Programmable Controller

TOYOPUEPC3JG

PC3JG-P-CPU TIC-6088
PC3JG-CPU TIC-6125
OPERATION MANUAL

1. SYSTEM COMPONENTS	1
2. INSTALLATION AND WIRING	2
3. INITIAL SETTING	3
4. TEST RUN	4
5. ERROR ALARM	5
6. MAINTENANCE	6
7. SPECIFICATIONS	7
8. LINK FUNCTION	8
9. BUILT-IN LINK FUNCTION	9
10. MESSAGE DISPLAY	10
11. SFC FUNCTION	11
12. TOOL	12
DIMENSIONAL OUTLINE DRAWING	hments1
OTHERS	ments2

Thank you very much for purchasing our Programmable Controller.
\square This operation manual is for TOYOPUC-PC3JG P-CPU Module(TIC-6088)/PC3JG-CPU(TIC6125).
\square For safety use of this product, read carefully this manual and other related individual operation manuals altogether. Further, keep these manuals in file at an easily accessible place so that persons concerned can read them anytime as necessary.
\square The distributor or dealer of this product is requested to hand over the said manuals to the end user without fail.

- The specification and other relevant information included in this Manual are subject to change due to better improvement without prior notice.
\square Any product applicable to the strategic goods (or services) stipulated in the Foreign Exchange and Foreign Trade Control Act is subject to export license of the Japanese Government, where exported to overseas.
\square Should this product result in trouble during the guarantee period due to somewhat cause attributed to our responsibility, necessary device(s) or parts(s) shall be repaired or replaced at our discretion. For any other trouble or accident out of our responsibility, our company shall be released from the responsibility for injury which may arise from such a trouble or accident.

FOR SAFETY OPERATION

Before installing, operating, maintaining and checking, read carefully this Manual without fail for proper and safety operation and work. Any operator and any maintenance man who relate to this product (Programmable Controller) are requested to acquire the knowledge on devices, safety information and cautions before being engaged in the operation and maintenance. This Manual classifies the safety caution level into "WARNING" and "CAUTION" using alert symbols as follows.

WARNING

Failure to observe the instructions given in this Manual could result in death or bodily injury of the operator.

Failure to observe the instructions given in this Manual could result in risk of bodily injury or physical damage to equipment, etc.

| \square | Don't overhaul the module and don't touch the module internals,
 with the power switch kept ON.
 Failure to observe this instruction could result in electric shock. |
| :--- | :--- | :--- |
| \square | Don't touch the terminals with the power switch kept ON.
 Failure to observe this instruction could result in electric shock. |
| \square | Execute write during PC run (write during run) only when cyclic
 operation of main equipment/machine is in shutdown.
 Failure to observe this instruction could result in breakdown of its
 device(s) and bodily injury from mis-operation, if any. |
| \square | In handling the lithium battery, read and observe " Lithium Battery
 Handling Cautions " given in this Manual. Improper handling
 would cause liquid leak, overheat, sparking, and fracture, which
 could then result in breakdown of units and devices and bodily
 injury. |

	Regarding safe-related signals and emergency stop circuit, etc., handle those signals in external units without through this system.
\triangle caution	Use this product under an environment which meets the environmental general specification specified in this Manual. Don't attach/detach each module to/from its base, with the power switch kept ON. Don't touch directly the electronic circuits inside the module. Failure to observe this instruction could result in breakdown of the module by static electricity. The cautions on storage and transportation 1.Since the memory part is in voltaic state by the internal battery when, as for this module, an external power supply is not supplied please keep it according to " 7.1 General specification." However, Ambient temperature is $-20-+60^{\circ} \mathrm{C}$. Moreover, please do not place this module directly on the thing with conductivity. 2.Please remove a battery, when you cannot keep this module for a long period of time (three months or more) or you cannot perform storage according to "7.1 General specification." The ambient temperature in this case is $-25-+70^{\circ} \mathrm{C}$. Moreover, since an electric device is weak to dew condensation, please avoid dew condensation using a desiccant etc.

REVISION HISTORY OF OPERATION MANUAL

Operation manual revision No. is added as a part of Manual No. described on the cover sheet of the manual.

Revision No.	Date of Revision	Revision Details
2	2003.06 .02	7.4.3. Specification of Output (correction of chart for PC3JGP)
3	2003.08 .26	5.Error Alarm (correction of error contents) 7.2 .2 . User memory data (correction of I/O points)
4	2003.09 .15	7.2 .5. Table of special relays 7.2 .6. Table of special registers
5	2004.01 .14	2. Installation and wiring (correction of installation and wiring) 7.5. I/O module specification (addition of notes)
6	2005.01 .10	Explanation of Programmer is unified to PCwin. The connection path function is added to Link parameter setup of DLNK-M2. Mark review of output module specification. Note addition to power supply module specification. The cautions on storage and transportation are added.
7	2005.10 .16	The cautions about installation environment are added. The cautions about wiring for 5V cable are added.
8	DLNK-M2 error-code explanation addition A special register and I/O Address part correction System configuration apparatus list reexamination	
9	2006.01 .01	The company name "TOYODA MACHINE WORKS,LTD" is changed to "JTEKT CORPORATION"
12	2006.10 .04	Recommended change of communications cable, ferrules, crimping tool. Explanation change in error code D6 (collation error). The connection path setup is added to the link parameter. Addition of standard and user library function explanation. Addition of explanation at high-speed communication. Addition of the USB I/F cable to the composition equipment list.
10	2007.09 .05	Correct missing description. Review of "Table of System Components"
13	"RUN relay" explanation correction Correction of "Connector pins configuration" of OUT-28D and OUT-29D	
15	2007.10 .05	Correct missing description.
"Restrion of SFC" is corrected.		

Composition of Related Operation Manuals

Operation manual No.	Title	Outline
T-833\#E	PC2J Series	This manual describes the basic operating procedure, functions, and specifications of PC2J Series.
T-307\#E	PC2/PC2J/PC3J Series PROGRAMMING MANUAL	This manual describes the procedure for creating sequence programs used in PC2/PC2J/PC3J Series and how to use application commands.
T-826\#E	PC Series PC LINK/ COMPUTER LINK	This manual describes the operating procedure, functions and specifications of PC Link and Computer Link.
T-735\#E	PC2J/3J DLNK-M/M-C/M2	This manual describes the operating procedure, functions and specifications of DLNK-M2.
T-350\#E	SFC programming	This manual describes the operating procedure, functions and specifications of the tool for SFC programming.
T-315\#E	LIBRARY	This manual describes the operating procedure, functions and specifications of USER and STANDARD LIBRARY.

CONTENTS

CONTENTS 1

1. SYSTEM COMPONENTS 1-1
1.1. Features 1-1
1.2. System connection 1-2
1.3 Table of System Components 1-4
1.4. Name and function of each panel switch and each lamp 1-7
2 INSTALLATION AND WIRING 2-1
2.1 Environment for installation 2-1
2.2 Cautions in installing 2-2
2.3 Actual mounting of each module 2-3
2.4 Wiring 2-4
2.4.1 Cautions in wiring 2-4
2.4.2 Wiring of power module 2-6
2.4.3 Wiring for 5 V power supply into additional I/O rack 2-7
2.4.4 Connection method 2-8
2. INITIAL SETTING 3-1
3.1. CPU setting before shipping 3-1
3.1.1. Program and parameters 3-1
3.1.2. Battery 3-2
3.2 CPU Setting Procedure 3-9
3.2.1 CPU operation mode setting 3-9
3.2.2 Separate patterns of program data 3-11
3.2.3 Program Execution 3-18
3.2.4 Inter-program data utilization 3-20
3.2.5 I/O module setting 3-23
3.2.6 Rack No. and slot No. at the time link parameter setting 3-23
3.2.7 Program creating sequence 3-24
3.2.8 Automatic setting of I/O modules and link parameters 3-25
4 TEST RUN 4-1
4.1 Check Items before test run 4-1
5 ERROR ALARM 5-1
5.1 Error ranks 5-1
5.2 Display of abnormality 5-2
5.3 DISPLAYED ERRORS TABLE 5-3
5.4 Special Register for Error Information Output 5-6
5.5 Error-related Information 5-7
5.6 Error message 5-10
5.7 Counteraction against CPU error 5-12
5.7.1 Self-diagnosis items and presumed (possible) causes 5-13
5.7.2 Error check flow chart 5-21
5.7.3 I/O module trouble analysis 5-50
6 MAINTENANCE 6-1
6.1 Battery Replacement 6-1
6.2 fuse replacement. 6-5
7 SPECIFICATIONS 7-1
7.1 General specification 7-1
7.2 CPU module specification 7-2
7.2.1 Basic specification of CPU module 7-2
7.2.2 User memory data 7-3
7.2.3 Parameters 7-6
7.2.4 I/O address table 7-7
7.2.5 Table of special relays 7-15
7.2.6 Table of special registers 7-35
7.2.7 Command words 7-45
7.2.8 Equipment Information Memory 7-56
7.3 Link specification 7-57
7.4 I/O Specification 7-60
7.4.1 Allocation of connector pin 7-60
7.4.2 Specification of input 7-63
7.4.3 Specification of Output 7-64
7.5 I/O module specification 7-66
7.5.1 Input module specification 7-66
7.5.2 Output Module Specification 7-70
7.5.3 Identification and function of each I/O module component 7-81
7.5.4 Fuse Specification 7-83
7.6 Base Specification 7-84
7.7 Power Module Specification 7-86
7.8 Selector Module Specification 7-88
7.9 I/O Cable Specification 7-91
7.10 I/O Branch Module Specification 7-91
7.11 I/O Conversion Cable Specification 7-91
7.12 Selector base specification 7-92
7.12.1 Composition example of Selector Base 7-93
7.12.2 Name and function of each portion for Selector Base 7-94
3. LINK FUNCTION 8-1
8.1. Link parameter setting 8-1
8.2. Data link area 8-2
8.3. Commands 8-4
8.3.1. Computer Link commands 8-4
8.3.2. Ethernet commands 8-6
8.4. Special Relays and Special Registers 8-7
4. BUILT-IN FUNCTION 9-1
9.1. Built-in computer link 9-2
9.1.1. Communication commands 9-6
9.1.2. Error report from Computer Link 9-33
9.2. Built-in PC Link 9-38
9.2.1. The outline of PC Link operation 9-41
9.2.2. Timing with PC operation 9-44
9.2.3. Reset communication 9-45
9.2.4. Unlinking Function 9-48
9.2.5. PC Link status 9-50
9.2.6. Inform abnormality of PC Link 9-53
9.2.7. Flow chart to check PC Link abnormality 9-58
9.3. Built-in DLNK-M2 9-62
9.3.1. System Configuration 9-67
9.3.2. Order of Power on 9-68
9.3.3. Communication Reset 9-69
9.3.4. Unlinking Function 9-70
9.3.5. Communication Processing Time and Refresh Processing Time 9-72
9.3.6. Communication Data Response Time 9-73
9.3.7. Abnormality information of DLNK-M2 9-75
9.3.8. Error information by CPU 9-77
9.3.9. Communication Status 9-82
9.3.10. Link file 9-88
9.3.11. Error Contents and Supposed Causes 9-93
9.3.12. Error Check Flowchart of DLNK-M2 9-96
9.4. SN-I/F 9-108
9.5. Set built-in link parameter 9-110
9.5.1. Set the rack, slot and link module. 9-111
9.5.2. Computer Link 9-111
9.5.3. PC Link 9-113
9.5.4. DLNK-M2 9-117
9.5.4.1. I/O Module Parameter Setting 9-117
9.5.4.2. Link Parameter Setting 9-118
9.5.4.3. COLLECTION OF DIAGNOSIS DATA 9-124
9.5.4.3.1. Collection of Diagnosis Data by Link Parameter 9-125
9.5.4.3.2. General-purpose Status 9-126
9.5.4.3.3. Error Record Reset / Arbitrary Reading Switch Format 9-127
9.5.4.3.4. Diagnosis Data Map 9-127
9.5.4.4. Message Communication Function 9-130
9.6. Special register 9-133
5. MESSAGE DISPLAY 10-1
10.1. Monitor operating state 10-1
10.2. Error code monitor 10-2
10.3. I/O monitor 10-2
10.4. Monitor link communication state 10-3
10.5. Library information 10-5
6. SFC PROGRAMMING(SEQUENTIAL FUNCTION CHART) 11-1
11.1. Indication of SFC 11-1
11.2. Indication of FB 11-1
11.3. Restriction of SFC 11-2
7. TOOL 12-1
12.1. I/O operation panel 12-1
12.2. I/O Check (for Output) 12-2
Appendix 1. Dimensional outline drawing 1
Appendix 1-1 PC3JG 1
Appendix1-2 Power module 2
Appendix 1-3 Selector module 3
Appendix 1-4 I/O module 4
Appendix1-5 Base 5
Appendix1-6 Selector Base 6
Appendix1-7 Installation dimension 7
Appendix 2. Others 1
Appendix 2-1 Module type discriminating codes 1
Appendix 2-2 Individual current consumption of each module 3
Appendix 2-3 Error in self-contained clock 4
Appendix 2-4 Hexadecimal system 5
Appendix 2-5 Precautions in use of output modules OUT-15 and -16 6

1. SYSTEM COMPONENTS

1.1. Features

TOYOPUC-PC3JG is the integrated system having such function as CPU function, communication function and I/O. Outside dimension of the CPU is the same with two slots module PC3J/PC2J and the CPU is mounted at CPU slot and slot 0 on base for PC3J/PC2J.
Function of CPU is the same with PC3J-CPU. Such abundant communication function as device net also installed and additionally $64 \mathrm{I} / \mathrm{O}$ is equipped as standard.
(1) Execution of three independent programs

PC is required to provide three functions of "equipment control", " equipment diagnosis " and " information processing". A clear and easy-to-see program becomes available by making these three sequence programs independent from each other.
The PC3J able to make each program and its data area perfectly independent from others improves the efficiency in creation and edit of electric circuits.
(2) Built-in equipment information memory

The PC3J Series can store various equipment information such as comments on sequence circuit, device symbols, cycle chart, etc. Based on these equipment information, the PC3J Series can display, by peripheral equipment (PCwin), etc., information of commented circuit diagrams, cycle charts, equipment diagnosis result, etc. which are very useful for further maintenance of equipment.
(3) Compatibility with PC2J

Sequence programs created in PC2 Series can be executed as are with this PC3J series, whereby further continued use of the conventional assets is ensured. (Waste is eliminated.)
(4) Further use of PC2 Series peripheral devices allowed.

The PC3J series is provided with "PC2 Compatible Mode" allowing further use of the peripheral devices for PC2 Series.
(Note) PC2 Series peripheral equipment can not be used in mode other than "PC2 Compatible Mode". PC3 Series can be used as "PC2 Compatible Mode" by witing applicable program by PC2 Series peripheral equipment The function extended in PC3 Series is not available for "PC2 Compatible Mode".
(5) Flexible user memory

Twelve (12) different user memories are selectively available by allocation flexibly corresponding to user needs.
(6) Built-in communication port

Total two ports are equipped as standard; one is port for CMP link (computer link) or PC link or SN-I/F, the other port for DLNK-M2.
(7) 64-point of I/O

32-point for signal I/O (16/16) and 32-point for device I/O are equipped as standard.
(8) High speed processing

Processing speed of basic commands at $0.08 \mu \mathrm{~s} /$ word (min) and that of applied commands at 0.60 $\mu \mathrm{s} /$ word (min) faster than those in PC2 allow high speed processing of versatile sequence programs such as "equipment control", "equipment diagnosis", " information processing", etc.

1.2. System connection

(1) In case of connected to PC3J/PC2J

: 8slot-base(z) or selector-base

Note. Keep total I/O extension cable length less than 10 meters.
Keep I/O total extension cable length less than 5 m and installation of maximum base installation 4 sets when I/O branch module is used.
(2) Programmable software (Hellowin, PCwin) If the past programmable software are used, the some functions in PC3JG are not usable.

(Note 1) In case of I/O 1024 points or less and no diagnosis function for DLNK, set DLNK-M in the link parameter and the past programmable software is usable.
(Note 2) For the details of the tool function, see [12. Tool] or the PCwin manual.
(Note 3) PC3JG has the automatic switch function and make it possible to communicate faster than it is set by 38.4 kbps .

It is possible for PC3JG to communicate when it is set by 38.4 Kbps or AUTO.
High-speed communication would be possible by setting PCwin by AUTO.
PC2J/PC3J series other than PC3JG communicates by 38.4 kbps .

1.3 Table of System Components

Equipment, device	Name	Type	Specification
PC3JG	PC3JG-P-CPU	TIC-6088	Memory 180K word (60×3) Input 32 points (5mA) output 32 points (0.3A:16 points),(0.05A: 16 points) With computer link/PC link/ SN-I/F and DLNK-M2 function
	PC3JG-CPU	TIC-6125	
Lithium battery	For PC3J CPU	TIP-5426	Rechargeable battery for PC3J CPU
Connector	Connector for external connection	TIP-5867	For square shape connector soldering 40pin resin case
Selector	SELECTOR	THU-2765	
Power unit	POWER1	THV-2747	AC85~264V input,DC5V 4A output
	POWER2	THV-2748	DC24V input,DC5V 4A output
Base	8-slot base	THR-2766	
	8-slot base2	THR-2872	I/O connector 2 pieces
	6-slot base	THR-2813	
	4-slot base	THR-2775	
	2-slot base	THR-2814	
Selector base	8 slot selector base	THR-5643	Selector function internally stored dedicated base for 8 slots increasing
	$\begin{array}{\|lll} \hline 6 & \text { slot } & \text { selector } \\ \text { base } & \\ \hline \end{array}$	THR-5644	Selector function internally stored dedicated base for 6 slots increasing
	$\begin{array}{\|lll} \hline 4 & \text { slot selector } \\ \text { base } \end{array}$	THR-5645	Selector function internally stored dedicated base for 4 slots increasing
I/O cable	I/O cable 0.5 m	THY-2770	
	I/O cable 1 m	THY-2771	
I/O branch module		THU-2774	For additional base when other than 8 -slot base 2 is used.
Input	IN-11	THK-2749	16 points AC100V input
	IN-12	THK-2750	16 points DC24V input
	IN-22D	THK-2871	32 points DC24V input
Output	OUT- 1	THK-2751	8 points triac output, 1A/point, 4A/8 points
	OUT-3	THK-2931	8 points, relay independent contact output (AC240/DC24V) 2A/point
	OUT- 4	THK-5040	8 points triac output, 1A/point, 4A/8 points, AC100/240V
	OUT-11	THK-2795	16 points triac output, $0.5 \mathrm{~A} /$ point, $2 \mathrm{~A} / 8$ points
	OUT-12	THK-2752	16 points, relay contact output, 2A/point, 5A/8 points
	OUT-15	THK-2790	16 points MOS-FET output (-) common, 1A/point, 4A/8 points
	OUT-16	THK-2791	16 points MOS-FET output (+) common, 1A/point, 4A/8 points
	OUT-18	THK-2753	16 points, transistor output (-) common, 0.5A/point, 2A/8points
	OUT-19	THK-2754	16 points, transistor output (+) common, 0.5A/point, 2A/8points

Equipment, device	Name		Type	Specification	
Output	OUT-28D		THK-2870	32 points transistor output (-) common, $0.2 \mathrm{~A} /$ point, $2 \mathrm{~A} / 16$ points	
	OUT-29D		THK-5025	32 points transistor output (+) common , 0.2A/point, 2A/16points	
Serial I/O	SIO		THK-2782	RS-232C 0.3~19.2Kbps 2ch	
PC1 bus interface	PC1-I/O-I/F		THK-2783	For PC1 bus coupling	
High speed counter	COUNTER		THK-2932	50kpps 1 and 2 phase	
Pulse output	PULSE OUTPUT		THK-5109	245, 730pps forward pulse /reverse pulse	
Analog input	AD-1		THK-7936	1~5V,4~20mA, 4 points	
	AD-2		THK-7937	1~10V,4 points	
	AD-3		THK-7938	$-5 \sim 5 \mathrm{~V}, 4$ points	
Analog output	DA-1		THK-7931	1~5V,4~20mA, 2 points	
	DA-2		THK-7932	1~10V,2 points	
Motion controller	AF1K-C		AF1K-C	Control of Single-axis CNC Unit AF1K	
	MA1K-C		MA1K-C	Control of Multi-axis Controller MA1K	
PC/CMP link	C/CMP-LINK		THU-2755	PC link (19.2/57.6 Kbps, $16 \mathrm{ST}, 512$ points) or computer link (selection of $0.3 \sim 19.2 \mathrm{Kbps} 32$ stations)	1 port
2-port link	2 PORT-LINK		THU-2927		2 ports
PC/CMP link 2	PC/CMP-LINK2		THU-5139	4-wire communication available, subject to same specification as PC/CMP link.	
2-port M-NET	2 PORT M-NET		THU-5093		
High speed PC link	HPC-LINK		THU-2758		
ME-NET	ME-NET		THU-2797	$1.25 \mathrm{Mbps}, 64$ stations, 2048 points, 2048 bytes	
	-	ME -cable	TLY-2692	Cable set for coaxial cable lead-in	
		ME-BNCL	TLY-2693	BNC connector terminal end, L-shape for coaxial cable	
		ME-BNCP	TLY-2708	BNC connector for coaxial cable	
High speed remote I/O, host	RMT-I/O M		THU-2756	HOST, 625Kbps, 2048 points, max. 31 stations	
High speed remote I/O, slave	RMT-I/O S		THU-2757	Slave station	
FL-net Ethernet	FL/ET-T-V2		THU-5998	FL-net, I/F (interface) for Ethernet	
Device net	J-DLNK-M		THK-5398	Master module conforming to DEVICENET	
	J-DLNK-M-C		THU-6023		
	J-DLNK-M2		THU-6099		
	J-DLNK-S		THU-5441	Slave module conforming to DEVICENET	
S-Link	S-LINK		THU-5291	I/F for SUNKS S-LINK	
B7A-Interface	B7A-/F		THU-5297	I/F for OMRON B7A 10 Input Points Type	
Sub CPU	SUB-CPU		THC-5058	Memory 16K words, SIO function built in	

For the details of special module and programmer, see the respective individual Instruction Manuals.

