Reference of drive $A=F r 1$ or $\mathrm{Fr} 1 \mathrm{~b}+\mathrm{SA} 2+\mathrm{SA} 3$.

Subtraction inputs

They can be used to subtract 2 to 3 references from different sources from Fr1 or Fr1b (see "Reference switching").
The references to be subtracted are selected from all the possible types of reference.

Example:

Reference Fr1 or Fr1b from Al1
Reference dA2 from CANopen
Reference dA3 from a communication card
Reference of drive A = Fr1 or Fr1b - dA2 - dA3.

\square Multiplication inputs

They can be used to multiply 2 to 3 references from different sources by Fr1 or Fr1b (see "Reference switching").
The references to be multiplied are selected from all the possible types of reference.
Example:
Reference Fr1 or Fr1b from Al1
Reference MA2 from CANopen
Reference MA3 from a communication card
Reference of drive A = Fr1 or Fr1b x MA2 x MA3.

Variable speed drives for asynchronous motors
 Altivar 61

- Torque limit

This can be used to limit the torque in the motor and generator quadrants using separate settings.

There are two types of torque limit:

- one with a value set by a parameter
- the other with a value given by an analog input or a frequency control input.

When both torque limit types are enabled it is the lowest value which is read. They can be switched using a logic input or command word bit.

This function is not available for voltage/frequency ratio.

The torque limit operates in both directions of rotation in motor or generator mode.

■ Torque or current limit detection

This function can be used to detect when the current or torque limit has been reached. Depending on the configuration, it is possible to:

- use an alarm to signal this
- lock the drive after an adjustable period of time.

RDY \quad Term	
$+0.00 \mathrm{~Hz}$	
2nd CURRENT LIMIT.	0.0 A
I Limit. 2 activ. $:$	\square
I Limit. 2 value $:$	LI6
Current limitation :	6.4 A
Code	

Configuring current switching

- Current limit

A $2^{\text {nd }}$ current limit can be configured between 1.1 and 1.2 times the nominal drive current and it can be used to limit the rise in motor temperature and the torque. Switching between 2 current limits can be enabled via:
\square a logic input
\square a command word bit

Presentation:	Characteristics:	References:	Dimensions:
pages 4 to 7	pages 8 to 15	pages 18 to 21	pages 90 to 111

Variable speed drives for asynchronous motors

 Altivar 61

 Altivar 61}

-=-=- Analog reference
Example of how reference saving works

- Reference saving

This can be used to:

\square Read and save the speed reference value of the analog input using a logic input when the command lasts longer than 0.1 s
\square Control the speed of several drives alternately via a single analog reference and a logic input for each drive

- Enable via a logic input a line reference (serial link) on several drives in order to synchronize movements by eliminating variations when the reference is sent The reference is acquired 100 ms after the rising edge of the acquisition request. A new reference is not then acquired until a new request is made.

■ Stop types

- Freewheel stop

This function stops the motor by resistive torque if the motor power supply is cut.

A freewheel stop is achieved:

- by configuring a normal stop command as a freewheel stop (when a run command is over or a stop command occurs)
- by enabling a logic input
- by activating a command word bit

\square Fast stop

This can be used to achieve a braked stop with an acceptable deceleration ramp time (divided by an adjustable coefficient from 0 to 10) for the drive/motor unit to avoid locking in the event of an overbraking fault. If the coefficient is equal to 0 the motor decelerates as fast as possible.

This is used for conveyors with emergency stop electrical braking.
A fast stop is achieved:

- by configuring a normal stop as a fast stop (when a run command is over or a stop command occurs)
- by enabling a logic input
- by activating a command word bit

\square Fastest possible stop

If the ramp divider coefficient is equal to 0 the motor decelerates as fast as possible.

- DC injection stop

This can be used to brake high-inertia machines at low speed or maintain torque on stopping.
A DC injection stop is achieved:

- by configuring a normal stop as a DC injection stop (when a run command is over or a stop command occurs)
- by enabling a logic input
- by activating a command word bit

The DC value and the standstill braking time are adjustable.

Presentation:	Characteristics:	References:	
pages 4 to 7 pages 8 to 15	pages 18 to 21	Dimensions:	

Variable speed drives for asynchronous motors

Altivar 61

■ Motor thermal protection
Motor thermal protection is provided by the drive:

- directly, through PTC probes located in the motor windings
\quad indirectly, via the integrated thermal relay. Indirect thermal protection is
implemented via continuous calculation of its theoretical temperature rise.
The microprocessor calculates the theoretical temperature rise of the motor based on various elements:
\square the operating frequency
- the current taken by the motor
- the operating time
- the maximum ambient temperature around the motor $\left(40^{\circ} \mathrm{C}\right)$
\square the type of motor ventilation (self-cooled or force-cooled)
Thermal protection can be adjusted from 0.5 to 1.2 times the nominal current, depending on the drive type. It must be adjusted to the nominal current indicated on the motor rating plate.
Note: The motor thermal state memory returns to zero when the drive control part is switched off.

Motor thermal protection curves

- Self-cooled motors:

The tripping curves vary with the motor frequency.
■ Force-cooled motors:
Only the 50 Hz tripping curve should be considered, whatever the motor frequency.

- Drive thermal protection

The drive thermal protection is provided by a PTC probe mounted on the heatsink or integrated with the power module.

■ IGBT thermal protection

The drive manages the switching frequency intelligently according to the IGBT temperature.
If the drive's current rating is exceeded (example: current higher than the nominal drive current for a zero stator frequency), an alarm is displayed and a timer increases for as long the alarm is present.

- Machine protection

Makes it possible to detect under and/or overload.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors

 Altivar 61

 Altivar 61}

RDY \quad Term +0.00 Hz	0.0 A
$4-20 \mathrm{~mA}$ LOSS	\square
Fallback spd Spd maintain Ramp stop Fast stop DC injection	\checkmark

Configuration of the drive's fault response

■ Configuring the drive's fault response (fault management)

Different responses can be configured for the drive in the event of a resettable fault occurring:

- freewheel stop
- drive switches to the fallback speed
\square drive maintains the speed at which it was operating when the fault
occurred until the fault disappears
- stop on ramp
- fast stop
- DC injection stop
\square no stop (alarm activated)

List of resettable faults:

- external fault
- speed feedback loss
\square overspeed
- output phase loss
- auto-tuning fault
- loss of 4-20 mA
- PTC probe
- drive overheating
- motor overload if the thermal state is less than 100\%
- line overvoltage
- overbraking
- current/torque limit
- IGBT overheating
- communication faults (Modbus, CANopen and other communication networks),

口 process overload

- process underload
- PI supervision,
\square No flow.

- Resetting resettable faults

This can be used to remove the last fault using a logic input, command word bit or the STOP/RESET key on the graphic display terminal.
The restart conditions after a reset to zero are the same as those of a normal power-up.
List of resettable faults, see "Configuring the drive's fault response".
Line supply undervoltage and input phase loss faults are reset automatically when the line supply is restored.

Function suitable for applications where drives are difficult to access, for example, a drive placed on a moving part.

- General reset (disables all faults)

This function inhibits all faults, including thermal protection (forced operation), and can destroy the drive.

Function suitable for applications where restarting may be crucial (conveyor in an oven, smoke extraction system, machines with solidifying products to be discarded). The function is enabled by a logic input.
Fault monitoring is active if the logic input is at state 1. All faults are reset on a change of state Σ of the logic input.
Note: Use of this function invalidates the guarantee.

Variable speed drives for asynchronous motors
 Altivar 61

■ Automatic restart

This enables the drive to be restarted automatically after it has locked in fault mode if the relevant fault has disappeared and the other operating conditions permit a restart.
This restart is performed by a series of automatic attempts separated by increasingly longer waiting periods of $1 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ then 1 minute for the rest.
The options for the restart process's duration are 5, 10 and $30 \mathrm{~min} ., 1,2,3$ hours and an unlimited time.
If the drive has not restarted after the configured time, it will lock and the procedure is abandoned until it has been powered off and on again.

The faults which allow the drive to be restarted in this way are:

- line overvoltage
\square motor thermal overload
\square drive thermal overload
\square d.c. bus overvoltage
- line phase failure
- external fault
- loss of 4-20 mA
\square PTC probe
- serial link
- current or torque limit
- output phase loss
- line voltage too low. For this fault, the function is always active, even if it is not configured.
口 process overload
- process underload
- PI supervision
- no flow.
- fault caused by CANopen, Modbus or other commmunication networks. These faults are reset automatically as soon as the command word or frequency reference is sent to the drive.
For these types of fault, the relay configured as a fault relay remains activated if the function is configured. The speed reference and operating direction must be maintained for this function.

This function is suitable for machines or installations which are in continuous operation or unmonitored, and where a restart will not endanger equipment or personnel in any way.

■ PTC probe protection

The probes can be connected directly to the drive control card or to the I/O option cards.
The way in which a temperature fault is recorded by the drive can be configured:

- permanent record
\square only recorded when the drive's power section is switched on
\square only recorded when the motor is running

- IGBT testing

When enabled, this function tests every IGBT and the motor connections in order to detect a short-circuit or an open circuit. This test is run every time the drive is powered on and before each motor start.

This function must not be enabled with machines with fast cycles in order to preserve the time for recording run commands.

■ Resetting operating time to zero

The drive operating and power-up times can be reset.

■ External fault

This function can lead to the drive locking if a fault occurs in the machine. This fault is flagged on the drive display unit. The fault is flagged if the signal is at 1 or 0 , according to the function configuration.

Presentation:	Characteristics:	References:
pages 4 to 7	pages 8 to 15	pages 18 to 21

Variable speed drives for asynchronous motors
 Altivar 61

■ Line contactor control

This can be used on each run command to close the line contactor and open it when the motor is no longer on. The drive control section must be powered without fail by an external $24 \mathrm{~V}=$-- source.

This function must be used for simple sequences with a low number of Start/Stop operations (Start/Stop cycle longer than 60 seconds).

After a run command, if the line contactor is not closed the drive will lock after an adjustable period of time.

- Forced local mode

Forced local mode imposes control via the terminals or graphic display terminal and disables all other control modes.
Switching to forced local mode may be activated via:
\square a logic input

- a function key on the graphic display terminal

The following references and commands are available for forced local mode:

- references Al1, Al2, etc. and command via logic inputs
\square reference and command via the graphic display terminal

Variable speed drives for asynchronous motors
 Altivar 61

Function compatibility table

■ Configurable I/O
The table below lists the incompatibilities between the functions and indicates the priority functions:
Stop functions have priority over run commands.
The Power Removal safety function takes priority over all other functions.
The selection of functions is limited:
\square By the number of drive I/O which can be reassigned: if necessary, add an I/O extension card.

- By the incompatibility of certain functions with one another

Functions	PID regulator	Preset speeds	JOG operation	Synchronous motor
PID regulator				
Preset speeds				
JOG operation				
Synchronous motor				
+/- speed (1)				
+/- speed around a reference				
Operation on the references				
Freewheel stop				
Fast stop				
DC injection stop				
				θ

(1) Excluding special use with reference channel Fr2.
(2) Only the multiplier reference is incompatible with the PID regulator.
(3) Priority is given to the first of these two stop modes to be activated.

PowerSuite screen on PC
Installed base management

PowerSuite screen on PC
View of PI regulator function parameters

[^7]
Presentation

The PowerSuite software workshop for PC is a user-friendly tool designed for setting up control devices for the following Telemecanique brand motors:

- TeSys model U controller-starters
- Altistart soft start/soft stop units
- Altivar variable speed drives.

It includes various functions designed for setup phases such as:

- Preparing configurations

■ Start-up

- Maintenance.

In order to simplify the start-up and maintenance phases, the PowerSuite software workshop can use the Bluetooth ${ }^{\circledR}$ wireless link.

Functions (1)

Preparing configurations

The PowerSuite software workshop can be used on its own to generate the device configuration. It can be saved, printed and exported to office automation software.

The PowerSuite software workshop can also be used to convert:
■ An Altivar 28 drive configuration to an Altivar 31 drive configuration

- An Altivar 38 drive configuration to an Altivar 61 drive configuration
- An Altivar 58 or Altivar 58F drive configuration to an Altivar 71 drive configuration.

Start-up

When the PC is connected to the device, the PowerSuite software workshop can be used to:

- Transfer the generated configuration
- Adjust

■ Monitor. This option has been enhanced with new functions such as:

- The oscilloscope
- The high speed oscilloscope (minimum time base: 2 ms)
- Displaying communication parameters

■ Control

- Save the final configuration.

Maintenance

In order to simplify maintenance operations, the PowerSuite software workshop can be used to:
■ Compare the configuration of a device currently being used with a saved
configuration

- Manage the user's installed base of equipment, in particular:
- Organize the installed base into folders (electrical equipment, machinery, workshops, etc.)
\square Store maintenance messages
\square Simplify Ethernet connection by storing the IP address.

User interface

The PowerSuite software workshop can be used to:
■ Present the device parameters arranged by function in the form of illustrated views
of diagrams or simple tables
■ Customize the parameter names

- Create:
- A user menu (choice of particular parameters)
\square Monitoring control panels with graphic elements (cursors, gauges)
■ Perform sort operations on the parameters
■ Display text in five languages (English, French, German, Italian and Spanish).
The language changes immediately and there is no need to restart the program.
It also has online contextual help:
■ On the PowerSuite tool
- On the device functions by direct access to the user manuals.
(1) Some functions are not available for all devices. See the table of function availability, page 179.

Function availability for the PowerSuite software workshop

Functions not listed in the table are available for all devices.

Function available with devices	Controllerstarter	Soft start/soft stop unit	Drives			
	TeSys model U	ATS 48	ATV 11	ATV 31	ATV 61	ATV 71
Monitoring						
Oscilloscope						
High speed oscilloscope						
Display of communication parameters						
Control						
Customization of parameter names						
Creation of a user menu						
Creation of monitoring control panels						
Sort operation on parameters						
	Function Function	s available s not available				

Ethernet connection

Connections (1)

Modbus communication bus

The PowerSuite software workshop can be connected directly to the device terminal port or Modbus network port via the serial port on the PC.

Two types of connection are possible:
■ With a single device (point-to-point connection), using a VW3 A8 106 PC serial port connection kit
■ With a number of devices (multidrop connection), using the XGS Z24 interface.

Ethernet TCP/IP communication network

The PowerSuite software workshop can be connected to an Ethernet TCP/IP network (see pages 182 to 187). In this case, the devices can be accessed:
■ Using a VW3 A58 310 communication card for the Altivar 61and 71 drives ■ Using a 174 CEV 30020 Ethernet-Modbus bridge.

Bluetooth ${ }^{8}$ wireless link

The PowerSuite software workshop can communicate via a Bluetooth ${ }^{\circledR}$ radio link with a device equipped with a Bluetooth ${ }^{\circledR}$ - Modbus VW3 A8 114 adapter. The adapter plugs into the device terminal port or Modbus network port and has a range of 10 m (class 2).

If the PC does not have Bluetooth ${ }^{\circledR}$ technology, use the VW3 A8 115 USB-Bluetooth ${ }^{\circledR}$ adapter.

Remote maintenance

Using a simple Ethernet connection, the PowerSuite software workshop can be used for remote monitoring and diagnostics.
When devices are not connected to the Ethernet network, or it is not directly accessible, various remote transmission solutions may be possible (modem, teleprocessing gateway, etc.). Please consult your Regional Sales Office.
(1) Please refer to the compatibility table on page 181.
(2) Please refer to our specialist "Automation platform Modicon Premium and Unity - PL7 software" and "Automation platform Modicon TSX Micro - PL7 software" catalogues.