	Equipment, device		Name	Type	Specification
	I/O Monitor	PC3J/PC2J-I/O MOMITOR2*1		THA-5137	Monitor such as register (I/O monitor cable : THY-2905 is required to connect with PC3JG.)
		I/O monitor cable		THY-2905	Connection between I/O monitor and PC3G : 1.5m
	Programmer	O	Software for PC3JG (forWindowsXp/2000)	TJA-2032	Programming software (CD-ROM version) for SFC: Japanese
				TJA-2031	Programming software (CD-ROM version) for SFC : English
				TJA-6285	Programming software (CD-ROM version) for SFC : French
				TJA-6233	Programming software (CD-ROM version) for SFC: Chinese
				TJA-6058	Programming software (CD-ROM version) for SFC: Czech
			Personal computer connection cable2	TXY-6071	Connection between TOYOPUC and PC (RS-232C)
			USB IF cable	TXY-6266	Connection between TOYOPUC and PC (USB)

Refer to respective operation manual concerning peripheral equipment.
*1 PC3JG division mode is not supported.

1.4. Name and function of each panel switch and each lamp

(1) PWR lamp
(2) RUN Iamp
(3) E/A lamp

(1) PWR lamp

Indicates 5V power source is supplied on base unit. However the lamp is turned out when interruption of the power source is detected.
(2) RUN lamp

Indicates sequence program is under execution. Interlocked with RUN relay output for power supply module.
(3) E/A lamp

Lights when heavy or light abnormality and alarm are occurred.
(4) Message display

Displays state of CPU, ON/OFF display for I/O and error message.
(5) MOD push button switch

Display content on display is changed over.
[RUN state]->[Error code]->[I/O]->[link communication state]->[Library information]
(6) INC push button switch

In case of [Error code] or [I/O], the next content is displayed.

(7) Connector for peripheral equipment

Connects peripheral equipment.
*The size of the screw of the connector is M3.
(8) Reset/start switch

CPU becomes set state when switch is turned to "RESET" side and outer output and inner relay are made OFF to stop program running. When the switch is turned to "START" side program execution is started. However the program is not started if stop signal is issued from peripheral equipment.
(9) Fuse for control output

Fuse for (Y010 ~ Y01F). Capacity of fuse is 3.2A.
(10) Spare fuse

Spare fuse provided for control output.
(11) Input/output for control

Input is 16 points (5 mA) and output is 16 points ($0.3 \mathrm{~A} /$ point : $2 \mathrm{~A} / 16$ points).
Output for control is provided to drive relay and solenoid valve.
(12) Input/output for signal

Input is 16 points (5 mA) and output is 16 points ($0.05 \mathrm{~A} /$ point : $0.8 \mathrm{~A} / 16$ points).
Output for signal is provided to deliver signal to other device or LED lamp display.
Do not connect such inductive load as relay or solenoid valve to output for signal.

(13)

DLNK state display lamp
Displays state of DLNK.
MS: Running state of the hardware in DLNK communicating part is displayed.
Green on: Normal state. Green blinking: Loading state of switch.
Red on: Hard error. Red blinking: switch setting error.
NS: Running state of DLNK network is displayed.
Green on: Normal state. Green blinking: On establishing the communication.
Red on: Communicating on network is not possible.
Red blinking: Communicating error in the slave.
DE: Running state of the hardware in DLNK-CPU.
Off: Normal state. Red on: Hardware error.
Red blinking: Communicating error in the slave.
(14) DLNK setting switch

Sync: Switch of the synchronization of the communication scanning and the sequence scanning and the non-synchronization.

OFF- non-synchronization, ON- synchronization
Stop: Switch of stopping CPU on the communication error and running CPU. OFF-running, ON-stop
Hold: Switch of that output are OFF on stopping CPU and are held.
OFF-OFF, ON-hold
(15) DLNK communication terminal block

This is terminal block for DLNK.

(16) CPU version seal Indicates version of CPU. The version is stored at special register S2D1.
(17) SN-I/F, PC-Link, Computer-Link state lamp

The state of some one of SN-I/F, PC-Link or Computer-Link is displayed. Orange blinking: Communicating OFF: Stop communication
(18) Battery replacing seal

The seal is provided to enter the date the battery is replaced.
(19) SN-I/F, PC-Link, Computer-Link terminal block

This is terminal block for SN-I/F, PC-Link or Computer-Link.
(20) Setting switch of the terminator for SN-I/F

OFF: No connecting terminator, ON: Connecting terminator

2 Installation and wiring

This Section describes the installing and wiring procedures and related cautions.

2.1 Environment for installation

Avoid to install the PC at the following environments.
(1)Place where ambient temperature exceeds the range of 0 to $55^{\circ} \mathrm{C}$.
(2)Place where ambient humidity exceeds the range of 30 to $85 \% \mathrm{RH}$.
(3) Place where rapid temperature fluctuation results in dew condensation.
(4)Place where corrosive gas and combustible gas exist inevitably.
(5)Place where conductive powders such as dust, iron powder, etc., oil mist, salt content, and organic solvent exist much.
(6)Place where strong electric field and strong magnetic field generate.
(7)Place where the product is exposed to direct sun ray.
(8)Place where vibration and impact are transferred to the product (PC).

When use environment is the above, please contain this equipment to the control box sealed in order to maintain good installation environment. Please do not keep the door of a control box opened wide. Moreover, when you use a fan etc. within a control box, please install so that a direct wind is not in charge of this equipment.
Please be careful in order to cause an unexpected situation, when a coarse particulate adheres to the portion equivalent to which a wind is directly so much.

2.2 Cautions in installing

(1) For smooth drafting or easy module replacement, keep a space of at least 50 mm between upper module/lower module and other structures and parts, as illustrated below.

(2)Absolutely avoid to use modules in vertical position and horizontal position. The use in such positions causes poor drafting in modules.

Mounting in horizontal position
(not allowed)

Mounting in vertical position
(not allowed)

2.3 Actual mounting of each module

(1) How to mount onto the base

1. Insert module's fixing claw in the lock (receptacle) hole of the base.

2. For mounting, push-in the module in arrow direction until it clicks.

Check the claw and hook for exact insertion in the hole. Failure to fix exactly the module could cause operation error. Caution it! Particularly when this PC is used at an environment where it is exposed to significant vibration and shock, it is recommended to screw each module to the base. (Screw size: $M 3 \times 8$, with washer)

These screws are not included in each module. Prepare them at user side.
(2) How to remove module

1. Push down the upper hook of each module until it comes to end.
2. Draw the module frontward to remove it from the base, with its bottom supported, while pushing down its hook.

2.4 Wiring

2.4.1 Cautions in wiring

This paragraph describes the cautions to be observed in wiring of power cable or I/O cable, etc.
(1) In wiring, separate the power line to the PC body (power module) from the power line to I/O devices and main circuit devices respectively.

(2)Select and use low-noise power cables between cables and between cable and ground. When these lines are very noisy, connect an insulated transformer to these lines.

(3) Isolate the I/O signal line from main circuit line of high voltage and large current as far as possible. (keep a space of 100 mm min between these two.) Avoid parallel wiring of these if possible.
(4) Isolate DC24V I/O cable from AC100V cable.
(5) The recommended cable for I/O signal is as follows.

Terminal block	Recommended cable size	The permissible current capacity of cable differs depending on ambient
19 P	$0.5 \mathrm{~mm}^{2}$	temperature, insulator thickness, etc.

(6) Use of the following crimp terminals is recommended.

Manufacturer	Type	
JAPAN		
SOLDERLESS	Eyelet terminal	$0.5-3.7,1.25-\mathrm{M} 3,2-\mathrm{S} 3$
TERMINAL TRADING COMPANY LTD.	Rectangular end-open terminal	$1.25-\mathrm{YS} 3 \mathrm{~A}, 2-\mathrm{YS} 3 \mathrm{~A}$
	Vinyl-insulated eyelet terminal	$\mathrm{V} 0.5-3.7, \mathrm{~V} 1.25-\mathrm{M} 3, \mathrm{~V} 2-\mathrm{S} 3$
	Vinyl-insulated rectangular end-open terminal	$\mathrm{V} 1.25-\mathrm{YS} 3 \mathrm{~A}, \mathrm{~V} 2-\mathrm{YS} 3 \mathrm{~A}$

(7) Wire the I/O signal cables using another duct separately from main circuit cable, whether inside or outside the control panel. When using the duct wiring system, earth the duct securely.
(8) When wiring by use of same duct is inevitable, use a batch-shielded cable and connect its shield end to FG terminal of NC rack.
(9) Output short-circuit protection

The output module self-contains a fuse to protect itself from burning should a load be short-circuited. But this fuse can not protect the output module from overload. Therefore, use the output module within the ratings without fail.
(10) Parallel connection of loads

The number of loads which can be driven in parallel by the output module is determined by the starting current and rated current of loads actuated simultaneously.
Therefore, connect the loads so that the starting current does not exceed the fuse rating and, in addition, the rated current does not exceed the rated output current (per point) of the output module. Table below shows the reference number of loads for which parallel drive by OUT-1 is available.

Manufacturer	Type	Quantity
FUJI	SRCa3631-0	4
	SRC3631-5-2	3
	SRCa3631-2	2
	SC-4	1

Note: Use auxiliary relay for a load which exceeds the ratings.
(11)Do not string a strong cable in 50 mm zone from CPU module front.
(12)FG connection

FG terminal is provided on 5 V terminal block of each base.
When additional base is installed, connect FG to one FG terminal.

2.4.2 Wiring of power module

* For wiring to the terminal block, use crimp terminal (Eyelet or Y-shaped terminal for M3) without fail.

AC100V(POWER1)
DC24V (POWER2)

$5 \mathrm{~V}, 0 \mathrm{~V}$ wiring

Ex. Improper connection

Avoid to wire another power cable separately from additional I/O rack.

Avoid to supply the power into the power module of CPU rack, with I/O cable wired between additional racks, without supplying the power into the power module of additional rack. When connecting I/O cable of additional rack, exactly wire the power cable to the power cable to the power module.

2.4.3 Wiring for 5 V power supply into additional I/O rack

Where more than 8 additional I/O modules, etc. in total are used, it is possible to operate PC by supplying 5 V power into additional I/O racks from other power module, provided that the total current consumption of all modules in additional I/O rack is not more than 4 A . In supplying 5 V power, wire each cable of $5 \mathrm{~V}, 0 \mathrm{~V}$ and FG from the left end terminal on each base.
Furthermore, note the following in wiring.
(1)Be careful to avoid miss wiring of $5 \mathrm{~V}, 0 \mathrm{~V}$ and FG .
(2)Use 5 V cable and 0 V cable as twisted.

Isolate 5 V cable from main circuit line of high voltage and large current as far as possible.
(Keep a space of 100 mm min between these two.) Avoid parallel wiring of these if possible.
(3)Absolutely avoid 5 V cable wiring of rack to rack to which power module is connected. Doing so could result in damage of modules due to parallel run of the power modules.
(4)Recommended cable size and recommended crimp terminals for each wiring.

Recommended cable size	$5.5 \mathrm{~mm}^{2}$

Recommended crimp terminals	JAPAN SOLDER-LESS	Eyelet terminals	5.5-S3, V5.5-S3 (vinyl-insulated)
	TERMNAL TRADING COMPANY LTD.	Rectangular end-open terminal	$5.5-$ S3A,V5.5-S3A (vinyl-insulated)

2.4.4 Connection method

(1) Wiring of SN-I/F, PC link and computer link
(SN-I/F)Connect wires to each terminal + , - and 0 V as shown below:

Function	Terminal name	Content
SN-I/F	$\mathrm{LI}+$	Communication +
	$\mathrm{L} 1-$	Communication-
	0 V	Communication OV (shield inner shell)

When you use as SN-I/F, please do not connect outside line to PC3JG and TOYOPUC-PCS.

(PC/CMP)Connect wires to each terminal,,+- 0 V and FG as shown below:

Function	Terminal name	Content
Computer link PC link	L1+	Communication +
	L1-	Communication-
	OV	Communication 0V (shield inner shell)

Method of wiring the terminal block.
After crimping with a special stick terminal, the stick terminal is automatically fixed by inserting the stick terminal in the electric wire insertion hole.
When the stick terminal is pulled out, After pushing a release button (orange) on the electric wire insertion hole side, the electric wire is pulled out.
Recommended terminal : Al0.75-10GY made by phoenix contact (0.75 sq for 1 wire) : AI-TWIN2X0.75-10GY made by phoenix contact (0.75 sq for 2 wires)
Recommended crimping tool : CRIMPFOX ZA3 or CRIMPFOX UD63 made by phoenix contact. Note 1) cover the bar terminal with a mark tube for preventing a short circuit.

Recommended cable

- Double shield O-VCTF-SS $2 \mathrm{C} \times 0.75 \mathrm{~mm}^{2}$ CHUGOKU ELECTRIC WIRE \& CABLE CO., LTD
- Double shield UL2464-DSS 2C×20AWG CHUGOKU ELECTRIC WIRE \& CABLE CO., LTD
- Double shield UL2464-2SB 2×20 AWG KURAMO ELECTRIC CO.,LTD.

Note 1) Be sure to connect each cable with the power source cut off.
Note 2) Cable shall be sequentially wired one by one from module to module. Do not wire them in batch.
Note 3) To avoid operation error caused by external noise, do not make proximity wiring of communication cables in parallel to main circuit cable, etc. of high tension and strong current.

SN-IF wiring diagram

PC link wiring diagram

| PC link
 Key station | PC link
 Branch
 station 1 | PC link
 Branch
 station 2 |
| :--- | :--- | :--- | :--- | :--- |

Computer link wiring diagram
(In case high rank computer requests RS-422 half-duplex responding)

(In case high rank computer requests RS-232C responding)
Be sure to use RS-232C/422 converter (Model TXU-2051) when computer is connected to high rank computer that responds to RS-232C.

(2) Wiring of DLNK-M2

DLNK communication cable is composed of five wires: 1) communication power source wires $(24 \mathrm{~V}, 0 \mathrm{~V}), 2$) communication data wires (CAN-H,CANL) and 3) shield wire (DRAIN).
The five wires can be identified by respective color and are complied with device net specifications.
(a) Wiring to DLNK-M2

Communication cable shall be connected as shown below:
Each wire of five DLNK-M2 wires is sealed to identify the content of respective purpose. Confirm that wire color and seal color is coincidence with each other.

- Wiring to communication connector

The communication connector of DLNK-M2 is screw less terminal. The ferrule is crimped to the portion that turned to covering of the cable end, and it is clamped only by inserting the ferrule in the wire insertion port of the connector. When removing a cable, a cable is removed where the upper of an orange lever is pushed with a small minus driver.

The recommended ferrule and crimping tool

Item	Type				Manufacturer
Ferrule	Kind of cable	Communication line	Power supply line	Shield line	Phoenix Contact Inc.
	Thin Cable	AI 0,25-8 YE	AI 0,5-10 WH	Al 0,5-10 WH	
	Thick Cable	A 1-10	AI 2,5-10 BU	A1-10 or Al 1-10 RD	
	Al:Ferrule with plastic sleeve, A:Ferrule without plastic insulating sleeve				
crimping tool	CRIMPFOX ZA3, CRIMPFOX UD6-4				

Note 1: The recommended ferrule mentioned above is a suitable ferrule for recommended communications cable (refer to (c)). Please use a suitable ferrule for the size of the conductor and the size of the insulator of each electric wire when you use a communication cable other than recommended one.
Note 2: Up to 1 ferrule can be inserted into a single insertion port. When connecting two wires, Twin-Ferrule is used.
Note 3: Please mounts the terminating resistor in the branch unit.
(b)Wiring to branch unit

The following branch units are recommended. Please refer to each maker's manual for use. Please consider that if there is something specified for the end user.

Type	Manufacturer
DCN1-1C	OMRON
DCN1-3C	OMRON

(c)Type of recommended communication cable

Be sure to use communication cable that is complied with device net specifications.
We recommend using following products as communication cable. Use these products depending on your requirement.
-Recommended communications cable

Manufacturer Kind of cable	Thin Cable	Thick Cable
OMRON CORPORATION.	DCA1-5C10	DCA2-5C10
SHOWA ELECTRIC WIRE \& CABLE CO.,LTD.	TDN24U	TDN18U
KURAMO ELECTRIC CO.,LTD.	KND-SB(THIN)	KND-SB(THICK)

Note: The cable mentioned above is for fixed part. Please inquire of each maker about the cable for the moving part.
(d)Terminator

Be sure to install terminators at both ends of main line to stabilize communication line.
Use $121 \Omega 1 / 4 \mathrm{~W}$ metal film resistor as terminator.
(e) Connection of Communication Power Source

Supply 24 V DC to the network power supply lines ($\mathrm{V}+$, V -).
The network power supply is applied by using one of the terminal blocks inside the relay box or Tbranch.
Connect the network power supply so that $24 \mathrm{~V}(+)$ and $24 \mathrm{~V}(-)$ are supplied to the communication cable red and black lines respectively.

(f) Communication Cable Grounding

Connect the communication cable shielding wire (DRAIN) to the earth (ground).
Provide grounding only in one place of the network so that no ground loop is produced.
Provide this grounding as near the network center as possible, and do this with the relay box or Tbranch.
As shown below, connect the communication cable shielding wire with the earth terminal of network power supply <FG> for Class-D grounding (Class-3 grounding).

* The wiring diagram for other than the shielding wire is omitted.
(g) Order of wiring and relation of station number
i. There is no need to wire the master and slaves in order.
(Refer to the figure below.)

ii. Wire the communication cable from module to module.

In the case of wiring in multi-drop method, be sure to use relay box or T branch.

(h) Parallel approach with the power line

Avoid parallel adjacent wiring of the communication cable with high voltage power cable such as power line or so.
Arrange the communication line by separate duct from power circuit cable both in and outside of the control panel. In the case of pipe wiring, ground pipe in a secure manner.

3. Initial Setting

3.1. CPU setting before shipping

3.1.1. Program and parameters

The CPU is set as follows before shipping.

Program
Before shipping, the CPU operation mode is initially set to " PC3J Separate mode 1".
Further, the circuit as illustrated below is written in the sequence program before shipping.

FUN 456

Parameters
The written parameters are set up per the table below.

Items		Setup values
CPU operation mode	PC3J Separate mode 1	
Scan time value on timer	Initial program	10 ms
	Overall	100 ms
Run status against error	I/O table reference error	Stop
	Scan time over	Stop
	Applied command error	continue
Interrupt	External mask	All points mask ${ }^{11}$
	I/O module identification	Rack No.0,Slot No.0 : 3F Other slots: 7F (no module)
	I/O points allocation	Rack No.0,Slot No.0 : 64 points Other slots : 0 points (no allocation)
Link parameters	Rack No.0,Slot No.0 : DLNK-M2 Other slots : Clear (no module)	

*1 No INTERRUPT function available. Hence, these parameter values are all ineffective.

3.1.2. Battery

The PCJ3 is provided with a battery to back up data memory (data area for keep-relay, data register, etc.) against power interruption and to back up the built-in clock.
The battery connector is removed before CPU is shipped. Hence, the data memory and built-in clock are both not backed up. Before using the clock, preset it properly according to peripheral equipment (PCwin, etc.).
User programs (sequence program and parameters) and equipment information memory data (comments, etc.) are never cancelled even after removal of the battery, because they are stored in a flash memory wherein memory data are all held.
(1) Mounting procedure of battery connector
4) Lithium rechargeable battery (TIP-5426)

5) Battery replaced seal

Mounting procedure of battery connector

1) Mount battery side connector on main unit side connector.

Connector shall be mounted keeping front side of connector kept blank as shown figure below.
Be sure to pay attention not connector forcing in or pulling lead wire of battery strongly.
Otherwise failure should occur.

2) Enter date in battery replaced seal.

Although standard service life of battery is five years but actual service life will vary depending on actual service condition.
Be sure to replace with dedicated battery (Chargeable dry cell for PC3J-CPU: TIP-5426).
Replacing procedure is referred to paragraph " $6-1$ Battery replacing".
(2) Lithium rechargeable battery (TIP-5426)

The PC3J CPU uses an exclusive lithium battery $\left({ }^{* 1}\right)$.
This battery is always kept full charged by about 4 hours' current feed per day. If kept full charged, this battery can back up $\left(^{* 2}\right)$ for one year or more under normal temperature $\left(25^{\circ} \mathrm{C}\right)$.
If "Battery voltage low" is detected, BATTERY ALARM (error code 0022) is output. (special relays V03 and VF0 turn ON)
If BATTERY ALARM fails to turn OFF even after charged 8 hours or more or if it turns ON immediately after charged, the possible cause is expiry of the battery life. In such a case, replace with new battery. The battery replacement cycle is 5 years though depending on the actual operating conditions. In replacing, use the specific battery (Charge type battery for PC3J-CPU: TIP-5426) without fail. For the replacing sequence, see "6-1 Battery Replacement".
*1 Appearance of lithium rechargeable battery (TIP-5426)

*2 This lithium charge battery backs up the data memory (data area for keep relay, data register, etc.) and the built-in clock. The guaranteed back-up period subject to full charge is 6 months (environmental temperature: $25^{\circ} \mathrm{C}$).
User programs (sequence program and parameters) and equipment information memory data (comments, etc.) are never cancelled even after removal of the battery, because they are stored in a flash memory wherein memory data are all held.
(3) Data memory back-up

A lithium battery is provided to back up the data memory (data areas such as keep relay, data register, etc.) against power failure and to drive the built-in clock.
Should the PC is left with no current across it throughout more than 6 months, the battery life expires with consumption, which may disable to retain the data in the data memory.
In this case, this PC system incorporates the function to restore the content of the data memory, but the function is unable to restore 100% of the memory content.
On the other hand, The contents (sequence program and parameters) of user program and equipment information memory (comments, etc.) are never cancelled even against power failure, because they are stored in "flash memory" which can retain the stored data unchanged even in the case of power failure.
Two different data back-up functions are provided to restore the contents of the data memory.
Automatic Back-up: The function to automatically back up after power throw-in, requiring no further special operation.

User Command Back-up: The function to back up the memory data in "ON->OFF" timing of special relay [V5F] for Program 1.
This function can back up in any optional timing in accordance with sequence program or peripheral equipment, etc.

(3-1) Automatic Back-up

This is an automatic back-up function which starts simultaneously with power throw-in, requiring no further special operation.

Back-up timing: Simultaneously with power throw-in
Content of processing: Data is stored in the flash memory, provided that the content thereof is backed up correctly.
The data at the time of previous power break is backed up.

In the case of this function, data restored after once cleared (where cleared) is the data before twice power breaks.
All-time varying data, ex. present values on keep relay and counter which show equipment status can not be restored into the status immediate before data cancellation.
Hence, this function is effective to back up the data of constants (ex. non-variable data) which are stored in data register, etc.
Should the power be switched OFF during data back-up run, the back-up data in the flash memory become ineffective, existing no longer therein.

Note) This function is out of application to the buffer register area (EB register) and, therefore, It does not act for back-up to the flash memory. Other areas are backed up.
Where the power is broken on midway of writing in the flash memory after sequence program and equipment and, thereafter, writing in the flash memory is further continued after power throw-in, those data are not backed up automatically.
Writing sequence program and equipment information is unavailable while back-up data is being written in the flash memory.
(3-2) User Command Back-up
This function backs up data in "ON ->OFF" timing of special relay [V5F] for Program 1. This function can back up in any optional timing in accordance with sequence program or peripheral equipment, etc.

Back-up timing: This function starts backing-up, irrespective of CPU operation mode, whenever "ON->OFF" (fall differentiation) of special relay [V5F] for Program 1 is detected.
[V5F] keeps OFF when the power is switched ON.
Content of processing: Data is stored in the flash memory upon detection of "ON->OFF" (fall differentiation) of special relay [V5F] for Program 1.

Special relay [V3A] for Program 1 keeps "ON" while writing in the flash memory.

Data are backed up in the order of extended register, data memory in each program, and extended bit area.

About 5 to 10 seconds is needed for writing in the flash memory. ! Attention: The scan time extends several 10 ms while back-up data is being written in the flash memory.

When using the User Command Back-up function, consider inverse affect on the scan time in advance.

Should the power be switched OFF during data back-up, back-up data in the flash memory are invalidated, hence no back-up data exists no longer therein. Therefore, never switch OFF the power (for about 5 to 10 seconds) until completion of the back-up processing. Special relay [V3A] for Program 1 keeps "ON" during data back-up processing. Completion or not of the back-up processing can be checked by this [V3A] relay.

When designating the back-up timing in accordance with sequence program, execute backing up in such timing that the data vary no longer with shutdown of the equipment.

When designating the timing in accordance with peripheral equipment, turn OFF special relay [V5F] for Program 1 after once turned ON, by the force ON/OFF function.

Note) Where edit and write of sequence program and equipment information write are executed when user command (ON ->OFF of V5F) was executed, data back-up is in queue until complete write of sequence program and equipment information in the flash memory.
Writing sequence program and equipment information is unavailable while back-up data is being written in the flash memory.
This function is out of application to the buffer register area (EB register) and, therefore, It does not act for back-up to the flash memory. Other areas are backed up.
(3-3) Back-up data restoring
Where data memory (data areas such as keep relay, data register, etc.) is deemed as cleared upon initial check, the data memory is restored by the flash memory. In this case, the back-up data must exist in the flash memory. In such a case that the power is switched OFF during data back-up processing, back-up data in the flash memory is in effectuated and, hence, the data exists therein no longer. Thus, when no back-up data exists in the flash memory, the data memory is cleared to 0 .
If restoration of sequence program and data memory is executed, error code "AD Data Error" is alarmed. RUN against data error can be set up, e.g. RUN stop and RUN can be set up. (Under PC2 Compatible Mode, setup RUN STOP is fixed.)

When data error "Error code AD" is alarmed, don't operate the equipment until right restoration of sequence program and data is confirmed.
After error occurrence, "Error code AD Data Error" is cleared by power re-throw in or RESET operation. And "Error code AE Data Error Non-check" is alarmed.
Furthermore, conduct time check on the built-in clock, too, and reset the time from peripheral equipment when deemed as necessary.

3.2 CPU Setting Procedure

3.2.1 CPU operation mode setting

Initially set CPU mode by peripheral equipment ${ }^{* 1}$.
" Data area separate mode", " Data area single mode", and "PC2 compatible mode" are available as CPU operation mode. And program capacity and data capacity can be selected as necessary.

Data area separate mode: has independent data area every each program.
Data area single mode: data area in each program is common to other programs.
PC2 compatible mode: Use of PC2 Series peripheral devices is allowed. However, the number of available programs is limited to one 32 K words program (Program-1).
Any function extended in PC3J is unable to be used under this mode.
*1The PC2 Series peripheral equipment (GL1,etc.) are available for use only when CPU operation mode is in PC2 compatible mode.
Under PC3 mode the PC2 series peripheral equipment can write sequence program (program + parameters).
After written by PC2 series peripheral equipment, PC2 compatible mode is automatically selected as CPU operation mode.
The PC3 Series peripheral equipment (Hellowin) is available for CPU operation modes except PC3JG mode.
The PC3 Series peripheral equipment (PCwin before Ver4.*) is available for CPU operation modes except PC3JG mode.
The PC3 Series peripheral equipment (PCwin Ver5.* or later) are available for all modes.
Relationship of CPU operation mode to program capacity and data capacity :

Mode		Program capacity KW			Basic area data capacity KW			Extended area data capacity KW		
		PRG1	PRG2	PRG3	PRG1	PRG2	PRG3	relay register	data	buffer
PC3	Separate mode 1	16	16	16	8	8	8	8	-	-
	Separate mode 2	32	-	16	16	-	8	8	-	-
	Separate mode 3	16	32	-	8	16	-	8	-	-
	Separate mode 4	16	16	-	8	16	-	8	16	-
	Separate mode 5	16	-	16	16	-	8	8	16	-
	PC3JG	60	60*3	60*3	8	8	8	16	32	128
	Single mode 1	16	16	16	$24^{* 2}$			8	-	-
	Single mode 2	32	-	16	$24^{* 2}$			8	-	-
	Single mode 3	16	32	-	$24^{* 2}$			8	-	-
	Single mode 4	32	-	-	$24^{* 2}$			8	16	-
	Single mode 5	16	-	-	$24^{* 2}$			8	32	-
	Single mode 6	16	16	-	$24^{* 2}$			8	16	-
PC2 compatible		32	-	-	24	-	-	-	-	-

*2 The basic area data in single mode is common to each program.
*3 It is possible to use the standard library and the user library that exists in PC3JL by a combination with FB Library since ver.2.00
However, there are capacity limits in program 2 and program 3 when the standard library and user library are used by PC3JG mode. The user library can mount if the program capacity in P2 is 32 KW or less. The standard library can mount if the program capacity in P3 is 32 KW or less. It is possible to use 60 Kw as usual if you don't use the standard library or the user library. (Please refer to " 10.5 library information" for details.)
Please refer to the library manual (T-315) about the standard library and the user library.
Note: Change of operation mode would cause sequence programs and data hitherto to be canceled. Caution it !

In addition to the above, as CPU operation mode parameter execution/non-execution of program-2,-3 and its link with RUN signal can be selected.

Item		Selection value
Program execution *1	Program1	Effective [EXECUTE] (fixed)
	Program2	Effective /ineffective (Execute/non-execute)
	Program3	Effective /ineffective (Execute/non-execute)
RUN signal link *2	Program1	Link (fixed)
	Program2	Link /Non-link
	Program3	Link /Non-link

*1 Execution of Program-2 and-3 can be selected from the parameters. If "INEFFECTIVE" is selected, the applicable program (program-2 or -3) is not executed.
*2 Link of program-2 and -3 with RUN signal is selected from the parameters. If "LINK" is selected and the applicable program stops, RUN signal turns OFF, linked with the program, then allowing stop of all the programs.

3.2.2 Separate patterns of program data

By presetting CPU operation mode, the PC3JG can select program capacity and data capacity as necessary.
(1)Data area separate mode

Separate pattern 1

Separate pattern 2

Separate pattern 3

Separate pattern 4

Separate pattern 5

PC3JG mode

*1 There is a limitation when the standard and user library is used since ver.2.00. Please refer to 「10.5 library information」for details.
(2)Data area single mode

Single pattern 1

Single pattern 2

Single pattern 3

Single pattern 4

Single pattern 5

Single pattern 6

(2)PC2 compatible mode

3.2.3 Program Execution

The PC3JG can execute two or more programs, that is, three sequence programs maximum. In detail, these programs are executed in the order of program-1, program-2, program-3 and end processing. The number of programs and execution/ non-execution (${ }^{+1}$) of program-2 and -3 are set up using the CPU operation mode parameters.
Furthermore, link/non-link (${ }^{* 2}$) of program-2 and -3 with RUN signal is also set using the CPU operation mode parameters.
*1 Execution of program-2 /-3 can be selected from the CPU operation mode parameters. If INEFFECTIVE(Non-execution) is selected, the applicable program (program-2 or 3) is not executed.
*2 Link of program-2/-3 can be selected from the CPU operation mode parameters. If "LINK" is selected and the applicable program stops, RUN signal turns OFF linked with the program stop and all other programs stop simultaneously.
(1)

Program execution sequence

*3 Initial program is a sequence program being executed only once whenever the power switch is turned ON or RESET/START is pressed.
*4 \square :showing label No. of subroutine program. 128 subroutines of S000 ~ S127 per program and 1024 subroutines of ELOO00~EL1023 commonly available for jump and subroutine can be created respectively.
(2) Execution/non-execution of program

Execution/non-execution of program 2 and program 3 is set using the CPU operation mode parameters. Program for which non-execution was selected is not executed.

Execution of program -1,to -3

Execution of program -1,-3

Execution of program -1,-2

Execution of program -1 only

(3) Link of program with RUN signal

Link of program-2 and -3 with RUN signal can be selected from the CPU operation mode parameters. If "LINK" is selected and applicable program stops, RUN signal turns OFF linked with the program and all other programs stop simultaneously.

Link with RUN signal (by parameter setting)		RUN signal status at program stopping			
Program-1	Program-2	Program-3	Program-1	Program-2	Program-3
Link (fixed)	Link	Link	OFF	OFF	OFF
Link (fixed)	Non-link	Link	OFF	Continued	OFF
Link (fixed)	Link	Non-link	OFF	OFF	Continued
Link (fixed)	Non-link	Non-link	OFF	Continued	Continued

(4) Execution of SFC program

The SFC program is executed after the main program of each program.

3.2.4 Inter-program data utilization

As mentioned in the foregoing subsection, the PC3JG can execute three different sequence programs maximum in the given order. These program data can be utilized mutually for each program without special setting.
(1) Data area separate mode

The basic area data are independent from each other every each program. On the other hand, the I/O area and extended area data are common to each program.
(1-1) Basic area

Where data area in other program is specified,
P* representing program No. (P1=Program-1, P2=program-2, P3= Program-3) is prefixed to each program address.

EX. P2- M100 : M100 of program-2
P3-D0000L: D0000L of program-3 (Byte below D0000)
(1-2) I/O area and extended area

(2) Data area single mode

The data area in each program is common to other programs.

(3) PC2 compatible mode

Under this mode the number of programs is limited to one program (Program-1). No extended area is available as the data area.

3.2.5 I/O module setting

I/O 64 points for signal I/O points (16/16) and for control I/O 32 points (16/16) are equipped at rack No. 0 and slot No. 0 as standard.
Setting data for I/O module in rack No. 0 and slot No. are following.
I/O module setting of rack No. 0 and slot No.

	Allocated point	Module identification code
PC3JG	64 points	3 E
PC3JG-P	64 points	3 F

3.2.6 Rack No. and slot No. at the time link parameter setting

Total two ports are equipped as standard; one is port for CMP link (computer link) or PC link or SN-I/F, the other port for DLNK-M2.
Rack No. and slot No. when setting the link parameter set CMP link(computer link) or PC link as a rack No. built-in and slot No. standard; DLNK-M2 as a rack No. and slot No.O. Link No. can freely be changed.
When you use it as SN-I/F, please give rack number and slot number as un-setting up.
Link module setting

Link	Link No.	Rack No.	Slot No.	Module name
CMP PC	Random	Built-in (F)	Standard (0)	Computer link PC link
DLNK	Random	0	0	DLNK-M2

(Note1) If built-in lack No., standard slot No. is not made setting, SN-I/F is selected.
In the case of PC2 compatible mode, it can be used as computer link.
(Note2)Even when not using built-in DLNK-M2, a link module needs to be set up.
It is necessary to choose「Do not」to slave in a detailed setup of a link parameter.
(Note3)Please turn on the terminal switch when using it as SN-I/F. When you do not use it as $\mathrm{SN}-\mathrm{I} / \mathrm{F}$, please turn OFF.

3.2.7 Program creating sequence

The creating sequence is mainly classified into two cases; one case that sequence program is not pre-created and another case that it is already pre-created.
(1) Case that sequence program is not pre-created:

STEP-1 Set CPU operation mode by the peripheral equipment.

Set parameters by the peripheral equipment and execute PROGRAM CLEAR in the
STEP-2 peripheral equipment.

STEP-3
Start program creation.

STEP-4 Write the sequence program (program + parameters) in CPU.

STEP-5

STEP-6

STEP-7

Store the sequence program (program + parameters) in FDD, etc.
(2) Case that sequence program is already pre-created:

STEP-1

STEP-2
Check the parameters on the peripheral equipment and set them as necessary.

STEP-3 Write the sequence program (program + parameters) in CPU.

STEP-4
Set the current time on the built-in clock by the peripheral equipment.

STEP-5
Set necessary data (data register, etc.) by the peripheral equipment.

STEP-6 Store the sequence program (program + parameters) in FDD, etc.

3.2.8 Automatic setting of I/O modules and link parameters

I/O modules and link parameters can be set automatically in CPU .
For setting, follow the sequence given below.

STEP-1 With the power switch kept OFF, shift "RESET/START" switch to " START" and press the same switch with finger so as not to return.

STEP-2 Turn ON the power switch.

STEP-3 This completes automatic setting of I/O modules and link parameters. If error is detected at this stage, ERR lamp lights.

STEP-4 If no error, the sequence is put in RUN by RESET/START switch.

I/O module and link parameter set value (Automatic setting by CPU)

Item		Set value	
Allocation of I/O module (0~E rack and 0~7 slot)	Identification of I/O module	Rack No. 0 and slot No. 0:3F Other: as actually installed	
	Allocation of I/O point	Rack No. 0 and slot No. 0:64 points Other: as actually installed	
Link parameter *1		Program 1 Lack No. 0 and slot No. 0 Link 1-1 High speed remote I/O Lack No. built-in and slot No. option (Link 1-2 ~ Link1-8)	As actually Installed
		Program 2 (Link2-1 ~ Link2-8)	
		Program 3 (Link 2-1 ~ Link 2-8)	

*1 Only such name setting as lack No., slot No. and link module is implemented.
*2 Built-in link is allocated to link 1-1. Built-in DLNK is allocated as high-speed remote I/O. Set DLNK-M2 using peripheral equipment. Lack No. and slot No. are allocated from link 1-2 in program 1 in the order of their smaller number. They are also allocated to link 2- \# in program 2 when actual installed link number exceeds 8.
However they are allocated to link 3- \# in program 3 when CPU operation mode having no program 2 is selected.
No allocation is made for the link that is exceeded link number 8 when CPU operation mode having neither program 2 nor program 3 is selected.

4 Test Run

4.1 Check Items before test run

- Parameters setting
- Each parameter set correctly?
- Battery
- Battery connector connected perfectly?
- Battery fully charged ?
- I/O cables
- Inter-base I/O cables connected exactly ?
- Rack No. selector switch
. Selector module rack No. is set?
- Rack No. free from doubling ?
- Rack No. "F" set ?
- I/O address selector switch
- I/O addresses of selector module are set as specified?
- I/O address free from doubling ?
- I/O address not exceed "3F" ?
- Module mounting
- Each module is securely mounted?
- I/O points not exceed 2048 points ?
. Communication link module not exceed 15 ?

Fuse
Free from blown and damage?

Wiring to terminal block
. Cables are connected correctly to each terminal ?

- Cable size proper ?
- Each terminal free from screw loose ?

5 Error Alarm

5.1 Error ranks

Error ranks are mainly classified as follows.

- WARNING $\cdots \cdots \cdots \cdots$ Run further continued.

This error rank does not cause system down, but would lead to system down if the error state is left as is.

RUN lamp and RUN display on status message display remain unchanged as usual.

■ MINOR ERROR
Run further continued
Errors which are caused mainly by user program or incorrect setting by user and which are not considered as cause of serious affect on the system even if the sequence program is not stopped immediately. RUN lamp and RUN contact are remained unchanged as ON.

MAJOR ERROR Run stop
Errors which are caused mainly by system hardware and for which further continued operation of the system is considered to be difficult.
Once error of this rank occurred, the sequence program run is stopped and RUN lamp and RUN contact turn OFF simultaneously.

5.2 Display of abnormality

(1) E/A lamp (red) is lit when CPU is abnormal.

Error code is displayed in "Operation state monitor" mode of message display. Also error message can be confirmed at "Error code monitor" mode in message display.

Monitoring example of operation state

(Note) Pay attention at following items.
LED display at important error will be as following:

- Run lamp is turn out and E/A lamp is lit (A pattern) in LED display when ordinal important abnormality is happened.
(pattern A).
RUN
E/A 'O' (Always is lighting)
- Run lamp is light out and ERR lamp flickers (B pattern) when such important abnormal as communication is incapable.
In this case error code cannot be read out. Sometimes error code is not stored at special register for error information output.

LED display will be following when abnormality is light.

- RUN lamp and E/A lamp light.

RUN 'O'
E/A

- Light out 'O' : Light on

5.3 DISPLAYED ERRORS TABLE

Error items		Error code	LED lamps			Error reset		Special relay		
		POWER	RUN	E/A	Power re-throw IN	Reset				
Power source	POWER DOWN		0013	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc	VC1	V01
Battery	BATTER VOLTAGE LOW	0022	\bigcirc	\bigcirc	\bigcirc	-	-	VF0	V03	
Memory	PROGRAM MEMORY SUM CHECK ERROR	0\#21	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	VC2	V01	
	SUBSIDIARY INFM SUM CHECK ERROR	0\#23	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC2	V01	
	UNDEFINED COMMAND	0\#24	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	VC9	V01	
CPU	SYSTEM CONTROL PROCESSOR ERROR	0035	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC0	V01	
	SEQUENCE WORD PROCESSOR ERROR	0036	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	
	SEQUENCE PROCESSOR CLOCK ERROR	(0037)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	
	SEQUENCE PROCESSOR POWER DOWN	(0038)	\bigcirc	-	\bigcirc	\bigcirc	O	-	-	
	SYSTEM RAM ERROR	(0032)	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	
	SYSTEM INTERRUPT ERROR	0039	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC0	V01	
	ADDRESS CONVERSION ERROR	003A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC0	V01	
	SEQUENCE PROCESSOR NO RESPONSE	(003B)	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	
	I/O PORT ERROR	(003C)	\bigcirc	-	©	\bigcirc	-	-	-	
	SEQUENCE PROCESSOR ERROR	(00A1)	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-	-	
	RAM DATA ERROR	00A2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC2	V01	
	RTC ERROR	00A3	\bigcirc	\bigcirc	\bigcirc	-	-	VF5	V03	
	COMMAND PROCESS PROGRAM ERROR	00A4	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC2	V01	
	COMMAND PROCESS PROGRAM ALARM	00A5	\bigcirc	\bigcirc	\bigcirc	-	-	VC2	V03	
	SYSTEM PROGRAM ERROR	00A6	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VC2	V01	
	SYSTEM PROGRAM ALARM	00A7	\bigcirc	\bigcirc	\bigcirc	-	-	VC2	V03	
	SEQUENCE PROCESSOR NO RESPONSE	(00A8)	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	-	-	
	SEQUENCE RAM ERROR	00A9	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VC0	V01	
	SYSTEM PARAMETER ALARM	00AA	\bigcirc	\bigcirc	\bigcirc	-	-	VC2	V03	
	BACKUP MEMORY WRITE ERROR	00AB	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VCA	V01	
	BATTERY CIRCUIT ERROR	00AC	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VC0	V01	
	DATA ERROR	00AD	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC2	V01N02	
	DATA ERROR UNCHECK	00AE	\bigcirc	\bigcirc	\bigcirc	-	-	VCB	V03	
	CLOCK UNSET	00AF	\bigcirc	\bigcirc	\bigcirc	-	-	VF5	V03	

$\#: 0 \sim 3$	System related error
$1 \sim 3=$	Program related errors
	Displaying corresponding
program Nos. This is 1 in the	
	case of PC2 interchange mode.