VW3 A8 104	Description	Composition	Reference	Weight kg
	PowerSuite CD-ROM	1 program for PC in English, French, German, Italian and Spanish Variable speed drive and starter technical manuals.	VW3 A8 104	0.100
	PowerSuite update CD-ROM (1)	1 program for PC in English, French, German, Italian and Spanish Variable speed drive and starter technical manuals.	VW3 A8 105	0.100
	Connection kit for PC serial port for point-to-point Modbus connection	$1 \times 3 \mathrm{~m}$ cable with 2 RJ45 connectors 1 RS 232/RS 485 converter with one 9-way female SUB-D connector and 1 RJ45 connector 1 converter for the ATV 11 drive, with one 4 -way male connector and one RJ45 connector 1 RJ45/9-way male SUB-D adapter for connecting ATV 38/58/58F drives 1 RJ45/9-way female SUB-D adapter for connecting ATV 68 drives.	VW3 A8 106	0.350
	RS 232-RS 485 interface for multidrop Modbus connection	1 multidrop Modbus converter for connection to screw terminals. Requires a 24 V =-- (20... 30 V), 20 mA power supply (3).	XGS Z24	0.105
VW3 A8 114	Modbus-Bluetooth ${ }^{\circledR}$ adapter (2)	1 Bluetooth ${ }^{\circledR}$ adapter (10 m range, class 2) with 1 RJ45 connector $1 \times 0.1 \mathrm{~m}$ cable with 2 RJ45 connectors for PowerSuite $1 \times 0.1 \mathrm{~m}$ cable with 1 RJ45 connector and 1 mini DIN connector for TwidoSoft 1 RJ45/9-way male SUB-D adapter for connecting ATV 38/58/58F drives.	VW3 A8 114	0.155
	USB-Bluetooth ${ }^{\circledR}$ adapter for PC	This adapter is required for a PC which is not equipped with Bluetooth ${ }^{\circledR}$ technology. It is connected to a USB port on the PC Range of 10 m (class 2).	VW3 A8 115	0.290
	(1) Updates a version \geqslant V1.50 with the latest available version. For versions < V1.50, you should ord VW3 A8 104. (2) Can also be used to communicate between a Twido PLC and the TwidoSoft software workshop (3) Please consult our "Interfaces, I/O splitter boxes and power supplies" catalogue.		der the Power	$\overline{D-R O M},$

Presentation:	Functions:
page 178	pages 178 and 179

Compatibility of PowerSuite software workshop with the following devices (1)						
Connection	Controllerstarter TeSys model U	Soft start/ soft stop unit ATS 48	Drives			
			ATV 11	ATV 31	ATV 61	ATV 71
Modbus	V1.40	V1.30	V1.40	V2.0	V2.30	V2.2
Ethernet (device equipped with an Ethernet TCP/IP card)					V2.30	V2.2
Ethernet via Modbus Ethernet bridge		V1.50		V2.0	V2.30	V2.2
Bluetooth ${ }^{\text {® }}$		V2.2		V2.2	V2.30	V2.2

Compatible software versions
Incompatible software versions

Hardware and software environments

The PowerSuite software workshop can operate in the following PC environments and configurations:
■ Microsoft Windows ${ }^{\circledR} 98$ SE, Microsoft Windows ${ }^{\circledR}$ 2000, Microsoft Windows ${ }^{\circledR}$ XP
■ Pentium III, 800 MHz , hard disk with 300 MB available, 128 MB RAM

- SVGA or higher definition monitor
(1) Software version supplied for the latest version of drive available.

Presentation:	Functions: page 178	References: pages 178 and 179

Presentation

Introduced by Schneider Electric, the Transparent Ready concept enables transparent communication between control system devices, production and management. Network technologies and the associated new services are used to share and distribute data between sensors, PLCs, workstations and third-party devices in an increasingly efficient manner.
Web servers embedded in network components and control system devices can be used to:

- Access configuration data transparently
- Perform remote diagnostics
- Incorporate simple human/machine interface functions.

This concept is based on the Ethernet TCP/IP industrial standard which proposes a single network that meets most communication requirements from sensors/actuators through to production management systems.
Where a variety of communication systems are usually required, Transparent Ready standard technologies can result in significant cost savings in the areas of definition, installation, maintenance or training.

Transparent Ready is based on:
■ Ethernet TCP/IP-based services meeting control system requirements in terms of functions, performance and quality of services
■ Products including several ranges of PLC, distributed I/O, industrial terminals,
variable speed drives, gateways and an increasing number of partner products
■ The ConneXium range of cabling accessories: hubs, switches, cables adapted to the environment and to the requirements of industrial conditions.

Services supported by the Altivar 61 and Altivar 71 drives
The Altistart 48 soft start/soft stop unit and the Altivar 31 variable speed drive are connected to the Ethernet TCP/IP network via an Ethernet/Modbus 174 CEV 30020 Ethernet/Modbus bridge.

The Altivar 61 and Altivar 71 variable speed drives are connected to the Ethernet TCP/IP network via a VW3 A3 310 communication card.
This card comes with a basic web server, which users can adapt completely according to the application (Java or FactoryCast development tool).

Characteristics:	Functions:	Connections:
page 183	pages 183 to 185	page 186

Characteristics

Structure	Topology	Industrial local area network conforming to ANSI/IEEE 802.3 (4th edition 1993-07-08) Star network	
	Transmission mode	Manchester baseband. Half-duplex or full-duplex	
	Data rate	$10 / 100$ Mbps with automatic recognition	
Medium	STP double shielded twisted pair, impedance $100 \Omega \pm 15 \Omega$ for 10 BASE-T or category 5 Ethernet cable, conforming to standard TIA/EIA-568A		
	Length of network	100 m maximum between Hub or switch and a station	
Type of device		ATS 48, ATV 31	ATV 61, ATV 71
Type of interface	$\mathbf{1 7 4 ~ C E V ~ 3 0 0 ~} \mathbf{2 0}$	VW3 A3 310	
Universal services	SNMP	HTTP, BOOTP, DHCP, FTP, TFTP, SNMP	
Transparent Ready services	Modbus messaging	Modbus messaging, IO Scanning, FDR	
Universal services			

HTTP "Hypertext Transfer Protocol" (RFC 1945) is a protocol used to transmit web pages between a server and a browser. HTTP has been used on the Web since 1990.

Web servers embedded in control system devices are at the heart of the Transparent Ready concept and provide easy access to devices anywhere in the world using a standard web browser such as Internet Explorer or Netscape Navigator.

BOOTP/DHCP

BOOTP/DHCP (RFC 1531) is used to supply devices (client) automatically with IP addresses and parameters. This avoids having to manage the addresses of each device individually by transferring their management to a server.
BOOTP identifies the client device by its Ethernet MAC address. This address is unique to each device and should be entered in the server each time the device is changed.
DHCP "Dynamic Host Configuration Protocol" identifies the client device by a name in plain language ("Device Name") which is maintained throughout the application: example: "Conveyor 23".

Altivar 61 and Altivar 71 drives can be given a name ("Device Name") by the terminal or the PowerSuite software workshop.
The FDR ("Faulty Device Replacement") service uses the standard DHCP and TFTP protocols.

FTP/TFTP

FTP, "File Transfer Protocol" (RFCs 959, 2228 and 2640) and TFTP, "Trivial File Transfer Protocol" (RFC 1123), are used to exchange files with devices.

Transparent Ready devices implements FTP for downloading firmware or custom web pages.
The FDR ("Faulty Device Replacement") service uses the standard DHCP and TFTP protocols.

SNMP

The Internet community has developed the SNMP standard, "Simple Network Management Protocol" (RFCs 1155, 1156 and 1157), to support the management of the various network components by means of a single system. The network management system can exchange data with SNMP agent devices. This function allows the manager to view the status of the network and devices, to modify their configuration and to return alarms in the event of a fault.

Transparent Ready devices are compatible with SNMP and can be integrated naturally into a network administered via SNMP.

Presentation:	Connections:	References:
page 182	page 186	pages 186 and 187

Transparent Ready services

Modbus communication standard

Modbus, the industry communication standard since 1979, has been ported to Ethernet TCP/IP, the backbone of the Internet revolution, to create Modbus TCP/IP, a totally open protocol on Ethernet. There is no need for any proprietary component, nor the purchase of a licence in order to develop a connection to Modbus TCP/IP. This protocol can easily be ported to any device supporting a standard TCP/IP communication stack. The specifications can be obtained free of charge from the website: www.modbus.org.

Modbus TCP/IP, simple and open

The Modbus application layer is very simple and universally familiar. Thousands of manufacturers are already implementing this protocol. Many have already developed a Modbus TCP/IP connection and numerous products are currently available. The simplicity of Modbus TCP/IP enables any small field device, such as an I/O module, to communicate on Ethernet without the need for a powerful microprocessor or a large amount of internal memory.

Modbus TCP/IP, high performance

Thanks to the simplicity of its protocol and the fast Ethernet throughput data rate of 100 Mbps , the Modbus TCP/IP achieves excellent performance. This means that this type of network can be used in realtime applications such as I/O Scanning.

I/O Scanning service
Schematic diagram

The Altivar 61 and Altivar 71 drives accept the I/O scanning service generated by: ■ The following automation platforms:

- Premium equipped with a TSX ETY 410/5101 module
- Quantum
- Momentum M1E
- A PC equipped with Modbus communication software with the I/O scanner function.
This service is used to manage the exchange of remote I/O on the Ethernet network after simple configuration and without the need for special programming.

The drive I/O are scanned transparently by means of read/write requests according to the Modbus Master/Slave protocol on the TCP/IP profile.

The I/O Scanning service can be configured, activated or deactivated by:
■ The PowerSuite software workshop

- The standard web server.

Presentation:	Characteristics:	Connections:
page 182	page 183	Rage 186

Altivar Viewer

Transparent Ready services (continued)
 Faulty Device Replacement (FDR) service

The FDR service uses standard DHCP and TFTP technologies with the aim of simplifying the maintenance of Ethernet devices.
It is used to replace a faulty device with a new product, ensuring its detection, reconfiguration and automatic restarting by the system, without the need for any delicate manual intervention.

The main steps are:

- A device using the FDR service becomes faulty
- A similar device is taken out of the maintenance reserve base, preconfigured with the "Device_name" of the faulty device, then reinstalled on the network.
■ The FDR server (which can be a Quantum or Premium PLC Ethernet module) detects the new arrival, configures it with its IP address and transfers all its configuration parameters to it.
■ The substituted device checks that the parameters are fully compatible with its own characteristics, then switches to operational mode.

Web server

The Ethernet card in Altivar 61 and Altivar 71 drives incorporates a standard web server, in English.
The functions provided by this web server require no special configuration or programming of the PC supporting the web browser. Using a password, two levels of access can be defined to the web server: read-only or modification.

The standard web server provides access to the following functions:

- Altivar Viewer
- Data Editor
- Ethernet Statistics
- Security

■ ...

The standard web server can be adapted or replaced by a customized web server depending on the requirements of the application and downloaded via FTP. Knowledge of the HTTP protocol and Java technology are required to be able to create or modify a web server.

Presentation:	Characteristics:	Connections:
page 182	page 183	page 186

Ethernet network connection elements

174 CEV 30020

Description			For devices	Reference	Weight kg
Communication card equipped with an RJ45 connector Ethernet Modbus TCP/IP 10/100 Mbps Class C 20			ATV 61 ATV 71	VW3 A3 310	0.300
Ethernet /Modbus bridge with $1 \times$ 10BASE-T/100BASE-TX Ethernet port (RJ45 type)			ATS 48 ATV 31	$174 \text { CEV } 30020$ (1)	0.500
Connecting cables					
Description	Use		Length	Reference (2)	Weight
	From	To	m		kg
Straight shielded twisted pair cables 2 RJ45 connectors	ATV 61 or ATV 71	499 NoH 10010 hubs,	2	490 NTW 00002	-
	(+VW3 A3 310 communication	499 N•S 17100 switches	5	490 NTW 00005	-
	card), Ethernet/		12	490 NTW 00012	-
	Modbus bridge 174 CEV 30020		40	490 NTW 00040	-
			80	490 NTW 00080	-
Cable for Modbus bus 1 RJ45 connector and one stripped end	ATS 48, ATV 31	Ethernet/ Modbus bridge 174 CEV 30020	3	VW3 A8 306 D30	-

[^8]$\left.\begin{array}{ll}\text { Presentation: } & \begin{array}{l}\text { Characteristics: } \\ \text { page 182 }\end{array}\end{array} \begin{array}{l}\text { Functions: } \\ \text { pages } 183 \text { to } 185\end{array}\right]$

Starters, drives and communication

Ethernet TCP/IP network
 Transparent Ready concept

(1) For Transparent Ready accessories, please consult our "Ethernet TCPIIP, Transparent Ready" catalogue.

Presentation:	Characteristics:	Functions:		
page 182 183			\quad	Connections:
:---				
pages 183 to 185				

Presentation

The Fipio fieldbus is a standard means of communication between control system components and conforms to the World FIP standard.
A Premium PLC (bus manager) can control 127 devices (agents) over a maximum distance of 15 km .
The Fipio bus manager is integrated in the PLC processor.
The Altistart 48 soft start/soft stop unit and the Altivar 31 variable speed drive can be connected to the Fipio bus via an LUF P1 Fipio/Modbus gateway.

The Altivar 61 and Altivar 71 variable speed drives can be connected to the Fipio network via a communication card VW3 A3 A311.

The following devices can also be connected to the Fipio bus:
■ TSX Micro (2) or Premium Agent function (1) PLCs

- The CCX 17 operator panel (2)
- The Magelis XBT-F terminal with graphic screen (3)
- The Magelis iPC industrial PC (3)
- Advantys STB IP 20 distributed I/O (4)

■ Discrete, analog or application-specific Momentum distributed I/O (5)
■ Discrete or analog (IP 20) TBX distributed I/O (1)

- TBX discrete (IP 65) or TSX E॰F (IP67) dust and damp proof distributed I/O (1)
- The TBX SAP 10 Fipio/AS-Interface gateway (1)
- The LUF P1 Fipio/Modbus gateway
- A PC terminal
- Partner products in the Collaborative Automation programme.
(1) Please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" catalogue.
(2) Please consult our specialist "Automation platform Modicon TSX Micro and PL7 software" catalogue.
(3) Please consult our specialist "Human-Machine interfaces" catalogue.
(4) Please consult our specialist "Distributed I/O Advantys STB" catalogue.
(5) Please consult our specialist "Modicon Momentum Automation platform" catalogue.

Characteristics:	Connections:	
page 189	References: 190	pages 190 and 191

Characteristics

Structure	Topology	Industrial bus conforming to the World FIP standard Subscribers linked via daisy-chain or tap junctions
	Access method	Producer/consumer principle Bus management by a fixed arbitrator (bus manager)
	Transmission mode	Baseband physical layer on shielded twisted pair, according to standard NF C 46-604
	Data rate	1 Mbps
	Medium	Shielded twisted pair 150Ω. Optical fibre $62.5 / 125$ with the use of electrical/fibre optic repeaters
	Number of subscribers	32 maximum per segment 1 manager +127 agents maximum over all segments The number of Fipio agents is limited by the memory capacity of Premium processors (62 Altivar drives maximum) (1)
	Number of segments	Unlimited in tree or star architectures Limited to 5 cascaded segments The link between 2 subscribers may cross 4 electrical or electrical/fibre optic repeaters maximum
	Length of bus	15,000 m maximum $1,000 \mathrm{~m}$ maximum without repeater for an electrical segment $5,000 \mathrm{~m}$ maximum for 5 electrical segments 3,000 m maximum for 1 fibre optic segment
Type of device		ATS 48, ATV 31 ATV 61, ATV 71
Type of interface		LUF P1 VW3 A3 311
Profile		FED C 32P ${ }^{\text {a }}$
Control and adjustment		26 configurable words 8 configurable words (communication scanner)
Monitoring		26 configurable words 88 configurable words (communication scanner)
Configuration and adjustment		1 indexed word Read/write access to all functions by the PLC application program
		(1) Please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" catalogue.