Error items		Error code	LED lamps			Error reset		Special relay		
		POWER	RUN	E/A	$\begin{aligned} & \text { Power } \\ & \text { re-throw } \\ & \text { IN } \\ & \hline \end{aligned}$	Reset				
I/O	I/O RACK F USED		0041	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC8	V01
	I/O RACK NO. OVERLAP	0045	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC8	V01	
	I/O ADDRESS OVERLAP	0046	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC8	V01	
	I/O POWER DOWN	0047	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	VC1	V01	
	I/O TABLE VERIFICATION ERROR	$\begin{aligned} & \hline 0048 \\ & 004 \mathrm{~A} \end{aligned}$	\bigcirc	$\bigcirc 1 \bigcirc$	\bigcirc	\bigcirc	\bigcirc	VE0	V01N02	
	I/O MODULE ERROR	0043	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC7	V01	
	I/O MODULE ALARM	004B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC7	V03	
	I/O MODULE PARAMETER ERROR	0042	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC5	V01	
	I/O ADDRESS SETTING ERROR	0049	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC8	V01	
I/O bus	I/O ADDRESS BUSPARITY ERROR	0044	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	VC3	V01	
User program	SCAN TIME OVER	0\#31	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VE1 *1	V01N02	
	APPLIED COMMAND ERROR 1	0\#71	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VE2 *2	V02N01	
	USER PROGRAM STACK-OVER	0\#72	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	NO END COMMAND	0\#73	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *	V01	
	NO START COMMAND	0\#74	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	MASTER CONTROL ERROR	0\#75	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	APPLIED COMMAND ERROR 2 (For special module)	0\#78	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VE2 ${ }^{*}$	V02N01	
	FOR-NEXT ERROR	0\#79	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	RET ERROR	0\#7A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	RETI ERROR	0\#7B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	LIBRARY CALL ERROR	0\#7C	\bigcirc	$\bigcirc 1$	\bigcirc	\bigcirc	\bigcirc	VE2 ${ }^{*}$	V02N01	
	PRG, END EXECUTE	0\#7D	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC9 *3	V01	
	LABEL TABLE ERROR	0\#76	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC6 **	V01	
User setting	PARAMETER SETUP VALUE ERROR	0\#77	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC6 *4	V01	
\# : 0~3 0= System related error 1 ~ 3= Program related errors Displaying corresponding program Nos. This is 1 in the case of PC2 interchange mode.			○ : Lighting : Turn out (OFF) : Finally depending on parameter " running) status against occurred" But the left (RUN OFF) is set before shipping.							
		$\begin{array}{ll} \text { *1 } & \text { Program-1 } \sim-3: \text { VE8 } \sim \text { VEA } \\ \text { *3 } & \text { Program-1 } \sim-3: \text { VD0 } \sim \text { VD2 } \end{array}$			*2 ${ }^{*} 4$	pecial relay rogram-1	every e -3:VD8	ch progra ~ VDA		

Error items		Error code	LED lamps			Error reset		Special relay		
		POWER	RUN	E/A	Power re-throw IN	Reset				
Special module	SPECIAL MODULE OVER-ALLOCATION		0081	\bigcirc	\bullet	\bigcirc	\bigcirc	-	VC8	V01
	SPECIAL MODULE PARAMETER ERROR	0082	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VC5	V01	
	EXCESSIVE NO. OF INTERRUPT MODULES	0083	\bigcirc	-	\bigcirc	\bigcirc	-	VC8	V01	
	SPECIAL MODULE NUMBER OVER	0088	\bigcirc	\bullet	\bigcirc	\bigcirc	-	VC8	V01	
	SPECIAL MODULE ERROR	0\#84	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VC4	V01	
	LINK PARAMETER ERROR	0\#85	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	V03	
	LINK MODULE ALLOCATION ERROR	0089	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VF2	V03	
	LINK COMMUNICATION ERROR	0\#86	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	V03	
	EXTERNAL INTERRUPT ERROR	008A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VC4	V01	
	NC COMMUNICATION ALARM 1	0\#8B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	V03	
	NC COMMUNICATION ALARM 2	0\#8C	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	V03	
	2-PORT RAM ALARM	0\#8D	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	V03	
	COMMUNICATION DATA VERIFICATION ALARM 1	0\#8E	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	V03	
Memory card	NO MEMORY CARD	0025	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VCA	V01	
	MEMORY CARD TRANSFER ERROR	0026	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	VCA	V01	
	MEMORY CARD BATTERY VOLTAGE DROP	0027	\bigcirc	\bigcirc	\bigcirc	-	-	VF1	V03	
	$\substack{\text { MEMORY } \\ \text { ERROR }}$ CARD	0028	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	VCA	V01	

0= System related error
1 ~ 3= Program related errors
Displaying corresponding program Nos. This is 1 in the case of PC2 interchange mode.

O: Lighting
: Turn out (OFF)
: Finally depending on parameter " running
(O) status against occurred" But the left (RUN
OFF) is set before shipping.

5.4 Special Register for Error Information Output

If error is detected, error code, error related information and error detection time are stored in the special register to store error information. This register of 8-stage shift register structure can register errors up to 8 maximum. When the number of occurred error (stored errors) exceeds 8 , the stored error information are cancelled in the order from the first stored information. (See below)
The error information stored in this register can be read by the peripheral equipment (PCwin).
Register Content
Address

New	S200			HOST	SLAVE
	S20A	Error 0 information	S200	Erro	odes
	S214	Error 1 information	S201	Error-related information 2	Error-related information 1
	S21E	Error 2 information	S202	Error-related information 4	Error-related information 3
	S228	Error 3 information	S203	Error dete	time (sec)
	S232	Error 4 information	S204	Error detec	time (min)
	S23C	Error 5 information	S205	Error detection	time (hour)
	S246	Error 6 information	S206	Error detec	time (day)
Former	S24F	Error 7 information	S207	Error detectio	time (month)
		\downarrow	S208	Error detection	time (year)
		Cancel	S209	Error detection time (day of week)	Error detection time (day of week)

(Note 1)Error-related information are stored with hexadecimal number.
(Note 2)The current time of the built-in clock is stored.
The data represents 1 bit at 1 digit in BCD code. (EX. "0102" represents "12".)
Year data is represented by lower two digits of AD year and the "day of week" data is represented by $0 \sim 6$, which then correspond to Sunday ~ Saturday.

The information stored in this register are not cleared even after ERROR is reset. Where ERROR clear is required, write " 0000 " in the register using the peripheral equipment (PCwin).

5.5 Error-related Information

The information effective to specify error causes and error-resulted units/devices are stored as " Error-Related Information" covering error items forecast. (stored with hexadecimal value.)

Error code	Error content	Error-related information				Remarks
		1	2	3	4	
0013	POWER DOWN	-	-	-	-	
0*21	PROGRAM MEMORY SUM CHECK ERROR	$\left\lvert\, \begin{aligned} & \text { Area } \\ & \text { classification } \end{aligned}\right.$	Sum data	$\begin{array}{\|l} \hline \text { Sum } \\ \text { Calculated } \\ \text { value } \end{array}$	-	*1:Sequence
0022	BATTERY VOLTAGE LOW	-	-	-	-	
0*23	SUBSIDIARY INFORMATION SUM CHECK ERROR	$\left\lvert\, \begin{aligned} & \text { Area } \\ & \text { classification } \end{aligned}\right.$	Sum data	$\begin{array}{\|l\|} \hline \text { Sum } \\ \text { Calculated } \\ \text { value } \end{array}$	-	*1: Parameter
0*24	UNDEFINED COMMAND	Program counter lower	$\begin{aligned} & \text { Program } \\ & \text { counter } \\ & \text { upper } \end{aligned}$	-	-	
0*25	NO MEMORY CARD	-	-	-	-	
0*26	MEMORY CARD DATA TRANSFER ERROR	Address lower	Address upper	Memory card data, lower	Memory card data, upper	
0*27	MEMORY CARD BATTERY VOLTAGE DROP	-	-	-	-	
0*28	MEMORY CARD DATA ERROR	Sum data	$\begin{aligned} & \text { Check sum } \\ & \text { calculated } \end{aligned}$ value	-	-	
0*31	SCAN TIME OVER	Classification*	-	-	-	$\begin{aligned} & \text { *1: Initial 2: Main } \\ & \text { 3: Overall } \end{aligned}$
0032	SYSTEM RAM ERROR	Classification*	Address lower	Address upper	-	*1: System RAM
0035	SYSTEM CONTROL PROCESSOR ERROR	-	-	-	-	
0036	$\begin{aligned} & \hline \text { SEQUENCE WORD } \\ & \text { PROCESSOR ERROR } \end{aligned}$	-	-	-	-	
0037	SEQUENCE PROCESSOR CLOCK ERROR	-	-	-	-	
0038	SEQUENCE PROCESSOR POWER DOWN	-	-	-	-	
0039	SYSTEM INTERRUPT ERROR	Classification*	-	-	-	* 0 ~ 7:INT0 ~ 7 FF:NMI
003A	$\begin{aligned} & \text { ADDRESS CONVERSION } \\ & \text { ERROR } \end{aligned}$	-	-	-	-	
003B	SEQUENCE PROCESSOR NO RESPONSE	-	-	-	-	
003C	I/O PORT ERROR	-	-	-	-	
0041	I/O RACK F USED	-	-	-	-	
0042	I/O MODULE PARAMETER ERROR	Rack No.	Slot No.	-	-	
0043	I/O MODULE ERROR	Rack No.	Slot No.	-	-	Fuse blown, etc.
0044	I/O ADDRESS BUS PARITY ERROR	Rack No.	-	-	-	
0045	I/O RACK NO. OVERLAP	-	-	-	-	
0046	I/O ADDRESS OVERLAP	$\begin{array}{\|c\|} \hline \text { Rack No. } \\ (1) \end{array}$	$\begin{array}{\|c\|} \hline \text { Rack No. } \\ \hline(2) \end{array}$	-	-	
0047	I/O POWER DOWN	-	-	-	-	
0048	I/O TABLE REFERENCE ERROR	Rack No.	Slot No.	Registere d data	Mounted module	

Errorcode	Error content	Error-related information				Remarks
		1	2	3	4	
0049	I/O ADDRESS SETTING ERROR	Rack No.	-	-	-	
004A	I/O TABLE VERIFYING ERROR	Rack No.	Number of slots*	Number of slots in the base		* Number of slots judged from I/O table
004B	I/O MODULE ALARM	Rack No.	Slot No.	-	-	Fuse blown, etc
0*71	APPLIED COMMAND ERROR 1	Program counter lower	Program counter upper	Serial No. lower	Serial No. upper	
0*72	USER PROGRAM STACK-OVER	-	-	-	-	
0*73	NO END COMMAND	-	-	-	-	
0*74	NO START COMMAND	-	-	-	-	
0*75	MASTER CONTROL ERROR	Classification*	MC No.	MCR No.	-	*1: Nest Over 2: Number unmatching 3: No MCR 4: No MC
0*76	LABEL TABLE ERROR	Classification *(1)	Classification (2) ${ }^{*}(2)$	Label No. lower	Label No. upper	*1-1: JUMP 2:CALL 3: INTERRUPT 4. START 5:EXENDED LABEL 2-1: NO LABEL 2:UNMATCH 3: OUT OF NO. RANGE
0*77	PARAMETER SETUP VALUE FRROR	Parameter No.	-	-	-	
0*78	APPLIED COMMAND ERROR 2	Program counter lower	Program counter upper	Serial No. lower	Serial No. upper	I/O error with special module
0*79	FOR-NEXT ERROR	Classification*	Program counter lower	Program counter upper	-	*I: NO NEXT 2: NO FOR 3:NEST OVER 4: ADDRESS ERROR
0*7A	RET ERROR	Classification*	$\left\|\begin{array}{l} \text { Program } \\ \text { counter lower } \end{array}\right\|$	Program counter upper	-	$\begin{aligned} & \text { *1: NO RET } \\ & \text { 2: NO CALL } \\ & \hline \end{aligned}$
0*7B	RETI ERROR	Classification *1	Program counter lower *2	$\left\lvert\, \begin{aligned} & \text { Program } \\ & \text { counter } \\ & \text { upper"2 } \end{aligned}\right.$	-	$* 1$ 1:NO RETI 2:NO INTERRUPT $* 2$ Interrupt level in case of no RETI
0*7C	LIBRARY CALL ERROR	$\underset{\substack{1 \\ \text { t1 }}}{\text { Classion }}$	$\underset{* 2}{\text { Classification }}$	Label No. lower	Label No. upper	*1 Error during FB (Library) Call 1: It is not Library-enabled 2 Library is already under execution. (Library was called from inside the library) 3: Label Number is outside the scope 4: Label Life is over 5: Label Number is not matching 6: SYS415 is not there 7: It is not useable program number 8: It is not useable operation pattern A: The library impracticable *2 A: FB library B: User library C:standard library
	ERROR IN LIBRARY	$\begin{array}{\|c\|} \hline \text { Step No. lower } \\ \text { of calling } \\ \text { source } \end{array}$	Step No. upper of calling source	-	-	
0*7D	PRG . END EXECUTE	-	-	-	-	No END or RET, RETI commands
0081	SPECIAL MODULE AI I OCATION OVFR	-	-	-	-	
0082	SPECIAL MODULE PARAMFTFR FRROR	Rack No.	Slot No.	-	-	
0083	EXCESSIVE NO.OF INTERRUPT MODULES	-	-	-	-	Interrupt module: Max. 4 pcs.

Error code	Error content	Error-related information				Remarks
		1	2	3	4	
0084	SPECIAL MODULE ERROR	${ }_{*}$ Classification	Rack No.	Slot No.	-	*1: ALM 2: CPU DETECT 3: I/O MODULE DETECT
0*85	LINK PARAMETER ERROR	Link No.	-	-	-	
0086	LINK COMMUNICATION ERROR	Link No.	-	-	-	
0088	SPECIAL MODULE OVER QUANTITY	-	-	-	-	
0*89	LINK MODULE ALLOCATION ERROR	Rack No.	Slot No.	-	-	No link parameter setup
0*8A	EXTERNAL INTERRUPT ERROR	INTERRUP T LAVEL*	-	-	-	*FF in case of no cause
008B	NC COMMUNICATION ALARM 1	Classificatio n	NCOK value	PCOK value	-	*1: NCOK is turned on. 2: NCOK keeps turned off for one minute. 3: NCOK is turned off.
008C	NC COMMUNICATION ALARM 2	Classificatio n	Refresh 00: Data 01: Command	-	-	* 1: PC-to-NC communication stop 2: NC-to-PC communication stop
008D	2-PORT RAM ALARM	1	Write data	$\begin{aligned} & \text { Read } \\ & \text { data } \end{aligned}$	-	Data bus alarm
		2	-	-	-	Address bus alarm
008E	COMMUNICATION DATA VERIFICATION ALARM 1	Higher order of address	Lower order of address	Read data	Write data	
00A2	RAM DATA ERROR	${ }_{*}$ Classification	-	-	-	
00A3	RTC ERROR	${ }_{*}$ Classification	-	-	-	* 1: I/F 2: Back-up
00A4	COMMAND PROCESSOR PROGRAM ERROR	-	-	-	-	
00A5	COMMAND PROCESSOR PROGRAM ALARM	-	-	-	-	
00A6	SYSTEM PROGRAM ERROR	${ }_{*}$ Classification	-	-	-	*1: ROM 2: RAM
00A7	SYSTEM PROGRAM ALARM	-	-	-	-	
00A8	SEQUENCE PROCESSOR NO RESPONSE	-	-	-	-	
00A9	SEQUENCE RAM ERROR	-	-	-	-	
00AA	SYSTEM PARAMETER ALARM	${ }_{*}$ Classification	-	-	-	*1: ROM 2: RAM
00AB	BACK-UP MEMORY WRITE ERROR	-	-	-	-	
00AC	BATTERY CIRCUIT FAULT	-	-	-	-	
00AD	DATA ERROR	-	-	-	-	
00AE	DATA ERROR NON-CHECK	-	-	-	-	
00AF	CLOCK NON-SETUP	-	-	-	-	

5.6 Error message

The error codes ,the error messages and the error informations are displayed on the PC3JD ,PC3JG , PC3JG-P. The error codes are displayed on the PC3JB ,PC3JB-G, PC3JB-GP. The lower 2 digits are displayed on the PC3JL. Other CPU has no display function.

	Error message	Error content	Error information				Detailed information content
13	ER\#:0013	Power down					
	POWER DOWN						
21	ER\#:0*21	Program memory sum check error	PRG:*				Program number
	MEM.PARITY ERROR						
22	ER\#:0022	Battery voltage drop					
	BATTERY ALARM						
23	ER\#:0023	Auxiliary information sumcheck error					
	PARAMETER ERROR						
24	ER\#:0*24	Undefined command	PRG:*				Program number
	UNDEFINED CODE		PC : ****				
25	ER\#:0025	No m memory card					
	NO IC-CARD						
26	ER\#:0026	Memory card data transfer error					
	IC-CARD READ ERR						
27	ER\#:0027	Memory card battery voltage drop					
	IC-CARD BAT. ALM						
28	ER\#:0028	Memory card data error					
	IC-CARD DATA ERR						
31	ER\#:0*31	Scan time over	PRG:*	PRG:*	PRG:ALL		Program number (ALL in case of total.)
	SCAN TIME OVER		İNiTilial	MÄİN			Main and initial
32	ER\#:0322	System RAM abnormal					
	SYSTEM RAM						
35	ER\#:0035	System control processorabnormal					
	SYSTEM CPU ERROR						
36	ER\#:0036	Word processor error					
	WORD CPU ERROR						
37	ER\#:0037	Bit processor clock error					
	BIT CPU ERROR						
38	ER\#:0038	Bit processor power down					
	BIT CPU PWR.DOWN						
39	ER\#:0039	System interrupt abnormal					
	SYSTEM INT.ERR.						
3A	ER\#:003A	Address conversion error					
	ADDR. CONV.ERR.						
3B	ER\#:003B	$\begin{array}{\|l\|} \hline \text { Bit processing processor no } \\ \text { response } \end{array}$					
	BIT CPU ACK ERR						
3C	ER\#:003C	I/O port abnormal					
	SYSTEM I/O ERR.						
41	ER\#:0041	I/O rack F using					
	RACK NO.F USED						
42	ER\#:0042	I/O module parameterabnormal	RACK:*				Rack
	I/O PARAM.ERROR		SLOT:*				Slot
43	ER\#:0043	I/O module abnormal	RACK:*				Rack
	I/O MODULE ERR. 1		SLOT:*				Şot
44	ER\#:0044	I/O address bypass parity error	RACK:*				Rack
	BUS PARITY ERR.						
45	ER\#:0045	I/O rack No. overlap					
	RACK No. ERROR						
46	ER\#:0046	I/O address overlap	RACK:***				Rack (Duplicated two)
	I/O ADDRESS ERR.						
47	ER\#:0047	I/O power source power down					
	I/O POWER DOWN						
48	ER\#:0048	I/O table collate error	RACK:*				Rack
	MODULE VERIFY ER		S̄̇OT:*				S̄Iot
49	ER\#:0049	I/O address setting abnormal	RACK:*				Rack
	RACK ADDR. ERROR						Slot
4A	ER\#:004A	I/O table verifying error					
	RACK VERIFY ERR.						
4B	ER\#:004B	I/O module alarm					
	I/0 MODULE ALARM						
71	ER\#:0*71	Application command error 1	PRG:*	PRG:*			Program number
	FUNCTION ERROR 1		PC:****	SER:****			
72	ER\#:0*72	User program stack over	PRG:*				Program number
	STACK OVERFLOW						
73	ER\#:0*73	No end command	PRG:*				Program number
	END NOT EXECUTE						
74	ER\#:0022	No start command	PRG:*				Program number
	START NOT EXEC.						
75	ER\#:0*75	Master control error	NEST	NOMC	NOMCR	NO. ERR	Classification (nest over, without MC and MCR and number not agreed)
	MADTER CONT REE.		MC : ***	MCR: ***	MC : ***	MC : ***	Display either MC No. or MCR No. depending on classification