Presentation: page 188	Connections: page 190	References: pages 190 and 191

Fipio wiring system

Elements for connecting the Fipio bus and a Premium PLC (1)

	Cards and gateway				
	Description	Used for	Code	Reference	Weight kg
	Standard Fipio card The card is equipped with a 9 -way male SUB-D connector, which can take a TSX FP ACC12 connector with a TSX FP CA $\bullet 00$ trunk cable or TSX FP CC•00 drop cable. This card should be used for new installations. It is also used to replace an ATV 58 or ATV 58 F equipped with a VW3 A58311 card by an ATV 71.	$\begin{aligned} & \text { ATV } 61 \\ & \text { ATV } 71 \end{aligned}$	1	VW3 A3 311	0.300
	Substitution Fipio card The card is equipped with a 9 -way male SUB-D connector, which can take a TSX FP ACC12 connector with a TSX FP CA•00 trunk cable or TSX FP CCe00 drop cable. This Fipio communication card is reserved for replacing an ATV 58 or ATV 58 F equipped with a VW3 A58301 card by an ATV 71.	ATV 71	1	VW3 A3 301	0.300
LUF P1	Fipio/Modbus gateway The gateway is equipped with: 1 Fipio 9-way male SUB-D connector which will take a TSX FP ACC12 connector for use with a TSX FP CA $\bullet 00$ trunk cable or TSX FPCC•00 drop cable 1 RJ45 connector for Modbus for connection with the VW3 A8 306 Ree cable Fit an external $24 \vee=$ power supply, 100 mA minimum, to be ordered separately (2).	ATS 48 ATV 31	${ }^{2}$	LUF P1	0.240
	(1) To order other elements for connection "Automation platform Modicon Premium (2) Please consult our specialist "Interface	to the Fipis and Unit s, I/O split	us, ple L7 softw boxes	e consult our re" catalogue. power suppli	ist alogue.

Presentation:	Characteristics:
page 188	page 189

Elements for connecting the Fipio bus and a Premium PLC (continued) (1)

Accessories							
Description	Use			Code	Unit reference	Weight kg	
Female connector for device with 9-way female SUB-D connector (polycarbonate, IP 20)	Connection via daisy-chain or tap junctions. For ATV 61, ATV 71, LUF P1 gateway and Premium PLC			3	TSX FP ACC12	0.040	
Tap junction (polycarbonate, IP 20)	Trunk cable tap link			4	TSX FP ACC14	0.120	
Fipio line terminators (sold in lots of 2)	Connector, tap junction and repeater			5	TSX FP ACC7	0.020	
Electrical repeater (IP 65) Power supply 24... $48 \mathrm{~V}=-$, 150 mA (2)	Increases the length of the bus while enabling connection of 2 segments of 1000 m maximum			6	TSX FP ACC6	0.520	
Electrical/fibre optic repeater (IP 65) Power supply 19... 60 V---, 210 mA (2)	Used for connection (via a patch panel) of an electrical segment (1000 m max.) and a fibre optic segment (3000 m max.)			7	TSX FP ACC8M	0.620	
Modbus splitter block equipped with 10 RJ45 connectors and 1 screw terminal	Used to connect an ATV 31, ATS 48 on the LUP P1 gateway			8	LU9 GC3	0.500	
Modbus line terminators (3)	LU9 GC3 Modbus splitter block			9	VW3 A8 306 RC	0.010	
FIP wiring test tool	Used to test each section of a network segment			-	TSX FP ACC9	0.050	
Connecting cables (1)							
Description	Used		Code	Length	Reference	Weight	
	From	To		m		kg	
Trunk cables $8 \mathrm{~mm}, 1$ shielded twisted pair 150Ω. In standard atmosphere (4) and inside buildings	TSX FP ACC12 TSX FP ACC12 connector, connector, TSX FP ACC14 TSX FP ACC14 junction box, junction box, TSX FP ACC6, TSX FP ACC6 ACC8M repeaters repeater		10	100	TSX FP CA100	5.680	
			200	TSX FP CA200	10.920		
			500	TSX FP CA500	30.000		
Trunk cables $9.5 \mathrm{~mm}, 1$ shielded twisted pair 150Ω. In harsh environments (5), outside buildings or in mobile installations (6)	TSX FP ACC12 TSX FP ACC12 connector, connector, TSX FP ACC14 TSX FP ACC14 junction box, junction box, TSX FP ACC6, TSX FP ACC6 ACC8M repeaters repeater			10	100	TSX FP CR100	7.680
				200	TSX FP CR200	14.920	
				500	TSX FP CR500	40.000	
Drop cables $8 \mathrm{~mm}, 2$ shielded twisted pairs 150Ω. In standard atmosphere (4) and inside buildings	TSX FP ACC12 connector	TSX FP ACC14 junction box		11	100	TSX FP CC100	5.680
			200		TSX FP CC200	10.920	
			500		TSX FP CC500	30.000	
Fibre optic jumper Double optical fibre 62.5/125	TSX FP ACC8M repeater	Patch panel	12	2	TSX FP JF020	0.550	
Cables for Modbus bus 2 RJ45 connectors	LUF P1 gateway, LU9 GC3 ATS 48, Modbus splitter ATV 31 block		13	0.3	VW3 A8 306 R03	0.025	
			1	VW3 A8 306 R10	0.060		
			3	VW3 A8 306 R30	0.130		
Documentation							

The manuals and quick reference guides for starters and variable speed drives, as well as the user manuals for communication gateways, are available on the web site: www.telemecanique.com.
(1) To order other elements for connection to the Fipio bus, please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" catalogue.
(2) Please consult our specialist "Interfaces, I/O splitter boxes and power supplies" catalogue.
(3) Sold in lots of 2.
(4) Standard environment:

- no particular environmental constraints
- operating temperature between $+5^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$
- fixed installation
(5) Harsh environment:
- withstand to hydrocarbons, industrial oils, detergents, solder splashes
- relative humidity up to 100%
- saline atmosphere
- significant temperature variations
- operating temperature between - $10^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
(6) Mobile installation: cables in accordance with VDE 472 part 603/H:
- use on a cable-carrier chain with bending radius 75 mm minimum
- use on a gantry, provided that operating conditions such as acceleration, speed, length, etc are adhered to:
please consult your Regional Sales Office
- unauthorised use on robots, or multi-axis applications.

Presentation:	Characteristics:	Connections:
page 188 189	page	page 190

Presentation

Modbus is a master/slave protocol.
Two exchange mechanisms are possible:

- Request/response: The request from the master is addressed to a given slave.

The master then waits for the response from the slave which has been interrogated.

- Broadcasting: The master broadcasts a request to all the slave stations on the bus,
which execute the command without transmitting a response.
The Altistart 48 soft start/soft stop unit and the Altivar 31, Altivar 61 and Altivar 71 variable speed drives have the Modbus protocol integrated as standard.

The Altistart 48 soft start/soft stop unit and the Altivar 31 drive are connected to the Modbus bus via their terminal port.

The Altivar 61 and Altivar 71 variable speed drives have 2 integrated communication ports:

- A terminal port for connecting the graphic display terminal or an industrial HMI terminal (Magelis type)
- A Modbus network port.

As an option, they can also be equipped with a VW3 A3 303 Modbus/Uni-Telway communication card which offers additional characteristics (4-wire RS 485, ASCII mode, etc.).

Characteristics						
Type of device		ATS 48	ATV 31	ATV 61, ATV		
Type of connection		Terminal port			Network port	Communication card
Structure	Connector	RJ45	RJ45	RJ45	RJ45	9-way female SUB-D
	Topology	Bus				
	Physical interface	2-wire RS 485				2-wire or 4-wire RS 485
	Access method	Master/slave				
	Transmission mode	RTU				RTU or ASCII
	Data rate 38.4 Kbps	-	-	-	\bullet	-
	19.2 or 9.6 Kbps	\bullet	\bullet	\bullet	\bullet	\bullet
	4.8 Kbps	\bullet	\bullet	-	\bullet	\bullet
	Medium	Double shielded twisted pair				
	Number of subscribers	18,27 or 31 slaves, depending on polarization (1)				
	Type of polarization	$4.7 \mathrm{k} \Omega$ pulldown resistors	No pulldown	No pulldown	No pulldown	Configurable. No pulldown or $4.7 \mathrm{k} \Omega$ pulldown resistors
	Length of bus	1000 or 1300 m excluding tap links, depending on polarization (1)				
	Tap link	3 or 20 m maximum, depending on polarization (1)				

Connections:	References:
pages 193 and 194	pages 193 to 195

and communication

Configuration on the basis of polarization

The specification of the physical layer provided by standard RS 485 is incomplete.
Various polarization diagrams can therefore be applied depending on the environment in which the equipment is to be used.
The Modbus standard specifies the polarization exactly (1).

		Master			
		With polarization $4.7 \mathrm{k} \Omega$		With polarization 470Ω	
Slave	Without polarization	Configuration not recommended.		Modbus type configuration 31 slaves. Length of bus: $1,300 \mathrm{~m}$ Tap link: 3 m maximum. RC line terminators ($\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$).	
	With polarization $4.7 \mathrm{k} \Omega$	Uni-Telway type configuration 27 slaves. Length of bus: $1,000 \mathrm{~m}$ Tap link: 20 m maximum. RC line terminators ($\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$).		Mixed configuration 18 slaves. Length of bus: $1,000 \mathrm{~m}$ Tap link: 20 m maximum. RC line terminators ($\mathrm{R}=120 \Omega, \mathrm{C}=1 \mathrm{nF}$).	
Connection elements for RJ45 wiring system					
Card					
Description		Used with		Reference	Weight kg
Communication card equipped with a 9-way female SUB-D connector		ATV 61, ATV 71		VW3 A3 303	0.300
Accessories					
Description		Code		Unit reference	Weight kg
Modbus splitter block 10 RJ45 connectors and 1 screw terminal block		1		LU9 GC3	0.500
Modbus T-junction boxes		With integrated cable (0.3 m)	2	VW3 A8 306 TF03	-
		With integrated cable (1 m)	2	VW3 A8 306 TF10	-
Line terminators for RJ45 connector (3)		$\begin{aligned} & \mathrm{R}=120 \Omega, \\ & \mathrm{C}=1 \mathrm{nF} \end{aligned}$	3	VW3 A8 306 RC	0.200
		$\mathrm{R}=150 \Omega$	3	VW3 A8 306 R	0.010

LU9 GC3

VW3 A8 306 TFeo

Cables						
Description	Use		Code	Length m	Reference	Weight kg
	From	To				
Cables for Modbus bus 2 RJ45 connectors	ATS 48, ATV 31, ATV 61, ATV 71 (terminal or Modbus network ports)	LU9 GC3 Modbus splitter block	4	0.3	VW3 A8 306 R03	0.025
				1	VW3 A8 306 R10	0.060
				3	VW3 A8 306 R30	0.130
	VW3 A8 306 TFee Modbus T-junction box LU9 GC3 Modbus splitter block	VW3 A8 306 TFee Modbus T-junction box LU9 GC3 Modbus splitter block				
Cables for Modbus bus	ATV 61, ATV 71 (+ VW3 A3 303 communication card)	LU9 GC3 Modbus splitter block	4	1	VW3 A58 306 R10	0.080
One 9-way male SUB-D connector 1 RJ45 connector				3	VW3 A58 306 R30	0.150
Double shielded twisted pair cables	LU9 GC3 Modbus splitter block (screw terminals)	LU9 GC3 Modbus splitter block (screw terminals)	5	100	TSX CSA 100	5.680
				200	TSX CSA 200	10.920
				500	TSX CSA 500	30.000

[^9]page 192 page 192

Connection elements using tap junctions

| Accessories | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Description | | | | |
| Tap junction | | | | |
| 3 screw terminals, RC line terminator | Code | | Reference | Weight
 kg |
| Subscriber socket
 Two 15-way female SUB-D connectors and 2 screw terminals,
 RC line terminator | | | | TSX SCA 50 |

(1) The cable for connecting the PLC and the splitter block depends on the type of PLC; please consult our "Automation platform Modicon Premium and Unity - PL7 software", "Automation platform Modicon Quantum", "Automation platform Modicon TSX Micro and PL7 software" and "Automation and relay functions" catalogues.

Presentation:	Characteristics:
page 192	page 192

Connection elements using screw terminals

Accessories					
Description			Sold in lots of	Unit reference	Weight kg
Line terminators for screw terminals		$\begin{aligned} & \mathrm{R}=120 \Omega, \\ & \mathrm{C}=1 \mathrm{nF} \end{aligned}$	2	VW3 A8 306 DRC	0.200
		$\mathrm{R}=150 \Omega$	2	VW3 A8 306 DR	0.200
Cable					
Description	Use		Length m	Reference	Weight kg
	From	To			
Cable for Modbus 1 RJ45 connector and one stripped end	ATS 48, ATV 31, ATV 61, ATV 71 (terminal or Modbus network ports)	Standard screw terminal, TSX SCA 50 tap junction	3	VW3 A8 306 D30	0.150

Documentation

The manuals and quick reference guides for starters and variable speed drives, as well as the user manuals for communication gateways, are available on the website: www.telemecanique.com.

Presentation:	Characteristics:	Connections:
page 192	page 192	pages 193 and 194

Presentation

The Modbus Plus network is a high-performance industrial local area network which can be used to meet the needs of client/server type extended architectures, combining a high data rate (1 Mbps), simple low-cost transmission media and numerous messaging services.

The Altistart 48 soft start/soft stop unit and the Altivar 31 variable speed drive can be connected to the Modbus Plus network via an NW BM85000 gateway which has four RS 232 serial ports.

The Altivar 61 and Altivar 71 variable speed drives can be connected to the Modbus Plus network via a communication card VW3 A3 302

Communication services

The main data exchange services between subscribers connected to the network are:
■ The "Modbus messaging" service according to Modbus protocol

- The "Global Data" service: each subscriber makes available 32 words for each of the 63 other network subscribers
■ The "Peer Cop" dialogue service: point-to-point transaction of 32 receive or transmit words

The "Global Data" and "Peer Cop" services are restricted to a Modbus Plus network with a maximum of 64 subscribers.

Altivar 61 and Altivar 71 drives are accessed by simple configuration in the PLC using "Peer Cop" and "Global Data" services.
These services enable rapid exchange of the main drive parameters:
■ The "Peer Cop" service for controlling and adjusting the drive
■ The "Global data" service for monitoring the drive
Other parameters, which are used less frequently, can be accessed by the Modbus messaging service.

Characteristics:	Connections: page 197

Communication via Modbus Plus network

Characteristics

Presentation:	Connections:	References:
page 196	page 198	pages 198 and 199

Communication via Modbus Plus network

Modbus Plus wiring system

Modbus Plus bus connection elements (1)

Cards and gateways

Description	Used with	Code	Reference	Weight kg
Communication cards equipped with one 9 -way female SUB-D connector	ATV 61, ATV 71	1	VW3 A3 302	0.300
Modbus Plus/Modbus gateway 4 RS 232 ports power supply $115 . . .220 \mathrm{~V}$ ~	ATS 48, ATV 31	2	NW BM85000	3.158
RS 232/RS 485 interface power supply $24 \mathrm{~V}=-, 20 \mathrm{~mA}$ (2)	ATS 48, ATV 31	3	XGS Z24	0.105
Connection accessories				
Description	Use	Code	Reference	Weight kg
Modbus Plus tap (IP 20)	For connecting via a tap junction	4	990 NAD 23000	0.230
Modbus Plus in-line connector Gateway, bridge and repeater		5	AS MBKT 085	0.035
Connector with Modbus Plus terminator (sold in lots of 2)	Bridge and repeater	6	AS MBKT 185	0.260
Modbus Plus electrical repeater	Extension beyond 450 m or up to 64 subscribers	7	NW RR85 001	2.677
Modbus Plus bridge with 4 ports	Connection of 4 networks maximum	8	NW BP85 002	2.813
Line/station fibre optic repeater	-	9	490 NRP 25400	2.856
Point-to-point fibre optic repeater	Used to connect an electrical segment to the fibre optic segment (3000 m maximum)	-	NW NRP 25300	2.863
Wiring tool	Inserting trunk and drop cables in a 990 NAD 23000 tap	-	043509383	3.000

(1) To order other connection elements, please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" and "Automation platform Modicon Quantum" catalogues.
(2) Please consult our specialist "Interfaces, I/O splitter boxes and power supplies" catalogue.