	Error message	Error content	Error information				Detailed information content
76	FR\#\#**76	Label table error	NO	Nn	NO FRR	START	Classification (without lahel and start/number nut of ranne)
	LABELERROR		- ${ }^{\text {**** }}$	$\mathrm{S}^{\star \star \star}$	EL*****		Label number (either jump, call or extended label is displayed.---7)
77	ER\#:0*77	Parameter set value abnormal					
	PRG. PARAM. ERR.						
78	ER\#:0*78	Application command error 2 (special module)	PRG:*	PRG:*			Program number
	FUNCTION ERROR 2		PC :****	SER:****			Program counter and serial number (alternately displayed)
79	ER\#: 0 * 79	FOR - NEXT error	NO-NEXT	NOFOR	NESTERR	ADR. ERR	Classification (without NEXT and FOR, nest and address over)
	FOR - NEXT ERROR		PC:****	PC :****	PC :****	PC:****	Program counter
7A	ER\#:0*7A	RET error	NO RET	NO CALL			Classification (without return and no call)
	RET ERROR		PC :****	PC : $*$ ***			Program counter
7B	ER\#:0*7B	RETI error					
	RETIERROR						
7C	ER\#:0*7C	Library call error	STD LIB	STD LIB	USR LIB	USR LIB	Classification (Standard library, User Library)
	LIB CALL ERROR		****	L****	****	L****	Detail classification (note 1), Label number
7D	ER\#:0*7D	PRG. END execution					
	PRG. FORMATERR.						
81	ER\#:0081	Special module allocation over					
	FUNC. I/O OVER 2						
82	ER\#0082	Special module parameterabnormal	RACK:*				Rack
	IIO PARAM. ERROR		SLOT:*				Solot
83	ER\#0083	Excessive No. of interruptmodules					
	INT. MODULE OVER						
84	ER\#:0084	Special module abnormal	RACK:*				Rack
	I/O MADULE ERR. 2		S̄̇OT:*				S̄oot
85	ER\#:0*85	Link parameter abnormal	PRG:*				Program
	LINK PARAM. ERR.		LINK:*				Link number
86	ER\#:0*86	Link communication abnormal	PRG:*				Program
	LINK ALARM		LİNK:*				Link number
88	ER\#:0088	Special module number over					
	FUNC. I/O OVER 1						
89	ER\#:0089	Link module allocationabnormal	RACK:*				Rack (built-in link: L1and L2 = F, DLNK = 0)
	FUNC. I/O ALARM		SLOT:*				Slot (built-in link: L1and L2 $=$ F, DLNK $=0$)
8A	ER\#:008A	External interrupt error					
	INT. MODULE ERR.						
A1	ER\#:00A1	Sequence processingprocessor abnormal					
	SEQUENCE CPU ERR						
A2	ER\#:00A2	RAM data abnormal					
	RPM DATA ERROR						
A3	ER\#:00A3	RTC abnormal					
	CLOCK ERROR						
A4	ER\#:00A4	Command processing portion program abnormal					
	SEQ.CPU PRG. ERR						
A5	ER\#:00A5	Command processing portion program alarm					
	SEQ.CPU PRG. ALM						
A6	ER\#:00A6	System program abnormal					
	SYSTEM PROG. ERR						
A7	ER\#:00A7	System program alarm					
	SYSTEM PROG. ALM						
A8	ER\#:00A8	Sequence processingprocessor no response					
	SEQ. CPUACK ERR						
A9	ER\#:00A9	Sequence RAM abnormal					
	SEQUENCE ---- RAM						
AA	ER\#:00AA	System parameter alarm					
	SYSTEM PARM. ALM						
AB	ER\#:00AB	Backup program memorywriting error					
	FLASH WRITE ERR						
AC	ER\#:00AC	Battery circuit abnormal					
	BATT.CIRCUIT ERR						
AD	ER\#:00AD	Data abnormal					
	DATA ERROR						
AE	ER\#:00AE	Data abnormality is not confirmed.					
	NO CHECK DATA ER						
AF	ER\#:00AF	Clock is not set.					
	CLOCK NOT SET						

Mark " \#" in error message column is error number and mark " * " is program number.
note 1 : NOT ENB : It is not Library-enabled
LIB RUN : Library is already executed. (Library was called from inside the library)
NO. ERR : Label Number is outside the scope
NO LABEL : Label Life is over
NO. ERR : Label Number is not matching
NO START : SYS415 is not there
PRG ERR : It is not useable program number
MODE ERR : It is not useable operation pattern

5.7 Counteraction against CPU error

This Chapter is to help maintenance men search true cause(s) and take proper counteraction/corrective action against it, when an equipment using TOYOPUC-PC3JG fails to work normally due to somewhat cause.
All maintenance men concerned are requested to read carefully the contents of other Chapters and Sections in this manual and the Programming Manual, before reading this Chapter, in order to fully know the functions of PC3JG and the programming procedure.

Kinds of error causes

Main causes which result in abnormal operation (generally operation stop) of the lines controlled can be mainly classified as follows by each devices.
(1) Trouble of input and output devices (limit switch, solenoid valve, etc.)
(2) Fault of control circuits (program)
(3) Trouble of TOYOPUC itself
(a) Trouble of I/O Module
(b) Trouble of CPU Module
(c) Trouble of I/O cable

This Chapter describes the troubles and causes in item-(2) and -(3).
Trouble-shooting
(1) Items to be first checked

1. Do two or more errors occur or not simultaneously?

If the error code display unit displays different error codes alternately at 2-sec interval, it shows simultaneous occurrence of two or more errors. In such a case, check the time of error occurrence from the register data wherein error information is stored, and perform troubleshooting in the order from firstly occurred error.
2. Check the error-related information.

Check the error-related information and the time of error occurrence using an peripheral device and use them as an reference information for trouble-shooting.

```
New and former errors
in Error History
    Error 0 New
        : }\begin{array}{c}{\uparrow}\\{\multirow{yrror 7}{7}}
```

(2) How to proceed with "Trouble-Shooting"

Analyze causes in reference to Para. 5-7-1 "Self-Diagnosis Items and Presumed Causes" or Para. 5-7-2 "Error Check Flow Chart".
when not restoring after trouble-shooting, check the installation of CPU module and I/O module, and check the connection of I/O cables. If not restoring yet, exchange CPU modules, selector modules, power modules, I/O modules, I/O cables or bases.

- Procedure of CPU module exchange

Please do the exchange work according to the following procedures when you exchange CPU module as a result of the troubleshooting.
(1) The backup of the program + parameter and register (other data if necessary) is taken from the PC3JG module.
(2) The power supply is turned off.
(3)The wiring for the PC3JG module is removed, and the PC3JG module is detached.
(4) A new PC3JG module is prepared, the battery is connected, and the switch is set.
(5) The new PC3JG module is mounted, and wiring is returned like being original it.
(6) The power supply is turned on.
(7) The program + parameter and register (other data if necessary) to backup by ${ }^{1}$ are written in a new PC3JG module.
(8) Time is set.
5.7.1 Self-diagnosis items and presumed (possible) causes

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
13	POWER DOWN	Drop of 5V power voltage in CPU module Drop of 5 V power voltage in CPU module	(1) AC input voltage out of the rated range (2) Trouble of power module (3)Instantaneous interruption of AC power	(1)Input the rated voltage. (2)Replace the power module. (3)Turn ON the RESET - START switch or re-switch ON the power.
21	PROGRAM MEMORY SUM CHECK ERROR	Unmatching of program area data to sum check data	(1) Program memory was rewritten due to affect by external over noise, etc. (2) Trouble of memory element	(1)Rewrite program (2)Replace CPU module.
22	BATTERY VOLTAGE DROP	Voltage of lithium battery for memory back-up is weak.	(1) Lithium battery is dead. (2) Lithium battery is not connected.	(1)Replace the lithium battery. (2)Connect the lithium battery.
23	ATTENDANT INFOR- MATION SUM CHECK ERROR	Unmatching of parameter area data to check sum data	(3) Program memory was rewritten due to affect by external over-noise, etc. (4) Trouble of memory element	(1)Rewrite parameter (2)Replace CPU module.
24	$\begin{aligned} & \text { UNDEFINED } \\ & \text { INSTRUCTION } \end{aligned}$	Undefined command was detected while sequence program is in run.	(1)Write-processing was interrupted due to disconnection of the connecting cable while program is being written by the programmer. (2)Undefined command existed in writing program by CPU Link. (3) Program memory was rewritten due to affect by external over-noise, etc. (4) Trouble of memory element	(1) Rewrite program (2) Revise and rewrite program. (3) Rewrite program. (4) Replace CPU module.
25	NO MEMORY CARD	With no memory card mounted, a transfer of data from the memory card to the CPU was attempted.	(1) Bad installation of the memory card. (2) The memory card is not installed in the memory card run mode.	(1) Install the memory card securely. (2) Install the memory card or switch to the internal memory run mode.
26	MEMORY CARD DATA TRANSFER ERROR	After data is transferred from the memory card to the CPU, a verifying error occurred.	(1) Bad installation.	(1) Install the memory card securely.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
27	MEMORY CARD BATTERY VOLTAGE DROP	The voltage of lithium battery in the RAM card is low.	(1) The lithium battery is dead. (2) The lithium battery is not mounted. (3) The memory card is not mounted securely.	(1) Replace the lithium battery. (2) Mount the lithium battery securely. (3) Mount the memory card securely.
28	MEMORY CARD DATA ERROR	A sum check error is found in the data in the memory card.	(1) The data on the memory card is destroyed. (2) Bad installation of the memory card.	(1) Rewrite to the memory card. (2) Install the memory card securely.
35	SYSTEM CPU ERROR	Abnormally long processing time in System Control Processor	(1) Overrun of System Control Processor due to affect by external over-noise, etc. (2) Trouble of CPU module	(1) Turn ON the RESET - START switch or re-switch ON the power. (2) Replace CPU module.
36	WORD CPU ERROR	Abnormally long processing time in Word Processor	(1) Overrun of System Control Processor due to affect by external over-noise, etc. (2) Trouble of CPU module	(1) Turn ON the RESET - START switch or re-switch ON the power. (2) Replace CPU module.
37	BIT CPU CLOCK ERROR	System clock in the bit processor over-counted in excess to the specified time.	(1) The bit processor mis-operated due to affect by external over- noise, etc. (2) Trouble of CPU module.	(1) Turn ON the RESET-START switch or reswitch ON the power. (2) Replace CPU module.
38	BIT CPU POWER DOWN	Bit processor detected power-down signal.	(1) The bit processor mis-operated due to affect by external over-noise, etc. (2) Trouble of CPU module.	(1)Turn ON the RESET-START switch or reswitch ON the power. (2) Replace CPU module.
32	SYSTEM RAM ERROR	CPU module is unable to read correctly the data written in System RAM.	(1) The system RAM was written due to affect by external over-noise, etc. (2) Trouble of CPU module.	(1) Turn ON the RESET-START switch or reswitch ON the power. (2) Replace CPU module.
39	SYSTEM INTERRUPTION ERROR	"Factor-unknown interrupt" was input in the system control processor.	(1) External over-noise was input. (2)Improper installation of CPU module	(1)Turn ON the RESET - START switch or reswitch ON the power. (2) Exactly install CPU module.
3A	ADDRESS CONVERSION ERROR	External I/O address conversion is incorrect.	(1) Failure of CPU module.	(1) Replace the CPU module.
3B	BIT CPU, NO ACKNOWLEDGEME NT	The bit processor does not respond to request from the system control processor.	(1) Trouble of CPU module	(1) Replace CPU module.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
3C	I/O PORT ERROR	Improper I/O port data in the system control processor	(1) Trouble of CPU module	(1) Replace CPU module.
41	I/O RACK F USED	Rack No. selector SW on Selector Module is set to "F".	(1) Setup error	(1) Re-set Rack No. selector switch to other than "F".
45	I/O RACK NO. OVERLAP	The rack No. selector switch on the I/O power module is set at 0 or overlapped with another rack No.	(1) Wrong setting.	(1) Clear the overlap in the settings of the rack No. selector switch.
46	I/O ADDRESS OVERLAP	Interference exists between address area which is occupied by one I/O rack and other address area which is occupied by other I/O rack.	(1)I/O ADDRESS selector switch on the selector module is mis-set.	(1)Set I/O ADDRESS selector switch properly.
47	I/O POWER SUPPLY POWER DOWN	Drop of 5V power voltage at additional I/O Rack side.	(1)AC input voltage out of rated voltage range was input in the power module. (2)Over-current consumption of I/O module installed on the base (3)Trouble of power module in additional I/O rack unit (4)Additional I/O rack power is not switched ON despite that the power of CPU rack unit is switched. (5)Instantaneous interruption of AC input power was detected at additional I/O Rack side only. (6)Power module is not installed on additional I/O Rack side and, in addition, 5 V cable not wired.	(1)Input the rated voltage. (2)Keep the setup sum of power consumption of I/O module on the base within the rated output current range. (3)Replace power module. (4)Unify the CPU power source and I/O power source to same line. (5)Turn ON the RESET-START switch or reswitch ON the power. (6)Install a power module on additional I/O Rack side and wire 5V cable.
$\begin{aligned} & 48 \\ & 4 A \end{aligned}$	I/O TABLE VERIFYING ERROR	The actual-install condition of I/O module differs that set up as parameter.	(1)Parameter mis-setup (2)Faulty mounting of CPU or selector or I/O module (3)Wrong I/O module mounted. (4)Rack No. of selector module was mis-set. (5)I/O cable wired improperly.	(1) Set parameter correctly. (2) Exactly mount the module. (3) Mount proper I/O module. (4) Set rack No. correctly. (5) Exactly wire I/O cable.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
43	I/O MODULE ERROR	Error occurred in high function unit (high speed counter, etc.) which occupies output module or I/O address.	(1) Fuse blown in Output module. (2)Error occurred in high function module.	(1)Replace fuse. (2)Reset ERROR in reference to the individual instruction manual for each module.
4B	$\begin{aligned} & \text { I/O MODULE } \\ & \text { ALARM } \end{aligned}$	Error occurred in I/O module.	(1) Fuse blown in Output module.	(1)Replace fuse.
42	I/O MODULE PARAMETER ERROR	Occupied-point parameter value in I/O module is error.	(1)Faulty mounting of I/O module (2)Trouble of I/O module (3) Trouble of base module	(1) Exactly mount I/O module. (2) Replace I/O module. (3) Replace base module.
49	$\begin{aligned} & \text { I/O ADDRESS } \\ & \text { SETUP ERROR } \end{aligned}$	Setup I/O address exceeds the specified value.	(1) Allocated I/O address exceeds "1FF". (2) Trouble of I/O ADDRESS selector SW on selector module.	(1) Change I/O address allocation. (2) Replace the selector module.
44	I/O ADDRESS BUS PARITY ERROR	Parity error of address bus was detected in selector module.	(1) Faulty connection of I/O cable (2) Disconnection of I/O cable (3) Address data changed due to affect by external over-noise, etc.	(1) Exactly connect I/O cable. (2) Replace I/O cable. (3) Turn ON the RESET- START SW or re-switch ON the power.
31	SCAN TIME OVER	Execution time in sequence program exceeded the scan time timer value which was set up in parameter.	(1) Improper scan time timer value in parameter (2) Processing time over of sequence program (3) Infinite loop structure exists on midway of sequence program.	(1) Re-set scan time timer value to proper value. (2) Revise sequence program. (3) Revise sequence program.
71	APPLICATION INSTRUCTION ERROR 1	Operand value of applied command and operation result are out of the respective specified ranges.	(1) Operand value of applied command and operation result are out of the respective specified ranges. (2) Different form of operation data (BCD, BIN)	(1) Revise sequence program. (2) Revise sequence program or data.
72	USER PROGRAM STACK-OVER	Stack area for sequence program is short. (Stack for sub- routine and interrupt)	(1) User program calls itself within subroutine.	(1) Revise sequence program.
73	END INSTRUCTION NOT EXECUTED	No END command was executed while START command is executed twice.	(1) No END command in sequence program (2) Two or more START commands are contained in sequence program. (3) Program is such a structure as jumps END command.	(1) Add END command. (2) Unify START commands into one command. (3) Revise sequence program.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
74	START INSTRUCTION NOT EXECUTED	END command was executed without executing START command.	(1) No START command is contained in sequence program. (2) Program is such a structure as jumps START command.	(1) Add START command. (2) Revise sequence program.
75	MASTER CONTROL ERROR	How to use MC command and MCR command is wrong.	(1) Nesting of master control exceeds 16 multiple. (2) MC command and MCR command are not a pair.	(1) Keep the nesting within 16 multiple. (2) Use MC command and MCR commandin pair.
78	APPLICATION INSTRUCTION ERROR 2	Applied command can not be executed normally for special I/O module.	(1) Applied command was executed for the slot wherein applicable special I/O module is not mounted. (2) Trouble of special I/O module	(1) Mount special I/O module. (2) Replace special I/O module.
79	FOR-NEXT ERROR	FOR - NEXT command or how to use FOR- NEXT are wrong.	(1) FOR command or FORN command are available, but no NEXT command is available. (2) NEXT command is available, but neither FOR command nor FORN command available. (3) FOR-NEXT command or nesting of FOR-NEXT command exceeds 128 multiple.	(1) Use FOR command or FORN command and NEXT command in pair. (2) Use FOR command or FORN command and NEXT command in pair. (3) Keep the nesting within 128 multiple.
7A	RET ERROR	How to use CALL command or RET command is wrong.	(1) CALL command is available, but corresponding RET command not available. (2) RET command is available, but corresponding CALL command not available.	(1) Use CALL command and RET command in pair. (2) Use CALL command and RET command in pair.
7B	RETI error	The configuration of the sequence interrupt program is wrong.	(1) The RETI instruction is not found at the end of the sequence interrupt program. (2) The RETI instruction is used in the program other than the sequence interrupt program.	(1) Add the RETI instruction. (2) Delete the RETI instruction.
7C	LIBRARY CALL ERROR	Error during FB (Library) Call (1)	(1) It is not Library-enabled (2) Library is already under execution. (Library was called from inside the library) (3) Label Number is outside the scope (4) Label Life is over (5) Label Number is not matching (6) SYS415 is not there (7) It is not useable program number (8) It is not useable operation pattern (9) The user library is used when program capacity in P2 is 32 Kw or more. The standard library is used when program capacity in P3 is 32Kw or more.*1	Revise sequence program.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
7D	$\begin{aligned} & \text { PRG. END } \\ & \text { EXECUTION } \end{aligned}$	PEND command executed.	(1) No END command is contained in sequence program. (2) No RET or RETI command is contained in subroutine.	(1) Add END command. (2) Add RET or RETI command.
76	LABEL TABLE ERROR	No LABEL command at a selected jump destination	(1) JMP command available, but no LABEL command available at the jump destination. (2) CALL command available, but no LABEL command at the jump destination.	(1) Revise sequence program. (2) Revise sequence program.
77	PARAMETER SETUPVALUE ERROR	Parameter setup value out of the specified range	(1) Parameter memory was rewritten due to affect by external over- noise. (2) Data out of the specified range was written in writing para-meters by CPU Link.	(1) Rewrite parameter. (2) Rewrite parameter.
81	SPECIAL MODULE ALLOCATION-OVER	Total common memory capacity of special modules exceeded 60k bytes.	(1) Too many special modules in use	(1) Decrease the number of special modules in use.
82	SPECIAL MODULE PARAMETER ERROR	Abnormal value of memory capacity parameter in special module	(1) Faulty mounting of special module (2) Trouble of special module (3) Trouble of base	(1) Exactly mount special module. (2) Replace special module. (3) Replace the base.
83	EXCESSIVE NUMBER OF INTERRUPT, MODULES	The number of external interrupt modules exceeds 4.	(1) The number of external interrupt modules exceeds 4.	(1) Decrease the number of external interrupt modules.
84	SPECIAL MODULE ERROR	Error occurred in special module.	(1) Error occurred in special module. (2) Faulty mounting of CPU or selector module or special module.	(1) Reset ERROR in reference to the individual instruction manual for special module. (2) Exactly mount.
85	$\begin{aligned} & \text { LINK PARAMETER } \\ & \text { ERROR } \end{aligned}$	Error of Link Parameter	(1) Error in Link Parameter setup	(1) Revise Link parameter.
86	$\begin{aligned} & \text { LINK } \\ & \text { COMMUNICATION } \\ & \text { ERROR } \end{aligned}$	Error occurred in communication by link module.	(1) Error occurred in communication by link module.	(1) Reset ERROR in reference to the individual instruction manual for each link module.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
88	EXCESSIVE NO. OF SPECIAL MODULES	The quantity of special modules exceeds 15.	(1) The quantity of special modules in use exceeds 15 .	(1) Decrease the quantity of special modules in use.
89	LINK MODULE ALLOCATION ERROR	Error in the first 4 bytes, of link module allocation parameters.	(1) Error in link module allocation parameters.	(1) Revise link module allocation parameters.
8A	EXTERNAL INTERRUPT ERROR	The factor of the external interrupt is unknown.	(1) The interrupt occurred because of excessive external noises.. (2) Failure of the external interrupt module.	(1) Reset or turn the power on again. (2) Replace the external interrupt module.
8B	NC COMMUNICATION ALARM 1	A communication alarm occurred between NC and PC.	(1)Improperly installed NC or PC module (2)Failure of NC or PC module	(1)Securely install the NC and PC modules. (2)Replace the NC and PC modules.
8C	NC COMMUNICATION ALARM 2	A communication alarm occurred between NC and PC.	(1)Improperly installed NC or PC module (2)Failure of NC or PC module	(1)Securely install the NC and PC modules. (2)Replace the NC and PC modules.
8D	2-PORT RAM ALARM	An alarm occurred to the address bus or data bus of the 2-port RAM.	(1)Improperly installed NC or PC module (2)Failure of NC or PC module	(1)Securely install the NC and PC modules. (2)Replace the NC and PC modules.
8E	COMMUNICATION DATA VERIFICATION ALARM 1	Alarm in verification of written data	(1)Improperly installed NC or PC module (2)Failure of NC or PC module	(1)Securely install the NC and PC modules. (2)Replace the NC and PC modules.
A1	SEQUENCE PROCESSOR ERROR	Abnormality is generated in sequence processing processor.	(1)Malfunction is occurred due to excessive noise from outside. (2) Failure of CPU module.	(1)Reset and start or re-close power source. (2)Replace CPU module.
A2	RAM DATA ERROR	RAM data is broken.	(1) RAM data is broken due to excessive noise from outside. (2) Failure of CPU module.	(1)Reset and start or re-close power source. (2)Replace CPU module.
A3	RTC ERROR	Abnormality is generated at RTC.	(1)Malfunction is occurred due to excessive noise from outside. (2) Failure of CPU module.	(1)Reset and start or re-close power source. (2)Replace CPU module.
A4	$\begin{aligned} & \text { COMMAND } \\ & \text { PROCESSOR } \\ & \text { PROGRAM ERROR } \end{aligned}$	Abnormality is generated at command processing portion.	(1) Program at command processing portion is broken due to excessive noise from outside. (2) Failure of CPU module.	(1)Reset and start or re-close power source. (2)Replace CPU module.
A5	COMMAND PROCESSOR PROGRAM ALARM	Program recovery is executed.	(1) Battery is not charged enough. (2) Malfunction is occurred due to excessive noise from outside. (3) Failure of CPU module.	(1) Reset and start or re-close power source. (2) Replace CPU module.