Presentation:	Characteristics:
page 196	page 197

Modbus Plus bus connection elements (continued) (1)						
Cables						
Description	Used		Code	Length m	Reference	Weight kg
	From	To				
Trunk cables for Modbus Plus	990 NAD 23000 Modbus Plus tap	990 NAD 23000 Modbus Plus tap, AS MBKT 085 Modbus Plus in-line connector, Modbus Plus connector with terminators AS MBKT 185	10	30.5	490 NAA 27101	1.833
				152.5	490 NAA 27102	10.135
				305	490 NAA 27103	18.940
				457	490 NAA 27104	30.000
				1525	490 NAA 27106	112.950
Drop cables One 9-way male SUB-D connector and one stripped end	Premium, Quantum PLCs, NW BP85 002 Modbus Plus bridge with 4 ports, 490 NRP 25300 line/ station fibre optic repeater	990 NAD 23000 Modbus Plus tap	11	2.4	990 NAD 21110	0.169
				6	990 NAD 21130	0.459
	ATV 61, ATV 71 (+ VW3 A3 302	$\begin{aligned} & 990 \text { NAD } 23000 \\ & \text { Modbus Plus tap } \end{aligned}$	12	2.4	990 NAD 21910	0.142
	communication card)			6	990 NAD 21930	0.465
Cable for Modbus 1 RJ45 connector and one stripped end	ATS 48, ATV 31, NW BM85000 Modbus Plus/ Modbus gateway	$\begin{aligned} & \text { RS 232/RS } 485 \\ & \text { interface } \end{aligned}$	13	3	VW3 A8 306 D30	0.115

Presentation, characteristics, connections,

Starters, drives and communication
 Communication via Uni-Telway bus

Presentation

The Uni-Telway bus is a standard means of communication between control system components (PLCs, HMI terminals, supervisors, variable speed drives, numerical controllers, etc).

The Uni-Telway bus requires a master station (Premium, TSX Micro PLCs) which manages the allocation of bus access rights to the various connected slave stations (HMI terminals, variable speed drives, etc). The slave stations can communicate with one another without programming the master station.
An industrial HMI terminal (Magelis type) can be connected directly to the bus and can be used to adjust drives without developing applications specific to the PLC.

The Altivar 61 and Altivar 71 variable speed drives can be connected to the Uni-Telway bus via a communication card VW A3 303.

Characteristics

(1) Limited to 128 bytes with the Premium and TSX Micro PLC terminal port.

Presentation

Communication gateways LUF P allow connection between Modbus and field buses such as Fipio, Profibus DP or DeviceNet.

After configuration, these gateways manage information which can be accessed by the Modbus bus and make this information available for read/write functions (command, monitoring, configuration and adjustment) on the field buses.

An LUF P communication gateway consists of a box which can be clipped onto a 35 mm omega rail, allowing connection of up to 8 Slaves connected on the Modbus bus.

Example of architecture

(1) Connection kit for PowerSuite software workshop.

Description
 Front panel of the product

1 LED indicating:

- communication status of the Modbus buses,
- gateway status,
- communication status of the Fipio, Profibus DP or DeviceNet bus.

2 Connectors for connection to Fipio, Profibus DP or DeviceNet buses.

Underside of product

RJ45 connector for connection on the Modbus bus
RJ45 connector for link to a PC
-- 24 V power supply

Software set-up

For the Fipio bus, software set-up of the gateway is performed using either PL7 Micro/Junior/Pro software or ABC Configurator software.
For the Profibus DP and DeviceNet buses, software set-up is performed using ABC Configurator.
This software is included:

- in the PowerSuite software workshop for PC (see page 180),
- in the TeSys model U user's manual.

Characteristics, references:	Dimensions:
page 203	page 203

Characteristics, references, dimensions

Starters, drives and communication

Communication gateways LUF P

Characteristics

Bus type			Fipio	Profibus DP	DeviceNet	
Environment	Conforming to IEC 60664		Degree of pollution: 2			
Ambient air temperature	Around the device	${ }^{\circ} \mathrm{C}$	+ $5 \ldots+50$			
Degree of protection			IP 20			
Electromagnetic compatibility	Emission		Conforming to IEC 50081-2: 1993			
	Immunity		Conforming to IEC 61000-6-2: 1999			
Number of Modbus slaves which can be connected			$\leqslant 8$			
Connection	Modbus		By RJ45 connector conforming to Schneider Electric RS485 standard			
	To a PC		By RJ45 connector, with PowerSuite connection kit			
	Field bus		By SUB D9 female connector	By SUB D9 female connector	By 5-way removable screw connector	
Supply		V	External supply, --- $24 \pm 10 \%$			
Consumption	Max.	mA	280			
	Typical	mA	100			
Indication/diagnostics			By LED on front panel			
Services	Profile		FED C32 or FED C32P	-	-	
	Command		26 configurable words (1)	122 configurable words	256 configurable words	
	Monitoring		26 configurable words (1)	122 configurable words	256 configurable words	
	Configuration and adjustment		By gateway mini messaging facility (PKW)			
		(1) If the gateway is configured using PL7 and not ABC Configurator, the I/O capacity is limited to a total of 26 words.				
References						
	Description	For use with		With bus type	Reference	Weight kg
	Communication	TeSys Model U starter-controllers, Altistart 48, Altivar 31		Fipio/Modbus	LUF P1	0.245
	gateways			Profibus DP/Modbus	LUF P7	0.245
				DeviceNet/Modbus	LUF P9	0.245
Connection accessories						
	Description	For use with		Connectors	Reference Weight kg	
	Connection cables	Modb	(2)	1 RJ45 type connector and one end with stripped wires	VW3 A8 306 D30	0.150
				2 RJ45 type connectors	VW3 A8 306 R03	0.050
				2 RJ45 type connectors	VW3 A8 306 R10	0.050
				2 RJ45 type connectors	VW3 A8 306 R30	0.150
	Connectors	Fipio	-	1 SUB-D 9 male connector	TSX FP ACC12	0.040
		Profibus mid line	-	1 SUB-D 9 male connector	490 NAD 91104	-
		Profibus line end		1 SUB-D 9 male connector	490 NAD 91103	-
Documentation						
	Description	MediCD-R	Language		Reference	Weight kg
	User's manual for TeSys model U range (3)		Multilingual: English, Spanish	French, German, Italian,	LU9 CD1	0.022

(2) See pages 192 and 195.
(3) This CD-Rom contains user's manuals for AS-Interface and Modbus communication modules, multifunction control units and gateways, as well as for the gateway programming software, ABC Configurator.

Dimensions

Presentation

Communication gateway LA9 P307 provides connection between the Profibus DP and Modbus buses. It is a Slave on the Profibus DP bus and Master on the Modbus bus. It manages information present on the Modbus bus to make it available for read/write functions in the Master PLC on the Profibus DP bus.

Gateway LA9 P307 consists of a box which can be clipped onto a 35 mm omega rail. It manages up to15 Slaves on the Modus bus.

Example of architecture

Description

Gateway LA9 P307 comprises:
1 A SUB-D 9-way female connector for connection to the Profibus DP bus,
2 A line end adapter on the Profibus DP bus,
3 Gateway address coding on the Profibus DP bus,
4 Status signalling LED,
5 RJ 45 female connector for connection on the Modbus bus,
6 =-- 24 V power supply.

Software set-up

The gateway is configured using the standard software tools for the Profibus bus. For the Premium automation platform, use SYCON configurator software. The user's manual (.PDF) and the gateway description file (.GSD) are supplied on diskette with the gateway.

Characteristics, references:	Dimensions:
page 205	page 205

Characteristics,
references, dimensions

Starters, drives and communication

Communication gateway LA9 P307

Characteristics

Environment	Conforming to IEC 60664		Degree of pollution: 2				
Ambient air temperature	Around the device	${ }^{\circ} \mathrm{C}$	0...+50				
Degree of protection			IP 20				
Number of Modbus slaves which can be connected			15				
Connection on	Modbus		RJ 45 connector				
	Profibus		SUB-D 9-way female connector				
Supply			External supply, --- $24 \mathrm{~V} \pm 20$ \%				
Consumption		mA	150 on --- 24 V				
Indication/diagnostics			By LED				
Services	Command		16 words				
	Monitoring		16 words				
	Configuration and adjustment		By gateway mini messaging facility (PKW)				
References							
		Description		For use with		Reference	Weight kg
6		Profibus DP/Modbus communication gateway		LT6 P ATS 48 ATV 31		LA9 P307	0.260
8		Description		For use with	Length m	Reference	Weight kg
		RJ 45 cable with stripped wires		Screw terminal block - T-junction box TSX SCA 50 - Y-junction subscriber socket TSX SCA 62 SUB-D connector (to be ordered separately) - LT6 P (SUB-D 9 female)	3	VW3 A8 306 D30	0.150
LA9 P307		RJ 45-RJ 45 cable		ATS 48 ATV 31 Modbus splitter box LU9 GC3	1	VW3 P07 306 R10	0.050
		Connectors		Profibus mid line	-	490 NAD 91104	-
490 NAD 91103				Profibus line end	-	490 NAD 91103	-

Dimensions

LA9 P307

043509383

174 CEV 30020 490 NAA 27101 490 NAA 27102 490 NAA 27103 490 NAA 27104 490 NAA 27106 490 NAD 91103 490 NAD 91104

490 NRP 25400 490 NTW 00002 490 NTW 00005 490 NTW 00012 490 NTW 00040 490 NTW 00080 499 NEH 10410 499 NEH 14100 499 NES 18100 499 NES 25100 499 NES 27100 499 NMS 25101 499 NMS 25102 499 NOH 10510 499 NOS 27100 499 NSS 25101 499 NSS 25102 499 NSS 27100 990 NAD 21110 990 NAD 21130 990 NAD 21910 990 NAD 21930 990 NAD 23000
A

AS MBKT 085 AS MBKT 185 ATV 61H075M3 ATV 61H075M3 ATV 61H075N4 ATV 61HC11N4 ATV 61HC13N4 ATV 61HC16N4 ATV 61HC22N4 ATV 61HC25N4 ATV 61HC31N4 ATV 61HC40N4 ATV 61HC50N4 ATV 61HC63N4 ATV 61HD11M3X ATV 61HD11N4 ATV 61HD15M3X ATV 61HD15N4 ATV 61HD18M3X ATV 61HD18N4 ATV 61HD22M3X ATV 61HD22N4 ATV 61HD30M3X ATV 61HD30N4 ATV 61HD37M3X ATV 61HD37N4 ATV 61HD45M3X ATV 61HD45N4 ATV 61HD55M3X ATV 61HD55N4 ATV 61HD75M3X ATV 61HD75N4 ATV 61HD90M3X ATV 61HD90N4 ATV 61HU15M3 ATV 61HU15M3 ATV 61HU15N4 ATV 61HU22M3 ATV 61HU22N4 ATV 61HU30M3

VW3 A8 306 DR	195	VW3 A9 507	23
VW3 A8 306 DRC	195	VW3 A9 508	
VW3 A8 306 R	193	VW3 A9 509	2
VW3 A8 306 R03	29, 53,	VW3 A9 510	2
	191, 193	VW3 A9 511	2
	and 203	VW3 A9 512	2
VW3 A8 306 R10	29, 53,	VW3 A9 513	23
	191, 193	VW3 A9 514	2
	and 203	VW3 A9 515	2
VW3 A8 306 R30	29,53,	VW3 A9 601	7
	191, 193	VW3 A9 602	7
	and 203	VW3 A9 612	81
VW3 A8 306 RC	29, 53,	VW3 A9 613	81
	191	VW3 CAN A71	5
	and 193	VW3 CAN KCDF	5
VW3 A8 306 TF03	29,53	VW3 P07 306 R10	205
	and 193		
VW3 A8 306 TF10	29,53	X	
	and 193	XGS Z24	180
VW3 A9 101	25	XGS Z24	198
VW3 A9 102	25		
VW3 A9 103	25		
VW3 A9 104	25		
VW3 A9 105	25		
VW3 A9 106	25		
VW3 A9 107	25		
VW3 A9 108	25		
VW3 A9 109	25		
VW3 A9 110	25		
VW3 A9 111	25		
VW3 A9 112	25		
VW3 A9 113	25		
VW3 A9 114	25		
VW3 A9 115	25		
VW3 A9 116	25		
VW3 A9 117	25		
VW3 A9 201	24		
VW3 A9 202	24		
VW3 A9 203	24		
VW3 A9 204	24		
VW3 A9 205	24		
VW3 A9 206	24		
VW3 A9 207	24		
VW3 A9 208	24		
VW3 A9 209	24		
VW3 A9 210	24		
VW3 A9 211	24		
VW3 A9 212	24		
VW3 A9 213	24		
VW3 A9 214	24		
VW3 A9 217	24		
VW3 A9 302	26		
VW3 A9 303	26		
VW3 A9 304	26		
VW3 A9 305	26		
VW3 A9 306	26		
VW3 A9 307	26		
VW3 A9 308	26		
VW3 A9 309	26		
	and 27		
VW3 A9 310	26		
	and 27		
VW3 A9 311	26		
	and 27		
VW3 A9 315	26		
	and 27		
VW3 A9 404	22		
VW3 A9 405	2		
VW3 A9 406	2		
VW3 A9 407	2		
VW3 A9 501	23		
VW3 A9 502	23		
VW3 A9 503	23		
VW3 A9 504	23		
VW3 A9 505	23		
VW3 A9 506	23		

The efficiency of Telemecanique branded solutions

Used in combination, Telemecanique products provide quality solutions, meeting all your Automation and Control applications requirements.

A worldwide presence

Constantly available

■ More than 5000 points of sale in 130 countries.

- You can be sure to find the range of products that are right for you and which complies fully with the standards in the country where they are used.

Technical assistance wherever you are

- Our technicians are at your disposal to assist you in finding the optimum solution for your particular needs.
\square Schneider Electric provides you with all necessary technical assistance, throughout the world.

Head Office
89, bd Franklin Roosevelt 92506 Rueil-Malmaison Cedex France
www.schneider-electric.com www.telemecanique.com

Due to evolution of standards and equipment, the characteristics indicated in texts and images of this document do not constitute a commitment on our part without confirmation.
Design: Schneider Electric
Photos: Schneider Electric
Printed by:

[^0]: (1) For power ratings $\leqslant 250 \mathrm{~W}$, motor derating is 20% instead of 50% at very low frequencies.
 (2) The motor nominal frequency and the maximum output frequency can be adjusted from 10 to 500 Hz or 1000 Hz , depending on the rating.
 Check the mechanical overspeed characteristics of the selected motor with the manufacturer.

[^1]: Dimensions

[^2]: Example of Grafcet language programming

[^3]: (1) Load factor for resistors: the value of the average power that can be dissipated at $50{ }^{\circ} \mathrm{C}$ from the resistor into the casing is determined for a load factor during braking that corresponds to the majority of normal applications.
 (2) The braking resistors' degree of protection is IP 20 or IP 23.

[^4]: - P max/P av (60 s cycle)
 ---- P max/P av (120 s cycle)
 _ P max/P av (200 s cycle)

[^5]: (1) For ATV 61H075M3, HU15M3 and ATV 61HU15N4 drives, it is advisable to use a less powerful motor with a sinus filter.

[^6]: For other voltages available between 24 V and 660 V , or a DC control circuit, please consult your Regional Sales Office.

[^7]: PowerSuite screen on PC
 Monitoring control panel (cursor, gauge)

[^8]: (1) Please consult our specialist "Automation platform Modicon Premium and Unity - PL7 software" catalogue.
 (2) Cable conforming to category 5 EIA/TIA-568 standard and IEC 1180/EN 50 173, class D. For UL and CSA 22.1 approved cables, add the letter \mathbf{U} at the end of the reference. Example: 490 NTW 00002 becomes 490 NTW $00002 U$.

[^9]: (1) Standard defined in 2002, available on the website: www.modbus.org.
 (2) The cable for connecting the PLC and the splitter block depends on the type of PLC; please consult our "Automation platform Modicon Premium and Unity - PL7 software", "Automation platform Modicon Quantum", "Automation platform Modicon TSX Micro and PL7 software" and "Automation and relay functions" catalogues.
 (3) Sold in lots of 2.