Error code	Error	Description	Presumed (possible) main causes	Counteractions, corrective actions
A6	SYSTEM PROGRAM ERROR	Abnormality is generated at system program.	(1) System program is broken due to excessive noise from outside. (2) Failure of CPU module.	(1) Reset and start or re-close power source. (2) Replace CPU module.
A7	SYSTEM PROGRAM ALARM	Program recovery is executed.	(1) Battery is not charged enough. (2) Malfunction is occurred due to excessive noise from outside. (3) Failure of CPU module.	(1) Reset and start or re-close power source. (2) Replace CPU module.
A8	$\begin{aligned} & \text { SEQUENCE } \\ & \text { PROCESSOR NO } \\ & \text { RESPONSE } \end{aligned}$	Abnormality is generated at system processing processor.	(1) Failure of CPU module	(1) Reset and start or re-close power source. (2) Replace CPU module.
A9	SEQUENCE RAM ERROR	Abnormality is generated at sequence RAM.	(1) Data in sequence RAM is broken due to excessive noise from outside. (2) Failure of CPU module.	(1) Reset and start or re-close power source. (2) Replace CPU module.
AA	SYSTEM PARAMETER ALARM	Parameter recovery is executed.	(1) Battery is not charged enough. (2)Malfunction is occurred due to excessive noise from outside. (3) Failure of CPU module.	(1) Reset and start or re-close power source. (2) Replace CPU module.
AB	BACK-UP MEMORY WRITE ERROR	Writing error is generated at backup memory.	(1) Malfunction is occurred due to excessive noise from outside. (2) Failure of CPU module.	(1) Reset and start or re-close power source. (2) Replace CPU module.
AC	BATTERY CIRCUIT FAULT	Abnormality is generated in battery circuit. Incorrect detection of the abnormalities in a battery circuit was carried out by the abnormalities of a power supply module.	(1) Failure of CPU module. (2) Trouble of power module	(1) Reset and start or re-close power source. (2) Replace CPU module. (3) Replace power module.
AD	DATA ERROR	Recovery of sequence program and data memory is executed.	(1) Battery is not charged enough. (2) Data is erased due to excessive noise from outside	(1) Make reset and start or re-close power supply after confirmation of recovered data.
AE	DATA ERROR NON-CHECK	Abnormality is not confirmed at the time abnormality is occurred.	(1) Confirmation of abnormality is not implemented.	(1) Confirm data using peripheral equipment. (2) Turn special relay "V5E" for program 1 to ON .
AF	CLOCK NONSETUP	Built-in clock is not set.	(1) Setting operation is not executed. (2) Battery is not charged enough.	(1) Set built-in clock at correct time using peripheral equipment.

*1 For the content output to the indicator of CPU, refer to 10.5(3)

5.7.2 Error check flow chart

 module.

1. Faulty selector module
2. Faulty base
3. Replace each faulty I/O cable

* 1 Possible to know error address from error-related information.

* Against error codes 35, 32, re-switch ON the POWER.

* 1 Possible to know Rack No. from error-related information.

Check which module is error, from the error-related in- formation or I/O module "ALM" lamps.

Check which module is error, from the error-related information.

Replace CPU module.

Replace the base.

Replace I/O
cable.

*1 See the error-related information.

*1 See the error-related information.

Correct the program so that JMP command and LABEL command correspond to one another.

Correct the program so that CALL command and LABEL command correspond to one another.

Rewrite program and parameter.

*1 see the error-related information.

*1 For the common memory capacity, refer to the consuming memory capacity described in the individual instruction manual for each module.
Keep the total common memory capacity at 60K bytes maximum.

*1:Refer to the error-related information.

5.7.3 I/O module trouble analysis

This paragraph describes trouble items in input circuits and output circuits, and the method of corrective actions to be taken against them.
(1) How to search error content

When the output load of OUTPUT module fails to turn ON;

<Note 1> Against fuse blown in OUTPUT Module, CPU outputs error code "43", in addition to UTPUT Module "ALARM" LED ON.
<Note 2> "RUN" LED is lit by internal circuit after insulated by photo coupler. Therefore, it does not light even when voltage is applied thereto from an external input terminal, unless DC5V power voltage is applied thereto.

<Note 3> For OUTPUT modules OUT-18, OUT-19, OUT-28D, OUT-29D, ALM LED does not light even against troubles such as fuse blown, etc
(2) Input circuit troubles and corrective actions

	Phenomena	Causes	Corrective actions and measures
EX. 1)	Input signal OFF fail	- Leak current in external device (Current leak from TRIAC output snubber circuits (C, R) and surge absorber, etc.)	Insert a bleed resistor between the terminals of input module to divide leak current in external device and to there by reduce input current to the input module. Input current < Input module OFF current>
EX. 2)	Input signal OFF fail	- Current leak from Limit switch neon lamp	- Identical to EX. 1 - Or use a limit switch with less leak current.
EX. 3)	Input signal OFF fail	Leak current caused by inter-cable capacity of wired cables.	- Identical to EX. 1 - Or use DC input power.
EX. 4)	Input signal OFF fail	- Leak current from two-wire sensors (proximity switch, photo switch) and limit switch with LED.	- Identical to EX. 1 - Or use switches with less leak current.
EX. 5)	Input signal OFF fail	Drive power cable is wired in parallel to input signal cables and, as a result, over-noise is continuously transferred into the line. And the noise can not be removed even by noise removal circuit in the input module.	- Isolate the drive power cable.

* On previous page: How to decide bleed resistance

Assuming input device current at OFF to be I, terminal-COMMON voltage at this time is determined as follows; $\mathrm{V}=1 \times 2.5 \mathrm{k} \Omega$ ($\mathrm{IN}-12$ input resistance).
The input device does not turn OFF unless this V value meets OFF voltage 7.2 V and below.
For that, connect a bleed resistor to there by reduce input impedance.

```
I = Leak current of device (mA)
R = Bleeder resistance value (k\Omega)
W = W-number of bleeder resistor (W)
```

Bleeder resistance value is OK if it is such a value that terminal-COMMON voltage V comes to 72 V or less.

$$
\text { From } \begin{aligned}
& \frac{2.5 \times R}{2.5+R} \quad[\mathrm{k} \Omega] \times \mathrm{I}<=7.2[\mathrm{~V}] \\
& \mathrm{R}<=\frac{18}{2.5 \times 1-7.2}[\mathrm{k} \Omega]
\end{aligned}
$$

Also, W-number of resistor is determined as follows.

$$
\text { From } \begin{aligned}
W> & =\frac{(24[V])^{2}}{R(k \Omega)} \times 2(\text { margin }) \\
W & >=\frac{1.15}{R}[W]
\end{aligned}
$$

EX.) At leak current 5 mA .
From

$$
\begin{aligned}
& \mathrm{R}<=\frac{18}{2.5 \times 1-7.2} \\
& \mathrm{R}<=3.39[\mathrm{k} \Omega] \\
& \mathrm{R}=3 \mathrm{k} \Omega \text { assumed. W-number of bleeder resistor: }
\end{aligned}
$$

From $W>=\frac{1.15}{R}[W]$

$$
W>=0.383[W]
$$

W-number comes to

$$
\mathrm{W}=\frac{1}{2}[\mathrm{~W}]
$$

(3) Output circuit troubles and corrective actions

	Phenomena	Causes	Corrective actions and measures
EX. 1)	At output OFF, overvoltage is applied to loads and OUTPUT module.	- When half-wave rectification is internally made in load. (Some solenoid are half-wave rectification type.) - At output OFF, on occasion V1, and V2 come to 140 V and around 200 V respectively.	- Connect OUTPUT module to load using a full-wave rectifier. A method of using valve (Hoko Industries, RF Valve) with full-wave rectifier is also available.
EX. 2)	Load OFF fail.	- Leak current due to self - contained surge killer. Output module	On occasion relays and neon lamps of small hold current fail to turn OFF. In such a case, connect a proper resistor in parallel to the load.
			- Output does not turned off occasionally when a low current inductive load is connected. In this case, please connect a suitable resistance (a bleeder resistance) in parallel with a load.(about $2 \mathrm{k} \Omega$) An inductive load which have a rectifer such as a bulit-in diode bridges is not possible to use.
EX. 3)	Output transistor breaks down. (Transistor output)	- Rush current of incandescent bulbs On occasion, 10X or more rush current flows across the bulb momentarily at lighting.	To restrain rush current, flow the dark current equivalent to $1 / 3-1 / 5$ of the rated current of incandescent bulb.
EX. 4)	When an inductive load is connected, output module results in Fuse blown.	- When loads connected to same fuse are started-simultaneously, the total starting current exceeds significantly the fuse rating.	- Take a proper measure not to allow the total start in current of loads, which are started simultaneously, to exceed the fuse rating.

	Phenomena	Causes	Corrective actions and measures
EX. 5)	Load OFF fail. (Parallel connection of output)		When driving a load to which two output points of output module are connected, leak current due to self-contained surge killer comes to double. To prevent it, apply parallel processing by program.
EX. 6)	Output Transistor Breaks down. Transistor output module	- Voltage was compulsorily applied to a load from another power source to check the wiring of output signal cables. Another power source	Avoid how to check as described left. Even when E1 input voltage is turned OFF, current flows a diagrammed left though depending on power source.

6 Maintenance

6.1 Battery Replacement

(1) Lithium rechargeable battery (TIP-5426)

The PC3JG CPU uses exclusive lithium rechargeable battery.
This battery is always kept full charged by about 4 hours' current feed per day. If kept full charged, this battery can back up $\left(^{* 1}\right)$ for one year or more subject to normal temperature $\left(25^{\circ} \mathrm{C}\right)$. If "BATTERY VOLTAGE LOW" is detected, BATTERY ALM (error code 0022) is output. (Special relays V03 and VF0 turn ON.)
If BATTERY ALM fails to turn OFF even after charged 8 hours or more or it turns ON immediately after charged, possible cause is expiry of the battery life. In such a case, replace with new battery. The battery replacement cycle as a guideline is 5 years though depending on the actual operating conditions. In replacing, use specific battery (Charge type battery for PC3J-CPU: TIP-5426) (${ }^{*}$).
Replace the battery by a maintenance man having the relevant expertise knowledge.
*1 This lithium rechargeable battery backs up data memory (data area for keep-relay, data register, etc.) and the built-in clock. The guaranteed back-up period subject to full charge is 6 months (at $25^{\circ} \mathrm{C}$).
The back-up function is provided to restore the contents of the data memory (the data areas in keep relay, data register, etc.) if they are cancelled. For the details, see "3-1-2 Battery, (3) Data Memory Back-up".
User program (sequence program + parameters) and equipment information memory data (comment, etc.) are never cancelled even against power failure because they are stored in a flash memory which can hold such data even during power failure.
*2 Appearance of lithium rechargeable battery (TIP-5426)

(2) Battery replacing procedure
3) Battery fixing plate

1,5) Lithium rechargeable battery (TIP-5426)
4) Battery connector

3) Battery fixing plate

Battery replacing procedure

1) Prepare battery (TIP-5426) for replacing.
2) Remove set screw for battery fixing plate. Pay adequate attention not drop the screw within main unit during operation.
3) Remove battery fixing plate.
4) Remove battery connector.
5) Remove battery connector from side. Do not force the battery to remove with force otherwise fault could occur. Push back buttery once when battery is caught in main unit and remove again paying attention so that battery would not be caught in main unit.

Remove battery from side.
6) Replace old battery with new battery. Mount battery in reverse procedure of removing.
7) Mount battery connector.

8) Turn on power source and check that battery alarm is turned out (Special relay: VF0 is turned off.) using peripheral equipment (PCwin).
9) Turn off power source and enter battery replaced date.

Note:
Be sure to complete battery replacing operation (Battery replacing procedure 2) ~8)) within five minutes after power source is turned off.
For a while after power source is turned off data memory (such data area for keep relay and data register, etc.) and built-in clock are backed up by large capacity capacitor.
User program (sequence program and parameter) and equipment information memory content including comment are would not be erased even battery is removed because they are stored in flash memory that maintains content even service interruption.

For proper replacement of the lithium battery, follow the instructions given in the Individual Instruction Manual for the battery. Where it is in normal use with our equipment, the lithium battery is worry free while in use, but where it is stocked as a spare or it is disposed as scrap after expiry of its life the battery must be handled with good care. Improper handling of the lithium battery could result in liquid leak, overheat, ignition, and bursting, in the worst case, resulting in breakdown of device and bodily injury.
To avoid such possible trouble and accident, observe the precautions given below.
(1) Don't throw the battery in fire.
(2) Protect it from water splash.
(3) Don't apply direct soldering to the battery.
(4) Don't heat it.
(5) Don't overhaul.
(6) Don't short plus (+) and minus (-).
(7) Avoid pressurizing and deforming.
(8) Avoid force-discharging.
(9) Don't charge .
(10) Don't use in series or parallel.
(11)When storing a spare battery, don't select a place of high temperature and high humidity and take a proper measure to prevent condensation.

When disposing the battery as scrap, dispose it properly as incombustibles with good attention to the following instructions as well as observing the precautions given above , or otherwise dispose it properly in accordance with the applicable ordinance by each local administrative body.

1) In disposing, don't mix batteries together. Contain them one by one in a vinyl bag to avoid shorting.
2) Use a collective container of good-insulation material to contain batteries therein.
3) Don't contain them together with other metallic materials (nails, steel wires, etc.) .
4) Protect them from rain and water.
5) Don't contain them together with other hazardous materials which are defined under "Fire Law". Also don't place them near such hazardous materials.
6) Don't place them near fire and at a location where they are exposed to high temperature.

This "Crossed-out wheeled bin" symbol is for EU countries only.

This "Crossed-out wheeled bin" symbol means that batteries and accumulators, at their end-of-life, should be disposed of separately from your household waste.
In the European Union there are separate collection systems for used batteries and accumulators.
Please, dispose of batteries and accumulators correctly at your local community waste collection/recycling centre.

6.2 fuse replacement

Fuse is provided at common of output for device (Y010 ~ Y01F: 16 points). "ERR43 or 4B" is displayed on message display when fuse blown is detected.
Check rack No. and slot No. from error detailed information. Rack No. or slot No. becomes rack No. 0 or slot No. 0 when built-in fuse is blown.

Note:

The unit would not run when blown fuse is detected if fuse is blown at the time power source is turned on or CPU is stop state. In such a case " 43 " is displayed. Running of CPU is continued when blown fuse is detected. At this time " 4 B " is displayed.

Remove the cause of blown fuse then replace blown fuse with spare fuse.
Depending on cause (In case that such current that fuse cannot blow off instantaneously should flow) fuse could not protect output element from breakage. Rated capacity of fuse is 3.2A.

Fuse type : LM-32 (Daito Communication Apparatus Co., LTD.)

7 SPECIFICATIONS

7.1 General specification

Note) The above is the specification common to each module.

7.2 CPU module specification

7.2.1 Basic specification of CPU module

(1) Specification of external unit

Items	Specification	
Current consumption	1200 mA (Typ.)	
Outside dimension	$70.5(\mathrm{~W}) \times 130(\mathrm{H}) \times 118(\mathrm{D}) \mathrm{mm}$	
Weight	0.5 kg	

(2) Performance specification

No.	Items	Specification
1	Program system	Stored program system
2	Program control system	Cyclic computation system (with multi-task function and subroutine function)
3	I/O control system	Image register system
4	Basic command processing speed	Contacts-----0.08-0.28 $\mu \mathrm{s} / \mathrm{command}$ Output -------0.12-0.48 $\mathrm{s} /$ command
5	Applied command processing speed	0.6 - several $10 \mu \mathrm{~s} /$ command
6	Basic command	19 different commands
7	Timer count command	21 different commands
8	Applied command	450 or more different commands
9	Program capacity	180K words (60K words $\times 3$) +60 KW (FB Library) ${ }^{\text {¹ }}$
10	Memory element	CMOS-RAM, E ${ }^{2}$ PROM ${ }^{2}$
11	Battery	Charge type (lithium secondary battery: battery life .. 5 years)
12	External I/O points	2048 points
13	Internal I/O points	79872 points (2048 points $\times 3+8192$ points +65536 points) **
14	Keep-relay points	6400 points (768 points $\times 3+4096$ points) ${ }^{* 1}$
15	Timer function Counter function	
16	Link relay points	14336 points (2048 points $\times 3+8192$ points) ${ }^{\text {+1 }}$
17	Rise and fall detection	5632 points (512 points $\times 3+4096$ points) ${ }^{\text {+1 }}$
18	Data register	$44 \mathrm{KW} / 16$ bit ($4 \mathrm{KW} \times 3+32 \mathrm{KW}$) ${ }^{+1}$
19	Link register	$6 \mathrm{KW} / 16$ bit ($2 \mathrm{KW} \times 3$) * ${ }^{\text {+ }}$
20	Equipment information memory	640KB
21	Number of actually installed special modules	Communication (link) module up to 15 maximum ${ }^{33}$ (However, Total memory consumption capacity of communication modules shall be 60 Kbytes or less.

*1 subject to selection of program capacity 60 K words $\times 3$ pcs.(PC3JG mode)
*2 Program is backed up by E^{2} PROM.
*3 Built-in DLMK-M2 is contained.

7.2.2 User memory data

By presetting CPU operation mode, the PC3J series can select program capacity and data capacity as necessary from the combinations listed below. Data area separate mode, data area single mode and PC2 compatible mode are respectively available as the CPU operation modes.

Data area separate mode: The data area in each program is independent from others.
Data area single mode: The data area in each program is common to other program.
PC2 compatible mode: Use of the peripheral devices for PC2 Series is allowed.
But the number of programs is limited to one 32 K words (one program). Use of the functions extended in PC3J is not allowed.

Program capacity and data capacity under data area separate mode

CPU operation mode	Program		Data area	//O	Internal relay M0-7FF EM0-1FFF GM0-FFFF Points	$\begin{gathered} \text { Keep-rel } \\ \text { ay } \\ \text { K0-2FF } \\ \text { EKO-FFF } \\ \text { Points } \end{gathered}$	Timer/ counter T,C0-1FF ET,C0-7F F Points	$\begin{gathered} \text { Link } \\ \text { relay } \\ \text { L0-7FF } \\ \text { EL0-1FFF } \\ \text { Points } \end{gathered}$	Rise/fall detection P0-1FF EPO-FFF Points	Data register *2 W/16bit	Link register R0-7FF W/16bit	File register W/16bit	Buffer register W/16bit
	Capacity K words	No.											
$\begin{array}{\|c} \text { Data } \\ \text { area } \\ \text { separate } \\ 1 \end{array}$	16	1	Basic	2048	2048	768	512	2048	512	4K	2K	-	-
	16	2			2048	768	512	2048	512	4K	2K	-	-
	16	3			2048	768	512	2048	512	4K	2K	-	-
	Common to program$-1,-2-3$		Exemd	(2048)	8192	4096	2048	8192	4096	-	-	-	-
			Total	2048	14336	6400	3584	14336	5632	12K	6K	-	-
Dataareaseparate2	32	1	Basic	2048	2048	768	512	2048	512	12K	2K	-	-
	-	2			-	-	-	-	-	-	-	-	-
	16	3			2048	768	512	2048	512	4K	2K	-	-
	Common to program$-1,-2-3$		Exemd	(2048)	8192	4096	2048	8192	4096	-	-	-	-
			Total	2048	12288	5632	3072	12288	5120	16K	4K	-	-
Dataareaseparate3	16	1	Basic	2048	2048	768	512	2048	512	4K	2K	-	-
	32	2			2048	768	512	2048	512	12K	2K	-	-
	-	3			-	-	-	-	-	-	-	-	-
	Common to program$-1,-2-3$		Exemd	(2048)	8192	4096	2048	8192	4096	-	-	-	-
			Total	2048	12288	5632	3072	12288	5120	16K	4K	-	-
Dataareaseparate4	16	1	Basic	2048	2048	768	512	2048	512	4K	2K	-	-
	16	2			2048	768	512	2048	512	12K	2K	-	-
	-	3			-	-	-	-	-	-	-	-	-
	Common to program -1,-2 -3		Exemd	(2048)	8192	4096	2048	8192	4096	16K	-	-	-
			Total	2048	12288	5632	3072	12288	5120	32 K	6K	-	-
Dataareaseparate5	16	1	Basic	2048	2048	768	512	2048	512	12K	2K	-	-
	-	2			-	-	-	-	-	-	-	-	-
	16	3			2048	768	512	2048	512	4K	2K	-	-
	Common to program $-1,-2-3$		Exemd	(2048)	8192	4096	2048	8192	4096	16K	-	-	-
			Total	2048	12288	5632	3072	12288	5120	32K	4K	-	-
DataareaPC3JGmode	60	1	Basic	2048	2048	768	512	2048	512	4K	2K	-	-
	60	2			2048	768	512	2048	512	4K	2K	-	-
	60	3			2048	768	512	2048	512	4K	2K	-	-
	Common to program$-1,-2-3$		Exemd	(67584)	73726	4096	2048	8192	4096	32K	-	-	128K
			Total	2048	73726	6400	3584	14336	5632	44K	6K	-	128K

*1 Inputs/outputs are all common to all the programs.
Basic-1024points(X,Y0-3FF), Basic-2048 points(X,Y0-7FF)
Extended-2048points(EX,EY0-7FF), Extended-67584 points(EX,EY0-7FF/GX,GY0-FFFF)
*2 Register address: Basic-4K(D0-FFF), Extended-32K(U0-7FFF)

Program capacity and data capacity under data area single mode

operation mode	Prog	No.	*1 Data area	${ }^{* 2}$ I/O $X, Y 0-7 F F$ (EX,YO-7FF) Points	Internal relay M0-7FF EM0-1FFF Points	Keep-rel ay K0-2FF EKO-FFF Points	Timer/ counter T,C0-1FF ET,C0-7F F Points	Link relay L0-7FF EL0-1FFF Points	Rise/fall detection P0-1FF EP0-FFF Points	Data register *3 W/16bit	Link register R0-7FF W/16bit	File register B0-1FFF W/16bit	Buffer register W/16bit
Data area single mode 1	16	1	Basic	2048	2048	768	512	2048	512	12K	2K	8K	-
	16	2							512				
	16	3							512				
	Common to program $-1,-2-3$		Evended	(2048)	8192	4096	2048	8192	4096	-	-	-	-
			Total	2048	10240	4864	2560	10240	5632	12K	2K	8K	-
Data area single mode 2	32	1	Basic	2048	2048	768	512	2048	512	12K	2K	8K	-
	-	2							-				
	16	3							512				
	Common to program$-1,-2-3$		Exembd	(2048)	8192	4096	2048	8192	4096	-	-	-	-
			Total	2048	10240	4864	2560	10240	5120	12K	2K	8K	-
Data area single mode 3	16	1	Basic	2048	2048	768	512	2048	512	12K	2K	8K	-
	32	2							512				
	-	3							-				
	Common to program -1,-2 -3		Exeroded	(2048)	8192	4096	2048	8192	4096	-	-	-	-
			Total	2048	10240	4864	2560	10240	5120	12K	2K	8K	-
Data area single mode 4	32	1	Basic	2048	2048	768	512	2048	512	12K	2K	8K	-
	-	2							-				
	-	3							-				
	Common to program$-1,-2-3$		Exemed	(2048)	8192	4096	2048	8192	4096	16K	-	-	-
			Total	2048	10240	4864	2560	10240	4608	28K	2K	8K	-
Data area single mode 5	16	1	Basic	2048	2048	768	512	2048	512	12K	2K	8K	-
	-	2							-				
	-	3							-				
	Common to program$-1,-2-3$		Exended	(2048)	8192	4096	2048	8192	4096	32K	-	-	-
			Total	2048	10240	4864	2560	10240	4608	44K	2K	8K	-
Data area single mode 6	16	1	Basic	2048	2048	768	512	2048	512	12K	2K	8K	-
	16	2							512				
	-	3							-				
	Common to program $-1,-2-3$		Exembd	(2048)	8192	4096	2048	8192	4096	16K	-	-	-
			Total	2048	10240	4864	2560	10240	5120	28K	2K	8K	-

*1 Data area is common to all programs.
*2 Extended I/O can not be used as real I/O.
*3 Register address: Basic-4K(D0-FFF), Basic-12K (D0-2FFF), Extended-16K(U0-3FFF)
Program capacity and data capacity under PC2 compatible mode *4

CPU operation mode	Program		Data area	$\begin{gathered} \text { I/O } \\ \text { X,Y0-3FF } \\ \text { Points } \end{gathered}$	Internal relay M0-7FF Points	Keep-rel ay K0-2FF Points	Timer/ counter T,C0-1FF Points	Link relay L0-7FF Points	Rise/fall detection P0-1FF Points	Data register D0-2FFF W/16bit	Link register R0-7FF W/16bit	File register B0-1FFF W/16bit	Buffer register W/16bit
	Capacity K words	No.											
$\begin{gathered} \text { PC2 } \\ \text { interchage } \\ \text { mode } \end{gathered}$	32	1	Basic	1024	2048	768	512	2048	512	12K	2K	8K	-
	-	-		-	-	-	-	-	-	-	-	-	-
	-	-		-	-	-	-	-	-	-	-	-	-
	Common to program$-1,-2-3$		Etendad	-	-	-	-	-	-	-	-	-	-
			Total	1024	2048	768	512	2048	512	12K	2K	8K	-

*4 The peripheral devices can not be used under PC2 compatible mode.

7.2.3 Parameters

The following parameters are available as those settable at user side. These are settable according to each program. (For the setting method, see the individual Programmer Instruction Manual.)

Items		Settable range	
CPU operation mode	User memory	Data area separate m Data area single mod PC2 compatible mod	de 1-5 / PC3JG mode $1-6$
	Program execution	Program1	Effective [Execute] (fixed)
		Program2,3	Effective [Execute] /Ineffective [Non-execute]
	Link with RUN signal	Program1	Link (Fixed)
		Program2,3	Link /Non-link
$\begin{gathered} \text { Basic } \\ \text { performance } \end{gathered}$	Scan time timer value	Overall	1-65535ms
		Initial program	
		Main program	
	Running status against error	Scan time over	Stop/continue
		/O table verification error	
		Applied command error	
		Data error	
	I/O module allocation (0-E rack, 0-7 slots)	Type identification code	Module identification code
		Allocation points	0-64points/slot
Link module	Link parameters ${ }^{* 2}$	Depending on type of link module	
Other	Program name	64characters (half size)	

*1 The CPU has the function to recognize the installation status of I/O module, whereby I/O configuration preset in parameters is compared with the real installation status of same module when the power switch is turned ON or RESET is pressed.
Therefore, incorrect configuration of I/O module or use of incorrect module type and missing parameter setting would result in " I/O TABLE VERIFICATION ERROR".
In addition to the above function, allocation of I / O address occupied points to each slot is can be set and this data is prior to the real points in I/O module.
*2 Fourteen (14) link modules (communication) maximum can be installed, except the built-in links.
However, the number of modules per program is up to 8 maximum.
Also, the memory consumption capacity can not be installed in excess to 60Kbyte. This capacity differs depending on each communication module.
The memory consumption capacity means "memory capacity" which is used for data change between CPU and communication module. It does not relate to user memory (program data memory, equipment information memory).
Use of link (communication) modules never results in reduction of user memory capacity. At initial stage the CPU allocates the memory capacity to each link (communication) module by equally distributing 60Kbyte space thereto.
7.2.4 I/O address table

	\%	ㅎ ¢ ¢ ¢ O O		Name	(1)	Bit address	Points	Word address	Number of words	Indirect byte address	Data holding area at power cut off
*1	1	X		Input		X,Y000-7FF	2048	X,Y00W - 7FW	128	$200-2 F F$	-
*1	2	Y		Output							
	3	M		Internal relay		M000-7FF	2048	M00W - 7FW	128	300-3FF	-
	4	K		keep-relay		K000-2FF	768	K00W - 2FW	48	40-9F	\bigcirc
	5	V		Special relay		V000-0FF	256	V00W - 0FW	16	A0-BF	-
*1	6	T		Timer			512		32	CO FF	
*1	7	C		Counter							
	8	L		Link relay		L000-7FF	2048	L00W - 7FW	128	100-1FF	-
	9	P		Edge detection		P000-1FF	512	-	-	-	-
*3	10	D		Data register		D0000-0 - FFF-F	65536	D0000-FFF	4096	2000-3FFF	\bigcirc
	11	R		Link register		R0000-0-07FF-F	32768	R0000-07FF	2048	1000-1FFF	\bigcirc
	12	N		Present value register		N0000-0-01FF-F	8192	N0000-01FF	512	C00-FFF	\bigcirc
	13	S		Special register		S0000-0-03FF-F	16384	S0000-03FF	1024	400 - BFF	\bigcirc
*3	14	B	File register			B0000-0-1FFF-F	131072	B0000-1FFF	8192	C000-FFFF	\bigcirc
*1	15	EX		Extended input		EX,EY000-7FF	2048	EX,EY00-7FW	128	B00-BFF	-
*1	16	EY		Extended output							
	17	EM		Extended internal relay		EM000-1FFF	8192	EM00W - 1FFW	512	C00-FFF	-
	18	EK		Extended keep-relay		EK000-FFF	4096	EK00W - FFW	256	200-3FF	\bigcirc
	19	EV		Extended special relay		EV000-FFF	4096	EV00W - FFW	256	400-5FF	-
*	20	ET		Extended timer			204	-	128	600-6F	-
*1	21	EC		Extended counter							
	22	EL		Extended link relay		EL000-1FFF	8192	EL00W-1FFW	512	700-AFF	-
	23	EP		Extended edge detection		EP000 - FFF	4096	-	-	-	-
	24	EN		Extended present value register		EN0000-0-07FF-F	32768	EN0000-07FF	2048	2000-2FFF	\bigcirc
	25	H		Extended setup value register		H0000-0-07FF-F	32768	H0000-07FF	2048	3000-3FFF	\bigcirc
	26	ES		Extended special register		ES0000-0-07FF-F	32768	ES0000-07FF	2048	1000-1FFF	\bigcirc
*1	27	GX		Extended input		GX,GY0000-FFFF	65536	GX,GY000W FFFW	4096	$\begin{aligned} & \text { COOO - } \\ & \text { DFFF } \end{aligned}$	-
*1	28	GY		Extended output							
	29	GM		Extended internal relay		GM0000-FFFF	65536	GM000W FFFW	4096	$\begin{gathered} \text { E000 - } \\ \text { FFFF } \end{gathered}$	-
*3	30	U	Extended data register			U0000-0-7FFF-F	524288	U0000-7FFF	32768	0000-FFFF	\bigcirc
*3	31	EB	Extended buffer register			Not use	-	EB00000-1FFFF	131072	-	\bigcirc

*1 Address can not be allocated in overlap to X and Y ($E X, E Y, G X, G Y$) and T and C (ET, EC).
It is incorrect to allocate like (X000/Y 000, EX000/EY000, T000/C000, ET000/EC000.)
*2 Used to indirectly designate address using applied command. For indirectly designating address to extended area and data area of other program, follow the sequence given below.
Use the register of area designated with indirect address as the applied command operand register.
Designate indirect address with offset+indirect byte address. The offset value is 0000h in the extended area, 4000h in Program 1, 8000h in Program 2, and C000h in Program 3.
EX. 8 points (1 byte) of EX000 to EX007 in the extended area are transferred to the lower byte of Program 2 D0000. \quad MOVH (EMOOW)->(P2-D0100) ${ }^{-1}$

The register (EMOOW) of extended area is
The register P2-D0100) of Program 2 is used to designate the area of Program 2 with indirect address.

Herein, set in advance indirect byte address OBOOh ($0000 \mathrm{~h}+0 \mathrm{BOOh}$) in the extended area EX000 EX007 in the extended internal relays (EM00W(EM000-EM00F) and indirect byte address A000h ($8000 \mathrm{~h}+2000 \mathrm{~h}$) of D0000 lower byte in the data register P2-D0100 of Program 2 respectively.
*3 An address changes by the mode of CPU of operation.

(a)Indirect addressing

The address space of relay/register has three kinds of the following.

Own program register area	Basic register of own program	$\left(\left(^{* * * *}\right)\right.$
	File register	$\left(\mathrm{B}^{* * *}\right)$
Other programs register area	Basic register of other programs	$\left(\mathrm{P}^{*}-{ }^{* * * *}\right)$
	Enhancing register	$\left(\mathrm{E}_{-}^{* * * *}, \mathrm{H}^{* * * *}\right)$
Enhancing data register area	Enhancing data register	$\left(\mathrm{U}^{* * * *}\right)$

When CPU operation mode is "data separate 1 mode", the execution of the sequence program and the referred register are shown as follows.

Note) It is an example of one data separate mode 1. Refer since of the following page for the address map of other modes.

The distinction of three above-mentioned address spaces is never considered at the direct address specification. When "_****" and the address are specified, the register of the basic area of the program executing now is accessed. The basic area of another program when specifying, "P*-_****", the Enhancing arear when specifying, "E_**** and $\mathrm{H}^{* * * * ", ~ t h e ~ e n h a n c i n g ~ d a t a ~ r e g i s t e r ~}$ area is accessed when specifying, " $\mathrm{U}^{* * * * " . ~}$

The register which stores indirect addressing should use the register of the area specified by indirect addressing to distinguish three above-mentioned address spaces at the indirect addressing specification.

	Address indirectly specified			Register of storage destination	
1	Indirect addressing in own area	$\overline{\overline{\mathrm{B}}^{* * * * *}}$	\rightarrow	Register of own area	$\begin{aligned} & \left(\left(^{* * * *}\right)\right. \\ & \left(\bar{B}^{* * * *}\right) \end{aligned}$
2	Indirect addressing in other areas 1	$\begin{aligned} & \mathrm{P}^{*}-{ }^{* * * *} \\ & \mathrm{E}_{-\overline{* * *}}^{\mathrm{H}^{\star *} * *} \end{aligned}$	->	Register of other areas 1	$\begin{aligned} & \left(\mathrm{P}^{*}-{ }^{-* * * *)}\right. \\ & \left(\mathrm{E}^{-\overline{* * * *})}\right. \\ & \left(\mathrm{H}^{\star * * * *}\right) \end{aligned}$
3	Indirect addressing in other areas 2	G_***	>	Register of other areas 2	(G_***)
4	Indirect addressing of enhancing data register	$U^{* * * *}$	\rightarrow	Enhancing data register	($\mathrm{U}^{* * * *)}$

1.When you do addressing indirectly compared with the oun area
-To the register of the operand by which indirect addressing is stored, the register of the own area is used.

- Indirect addressing is specified in the indirect byte address.
2.When you do addressing indirectly compared with other areas (data area of the extended partition and another program)
- To the register of the operand by which indirect addressing is stored, the register of the area specified by indirect addressing is used.
- Indirect addressing is specified in offset + indirect byte address.

The offset value is 0000 h in the extended area, 4000 h in Program 1, 8000 h in Program 2, and C000h in Program 3.
EX. 8 points (1 byte) of EX000 to EX007 in the extended area are transferred to the lower byte of Program 2 D0000.
 used to designate the extended area with
 indirect address.

The register P2-D0100) of Program 2 is used to designate the area of Program 2 with indirect address.

Herein, set in advance indirect byte address 0B00h ($0000 \mathrm{~h}+0 \mathrm{BOOh}$) in the extended area EX000EX007 in the extended internal relays (EMOOW(EM000 - EMOOF) and indirect byte address A000h ($8000 \mathrm{~h}+2000 \mathrm{~h}$) of D0000 lower byte in the data register P2-D0100 of Program 2 respectively.
3.When you do addressing indirectly compared with other areas 2 (data area of the extended partition)

To the register of the operand by which indirect addressing is stored, the register of $\mathrm{G}^{* * * *}$ is used.
4.When you do addressing indirectly compared with the enhancing data register area

- To the register of the operand by which indirect addressing is stored, the enhancing data register is used.
- Indirect addressing is specified in the indirect byte address.

The offset value of the indirect addressing of the register by the operation mode of CPU is indicated in the next table.

Offset value of indirect addressing of registe(data separate mode)

Offset value of indirect addressing of registe(data separate mode)

Offset value of indirect addressing of registe(data Single mode and PC2 compatible mode)

*1) There is no area of "Enhance" and "Enhancing data register" in PC2 compatible mode.

(b) Method of expressing byte address

Where address is expressed with byte address, word address is followed by H, L, being then expressed with upper byte or lower byte within word data. The addresses in the pit address area are followed by W for word address, but they are followed by H, L for byte address.
Addresses in the word address area can be used as bit address by adding bit to right end of word address.
(EX.)

	$\begin{gathered} \hline \text { Bit address } \\ \hline \text { X000 } \end{gathered}$	Word address	Byte address	
$\begin{gathered} \text { Bit } \\ \text { address } \\ \text { area } \\ \text { (Example } \\ \text {) } \end{gathered}$				Lower byte
	X001			
	X002			
	X003			
	X004			
	X005			
	X006			
	X007			
	X008		$\mathbf{4}^{\text {(LSB) }}$	
	X009			
	X00A			
	X00B		XOOH	Upper byte
	X00C		хоо	Upper byte
	X00D			
	X00E			
	X00F		(MSB)	
	D0000-0	${ }^{(\mathrm{LSB})}$	$\Delta^{\text {(LSB) }}$	
	D0000-1			
	D0000-2			
	D0000-3		D0000L	Lower byte
	D0000-4		Doool	
	D0000-5			
Word	D0000-6			
address	D0000-7	${ }^{1}$	VMSB)	
area	D0000-8		(LSB)	
(Example)	D0000-9		\wedge	
	D0000-A			
	D0000-B		D000H	Upper byte
	D0000-C			Upper byte
	D0000-D			
	D0000-E		-	
	D0000-F	∇ (MSB)	(MSB)	

h : Indicated with hexadecimal number.

7.2.5 Table of special relays

Special relays are used for special applications such as CPU status, applied commands, link module, etc. And these relays exist in the basic area and the extended area.
For the data memory separate mode the special relays are provided in the basic area every each program. In this case, applied-command related special relays which are used in each sequence program are configured in special-relay area corresponding to the program. Other relays are all configured in the special relay area for " PRG.1".
Don't handle a user because "V58~V5D" "EV800~EVBFF" is used for the one for the executive control of SFC when you do programming by SFC. It is all reservation area for the address that doesn't exist in the list. Therefore, the user cannot use its address.
(1-1) Data memory separate mode PRG. 1

Address	Name	Outline	Description
V01	MAJOR ERROR	0: No ERR0 1: ERR0 in occurring	ON against occurrence of major error OFF after ERROR is reset
V02	MINOR ERROR	0: No ERR1 1: ERR1 in occurring	ON against occurrence of minor error. OFF after ERROR is reset.
V03	ALARM	0: No ALM 1: ALM in outputting	ON against ALARM OFF after ERROR is reset.
V04	NORMALLY ON	Normally 1	Normally ON irrespective of run status.
V05	NORMALLY OFF	Normally 0	Normally OFF irrespective of run status.
V06	1ST SCAN		ON by resetting and OFF by END processing.
V24	IN DUMMY STOPPING	0 : Not in dummy stopping 1: In dummy stopping	ON by executing dummy scan stop OFF by resetting
V25	STOP REQ IN CONTINUING	0 : No stop request 1: Stop requested	ON by dummy scan stop request. OFF by resetting
V26	IN STOPPING	0 : In scanning 1: In stopping	OFF during sequence scan But ON during step-operation
V27	RUN	0: Sequence command non-execution 1: Sequence command in executing	ON while sequence command is in executing.
V38	DATA MEMORY MODE	0 : Single mode 1: Division mode	ON under data area division mode
V39	PRG. 1 FUN FLAG CLEAR MODE	0: Not FUN FLAG CLEAR MODE 1: FUN FLAG CLEAR MODE	ON when program-1 is FUN FLAG CLEAR mode.
V3A	IN DATA BACK-UP	0: Not in data backing up 1: In data backing-up	ON while user data is being backed up
V40	PRG. 1 RUN	0: Sequence command non-execution 1: Sequence command in executing	ON while program-1 is executing sequence command.
V41	PRG. 2 RUN	0: Sequence command non-execution 1: Sequence command in executing	ON while program-2 is executing sequence command.
V42	PRG. 3 RUN	0: Sequence command non-execution 1: Sequence command in executing	ON while program-3 is executing sequence command.

Address	Name	Outline	Description
V50	PRG. 1 APPLIED COMMAND ERROR 1 (ER)	0: No error 1: Error	ON if applied command error occurs in program-1 and OFF if not, but limited to only command with confinement .
V51	PRG. 1 <	$\begin{array}{\|lrr} \hline 0: & \text { Comparative } & \text { result } \\ \text { smot } \\ \text { small } & \text { nomparative } & \text { result } \\ \text { 1: } & \text { small } & \\ \hline \end{array}$	Result of comparison with applied command in program-1
V52	PRG. 1 =	$\begin{array}{lr} \hline \text { 0: Comparative } & \text { result } \\ \text { unequal } \\ \text { 1: Comparative } & \text { result } \\ \text { equal } & \\ \hline \end{array}$	Result of comparison with applied command in program-1
V53	PRG. 1 >	0: Comparative result not large 1: Comparative result large	Result of comparison with applied command in program-1
V54	PRG. 1 ZERO (Z)	$\begin{aligned} & \text { 0: Result not } 0 \\ & \text { 1: Result } 0 \end{aligned}$	ON when computation result of applied command in program- 1 is 0 .
V55	PRG. 1 BORROW (BO)	0: No digit down 1: Digit down	The computation result of applied command in program- 1 is smaller than 0 .
V56	PRG. 1 CARRY (CY)	$\begin{aligned} & \text { 0: No digit up } \\ & \text { 1: Digit up } \\ & \hline \end{aligned}$	The computation result of applied command in program-1 exceeded the specific digit number.
V5E	DATA ERROR CLEAR	1: Data error cleared	DATA ERROR UNCHECK ALM is cleared by turning ON this special relay (V5E).
V5F	DATA BACKUP START	$\square \quad$Back-up start with fall	USER DATA BACK-UP is started by ON->OFF of this special relay (V5F). V3A keeps ON while the back-up is being executed.
V70	0.1 SEC CLOCK	$\square ^ { 0 . 0 5 \mathrm { sec } } \longdiv { 0 . 0 5 \mathrm { sec } }$	Clock of cycle 0.1 sec and duty 50%
V71	0.2 SEC CLOCK	$7^{0.1 \mathrm{sec}} \sqrt{0.1 \mathrm{sec}}$	Clock of cycle 0.2 sec and duty 50%
V72	1-SEC CLOCK	$7 ^ { 0 . 5 \mathrm { sec } } \longdiv { 0 . 5 \mathrm { sec } }$	Clock of cycle 1 sec and duty 50%
V73	2-SEC CLOCK	$1 \begin{array}{ll} 1 \mathrm{sec} & \begin{array}{\|c} 1 \mathrm{sec} \\ \hline \end{array}, ~ \end{array}$	Clock of cycle 2 sec and duty 50%
V74	60-SEC CLOCK	$\square^{30 \mathrm{sec}} \sqrt{30 \mathrm{sec}}$	Clock of cycle 60 sec and duty 50%
V78	SCAN CLOCK	$7^{1 \text { scan }} \sqrt{1 \text { scan }}$	Clock to turn ON/ OFF SCAN every 1 scan.
V79	USER DEFINED CLOCK 1	$\mathfrak{Z}^{\mathrm{n} \text { scan }} \sqrt{\text { m scan }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V7A	USER DEFINED CLOCK 2	${ }^{\mathrm{n} \text { scan }} \underset{\mathrm{m} \text { scan }}{ }$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V80	Prg.1-Link1 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V81	Prg.1-Link2 COMMUNICATION RESET	$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \end{aligned}$	
V82	Prg.1-Link3 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V83	$\begin{array}{\|l} \text { Prg.1-Link4 } \\ \text { COMMUNICATION } \end{array}$ RESET	0: RESET OFF 1: RESET ON	
V84	Prg.1-Link5 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V85	Prg.1-Link6 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V86	Prg.1-Link7 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V87	Prg. 1-Link8 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	

Address	Name		Outline	Description
V90	PERMIT FLAG	Prg. $1-$ Link		
V91	LINK COMMAND ERROR FLAG			
V92	LINK COMMAND USE	$\frac{\text { Prg.1 }}{\text { Link }}$		
V93	${ }_{\text {LRROR }}^{\text {LINK CLAG }}$ (
V94	PERMIT FL AG	$\begin{aligned} & \text { Prg.1-1- } \\ & \text { Link } \end{aligned}$		
V95	LINK COMMAND ERROR FLAG			
V96	PERMIT FLAG	$\begin{aligned} & \text { Prg.1-1 } \\ & \text { Link4 } \end{aligned}$		
V97				
V98	PERMIT FLAG	Prg.1- Link		
V99	${ }_{\text {L }}^{\text {LNRK Com M }}$			
V9A	LINK COMMAN PERMIT FLAG	$\begin{aligned} & \text { Prg.1 } \\ & \text { Link } \end{aligned}$		
v9B	LINK COMMAND ERROR FLAG			
V9C	LINK COMMAND USE	$\begin{aligned} & \text { Prg. } 1-1 \\ & \text { Link } \end{aligned}$		
V9D	$\underbrace{\text { LTAG }}_{\text {ERROR }}$ Lind			
V9E	PERMIT FLAG	$\begin{aligned} & \text { Prg.1-1 } \\ & \text { Link8 } \end{aligned}$		
V9F	LINK COMMAND			
va0	${ }_{\text {a }}^{\text {ALLST IN }}$ Comulicating	$\begin{aligned} & \text { Prg. } 1 \\ & \text { Link1 } \end{aligned}$		
VA1	LINK PARAMETER		0: No error 1: Error	
VA2	COMMUNICATION ERROR			
VA3				
VA4	${ }_{\text {ald }}^{\text {ALLSTIN }}$ Comunicating	$\begin{aligned} & \text { Prg. } 1 \\ & \text { Link2 } \end{aligned}$	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	
VA5	LINK PARAMETER			
VA6	${ }_{\text {cher }}^{\text {COMMUNICATION }}$			
VA7				
VA8	ALL ST IN	$\begin{aligned} & \text { Prg. } 1 \\ & \text { Links } \end{aligned}$		
VA9	LINK PARAMETER ERROR		0: No error1: Error	
VAA	${ }_{\text {cos }}^{\substack{\text { CoMMUNICATION } \\ \text { ERROR }}}$			
VAB				
vac	COMMUNICATING	$\begin{aligned} & \text { Prg. } 1 \\ & \text { Link4 } \end{aligned}$		
vad	LINK PARAMETER		0: No error 1: Error	
vaE	${ }_{\text {cren }}^{\text {COMMONICATION }}$			
VAF				
VB0	ALLSTIN comulicating	$\begin{aligned} & \text { Prg. } 11 \\ & \text { Link } \end{aligned}$		
VB1	LINK PARAMETER ERROR		0: No error 1: Error	
VB2	${ }_{\text {ERROR }}^{\text {COMMUNICATION }}$			
VB3				
VB4	ALL STIN	$\begin{aligned} & \text { Prg. } 1 \\ & \text { Link6 } \end{aligned}$		
VB5	LINK PARAMETER ERROR		0: No error 1: Error	
VB6	COMMUNICATION ERROR			
VB7				
VB8	${ }_{\text {a }}^{\text {all ST in }}$ comulicating	$\begin{aligned} & \text { Prg.1. } \\ & \text { Link } \end{aligned}$		
VB9	LINK PARAMETER		0: No error 1: Error	
VBA	COMMUNICATION ERROR			
VBB				
VBC	${ }_{\text {all ST IN }}^{\text {comulicating }}$	$\begin{aligned} & \text { Prg. } 11 \\ & \text { Link8 } \end{aligned}$		
vBD	LINK PARAMETER		0: No error 1: Error	
VBE	${ }_{\text {ERROR }}^{\text {COMMUNICATION }}$			
VBF				

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name	Outline	Description
VC0	CPU ERROR	0: No error 1: Error	ON upon detection of CPU module error.
VC1	POWER DOWN	0: No error 1: Error	ON upon detection of POWER DOWN . OFF after reset or power rethrow-in
VC2	MEMORY DATA ERROR	0: No error 1: Error	ON detection of program or parameter data error.
VC3	I/O BUS ERROR	0: No error 1: Error	ON upon detection of I/O bus error.
VC4	SPECIAL MODULE ERROR	0: No error 1: Error	ON upon detection of special module error OFF after ERROR reset
VC5	MODULE PARAMETER ERROR	0: No error 1: Error	ON when CPU can not recognize correctly I/O module.
VC6	PARAMETER ERROR	0: No error 1: Error	ON upon detection of parameter error.
VC7	I/O MODULE ERROR (Fuse blown, etc.)	0: No error 1: Error	ON upon detection of I/O module error OFF after ERROR reset
VC8	I/O COMPOSITION ERROR	0: No error 1: Error	ON upon detection of I/O module composition error/ (Allocation of special card number and I/O addresses)
VC9	USER PROGRAM ERROR	$\begin{array}{\|l\|} \hline \text { 0: No error } \\ \text { 1: Error } \\ \hline \end{array}$	ON upon detection of error related to user program. OFF after ERROR reset.
VCA	BACK UP MEMORY ERROR	0: No error 1: Error	ON upon detection of back-up memory error
VCB	DATA ERROR UNCHECK	0: checked 1: uncheck	ON upon detection of memory data error (VC2). OFF with V5E ON or use of peripheral equipment.
VD0	PRG. 1 USER PROGRAM ERROR	0: No error 1: Error	ON upon errors related to user program as program-1
VD1	$\begin{aligned} & \hline \text { PRG. } 2 \\ & \text { USER PROGRAM ERROR } \end{aligned}$	0: No error 1: Error	ON upon errors related to user program as program-2
VD2	$\begin{aligned} & \hline \text { PRG.3 } \\ & \text { USER PROGRAM ERROR } \end{aligned}$	0: No error 1: Error	ON upon errors related to user program as program-3
VD8	PRG. 1 PARAMETER ERROR	0: No error 1: Error	ON upon detection of program-1 parameter error
VD9	PRG. 2 PARAMETER ERROR	0: No error 1: Error	ON upon detection of program-2 parameter error
VDA	PRG. 3 PARAMETER ERROR	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	ON upon detection of program-3 parameter error
VE0	I/O VERIFICATION ERROR	0: No error 1: Error	ON when I/O identification codes of parameter differ from actually mounted I/O modules.
VE1	SCAN TIME-OVER	0: No error 1: Error	ON upon detection of SCAN TIME OVER . OFF after reset or power rethrow-in
VE2	PRG. 1 APPLIED COMMAND ERROR LATCH	0: No error 1: Error	ON against occurrence of error of applied command (V50) in program-1. It is held until reset or 0 write.
VE8	PRG. 1 SCAN TIME OVER	$\begin{array}{\|l\|} \hline \text { 0: No error } \\ \text { 1: Error } \\ \hline \end{array}$	ON upon detection of scan time-over in program-1. OFF after reset or power rethrow-in
VE9	PRG. 2 SCAN TIME	0: No error 1: Error	ON upon detection of scan time-over in program-2. OFF after reset or power rethrow-in
VEA	PRG. 3 SCAN TIME OVER	0: No error 1: Error	ON upon detection of scan time-over in program-3. OFF after reset or power rethrow-in
VF0	BATTERY ERROR	0: No error 1: Error	ON upon error detection OFF after ERROR reset
VF2	SPECIAL MODULE ALLOCATION ERROR	0: No error 1: Error	ON against allocation error of communication (link) module.
VF3	DIAGNOSIS MODULE ERROR	0: No error 1: Error	ON against diagnosis module error.
VF5	BATTERY ERROR	0: No error 1: Error	ON upon detection of built-in clock error.

(1-2) Data memory separate mode PRG. 2

Address	Name	Outline	Description
V04	NORMALLY ON	NORMALLY 1	ON irrespective operation status
V05	NORMALLY OFF	NORMALLY 0	OFF irrespective of operation status
V06	1ST SCAN		ON by resetting and OFF by END processing.
V24	IN DUMMY STOPPING	0 : Not in dummy stopping 1: In dummy stopping	ON by executing dummy scan stop OFF by resetting
V25	IN STOP REQUEST CONTINUING	0 : No stop request 1: Stop requested	ON by dummy scan stop request. OFF by resetting
V26	IN STOPPING	0: In scanning 1: In stopping	OFF during sequence scan But ON during step-operation
V39	PRG. 2 FUN FLAG CLEAR MODE	0: Not FUN FLAG CLEAR MODE 1: FUN FLAG CLEAR MODE	ON when program-2 is FUN FLAG CLEAR mode.
V50	PRG. 2 APPLIED COMMAND ERROR (ER) 1	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	ON if applied command error occurs in program-2 and OFF if not, but limited to only command with confinement .
V51	PRG. 2 <	0: Comparative result not small 1: Comparative result small	Result of comparison with applied command in program-2
V52	PRG.2 =	0: Comparative result unequal 1: Comparative result equal	Result of comparison with applied command in program-2
V53	PRG. 2 >	0: Comparative result not large 1: Comparative result large	Result of comparison with applied command in program-2
V54	PRG. 2 ZERO (Z)	0 : Result not 0 1: Result 0	ON when computation result of applied command in program-2 is 0 .
V55	PRG. 2 BORROW (BO)	0: No digit down 1: Digit down	The computation result of applied command in program-2 is smaller than 0 .
V56	PRG. 2 CARRY (CY)	0: No digit up 1: Digit up	The computation result of applied command in program-2 exceeded the specific digit number.
V70	0.1 SEC CLOCK	$0^{0.05 \mathrm{sec}}{ }_{0.05 \mathrm{sec}}$	Clock of cycle 0.1 sec and duty 50%
V71	0.2 SEC CLOCK		Clock of cycle 0.2 sec and duty 50%
V72	1-SEC CLOCK	$7 ^ { 0 . 5 \mathrm { sec } } \longdiv { 0 . 5 \mathrm { sec } }$	Clock of cycle 1 sec and duty 50%
V73	2-SEC CLOCK		Clock of cycle 2 sec and duty 50%
V74	60-SEC CLOCK	$\beth^{30 \mathrm{sec}} \sqrt{30 \mathrm{sec}}$	Clock of cycle 60 sec and duty 50%
V78	SCAN CLOCK		Clock to turn ON/ OFF SCAN every 1 scan.
V79	USER DEFINED CLOCK 1	$\square^{\text {n scan }} \sqrt{\text { mscan }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V7A	$\left.\right\|_{2} ^{\text {USER DEFINED CLOCK }}$	$\square^{\mathrm{n} \text { scan }}{ }_{\text {m scan }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.

Address	Name	Outline	Description
V80	Prg2-Link1 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V81	Prg2-Link2 COMMUNICATION RESET	$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \\ & \hline \end{aligned}$	
V82	Prg2-Link3 COMMUNICATION RESET	0: RESET OFF	
V83	Prg2-Link4 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V84	Prg2-Link5 COMMUNICATION RESET	0: RESET OFF	
V85	Prg2-Link6 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V86	Prg2-Link7 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V87	Prg2-Link8	0: RESET OFF 1: RESET ON	
V90	$\left.\begin{array}{l}\text { LINK COMMAND } \\ \text { USE PERMIT FLAG }\end{array}\right\}$ Prg2-		
V91	LINK COMMAND Link1		
V92	$\left.\begin{array}{l}\text { LINK COMMAND } \\ \text { USE PERMIT FLAG }\end{array}\right\}$ Prg2-		
V93	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }}$ Link2		
V94	LINK COMMAND USE PERMIT FLAG		
V95	LINK COMMAND ERROR FLAG Link3		
V96	LINK COMMAND USE PERMIT FLAG Prg2-		
V97	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }}$ Link4		
V98	LINK COMMAND USE PERMIT FLAG Prg2-		
V99	LINK COMMAND ERROR FLAG		
V9A	LINK COMMAND USE PERMIT FLAG Prg2-		
V9B	LINK COMMAND $\}$ Link6		
V9C	LINK COMMAND USE PERMIT FLAG Prg2-		
V9D	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }}$ Link7		
V9E	LINK COMMAND USE PERMIT FLAG		
V9F	LINK COMMAND		
VA0	ALL ST IN COMMUNICATING		
VA1	LINK PARAMETER ERROR Prg2-	0: No error	
VA2		1: Error	
VA3			
VA4	ALL ST IN COMMUNICATING		
VA5	LINK PARAMETER ERROR Prg2-	0: No error	
VA6	$\underset{\text { ERROR }}{\text { COMMCATION }}$ Link2	1: Error	
VA7			
VA8	ALL ST IN COMMUNICATING		
VA9	$\underset{\text { ERROR }}{\text { LINK PARAMETER }}$	0: No error	
VAA	$\underset{\text { ERROR }}{\text { COMMUNICATION }}$ Link3	1: Error	
VAB			
VAC	ALL ST IN COMMUNICATING		
VAD	LINK PARAMETER ERROR Prg2-	0: No error	
VAE	$\underset{\text { ERROR }}{\substack{\text { COMMUCATION }}}$	1: Error	
VAF			
VB0	ALL ST IN COMMUNICATING		
VB1	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$ Prg2-	0 : No error 1: Error	
VB2	$\underset{\text { ERROR }}{\text { COMMCATION }}$ Link5		
VB3			

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name		Outline	Description
VB4	ALL ST IN COMMUNICATING	$\begin{aligned} & \text { Prg2- } \\ & \text { Link6 } \end{aligned}$	0: No error 1: Error	
VB5	LINK PARAMETER ERROR			
VB6	COMMUNICATION ERROR			
VB7				
VB8	ALL ST IN COMMUNICATING	$\begin{aligned} & \text { Prg2- } \\ & \text { Link7 } \end{aligned}$		
VB9	LINK PARAMETER ERROR		0: No error 1: Error	
VBA	COMMUNICATION ERROR			
VBB				
VBC	ALL ST IN COMMUNICATING	$\begin{aligned} & \text { Prg2- } \\ & \text { Link8 } \end{aligned}$		
VBD	LINK PARAMETER ERROR		0: No error 1: Error	
VBE	COMMUNICATION ERROR			
VBF				
VE2	PRG. 2 COMMAND ERROR	$\begin{array}{r} \text { APPLIED } \\ \text { LATCH } \end{array}$	0: No error 1: Error	ON against occurrence of applied command error (V50) in program-2 and it is held until reset or 0 write.

(Note) For the communication (link) modules, see the respective Instruction Manuals.
(1-3) Data memory separate mode PRG. 3

Address	Name	Outline	Description
V04	NORMALLY ON	NORMALLY 1	ON irrespective operation status
V05	NORMALLY OFF	NORMALLY 0	OFF irrespective of operation status
V06	1ST SCAN	ON OFF OND command	ON by resetting and OFF by END processing.
V24	IN DUMMY STOPPING	0: Not in dummy stopping 1: In dummy stopping	ON by executing dummy scan stop OFF by resetting
V25	IN STOP REQUEST CONTINUING	0: No stop request 1: Stop requested	ON by dummy scan stop request. OFF by resetting
V26	IN STOPPING	0 : In scanning 1: In stopping	OFF during sequence scan But ON during step-operation
V39	PRG. 3 FUN FLAG CLEAR MODE	0: Not FUN FLAG CLEAR MODE 1: FUN FLAG CLEAR MODE	ON when program-3 is FUN FLAG CLEAR mode.
V50	PRG. 3 APPLIED COMMAND ERROR 1 (ER)	0: No error 1: Error	ON if applied command error occurs in program-2 and OFF if not, but limited to only command with confinement.
V51	PRG.3 <	0: Comparative result not small 1: Comparative result small	Result of comparison with applied command in program-3
V52	PRG.3 =	0: Comparative result unequal 1: Comparative result equal	Result of comparison with applied command in program-3
V53	PRG.3 >	0: Comparative result not large 1: Comparative result large	Result of comparison with applied command in program-3
V54	PRG. 3 ZERO (Z)	0: Result not 0 1: Result 0	ON when computation result of applied command in program-3 is 0 .
V55	PRG. 3 BORROW (BO)	0 : No digit down 1: Digit down	The computation result of applied command in program-3 is smaller than 0 .
V56	PRG. 3 CARRY (CY)	$\begin{aligned} & \text { 0: No digit up } \\ & \text { 1: Digit up } \end{aligned}$	The computation result of applied command in program-3 exceeded the specific digit number.
V70	0.1 SEC CLOCK	$\square^{0.05 \mathrm{sec}} 0.05 \mathrm{sec}$	Clock of cycle 0.1 sec and duty 50%
V71	0.2 SEC CLOCK	$7^{0.1 \mathrm{sec}} \begin{array}{\|c\|} \hline 0.1 \mathrm{sec} \\ \hline \end{array}$	Clock of cycle 0.2 sec and duty 50%
V72	1-SEC CLOCK	$\begin{array}{\|c\|} \hline 0 . 5 \mathrm { sec } \longdiv { 0 . 5 \mathrm { sec } } \\ \hline \end{array}$	Clock of cycle 1 sec and duty 50%
V73	2-SEC CLOCK	$\boxed{ }^{1 \mathrm{sec}} \quad 1$	Clock of cycle 2 sec and duty 50\%
V74	60-SEC CLOCK	$7^{30 \mathrm{sec}} \begin{array}{\|c\|} 30 \mathrm{sec} \\ \hline \end{array}$	Clock of cycle 60 sec and duty 50\%
V78	SCAN CLOCK		Clock to turn ON/ OFF SCAN every 1 scan.
V79	USER DEFINED CLOCK 1	$7^{\mathrm{n} \text { scan }} \underset{\text { mscan }}{ }$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V7A	USER DEFINED CLOCK 2	$\square^{\mathrm{n} \text { scan }} \underset{\text { m scan }}{ }$	Clock to turn ON/OFF scan at scanning interval preset by applied command.

Address	Name	Outline	Description
V80	Prg3-Link1 COMMUNICATION RESET	$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \end{aligned}$	
V81	Prg3-Link2 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V82	Prg3-Link3 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V83	Prg3-Link4 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V84	Prg3-Link5 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V85	Prg3-Link6 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V86	Prg3-Link7 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V87	Prg3-Link8	0: RESET OFF 1: RESET ON	
V90	$\left.\begin{array}{l}\text { LINK COMMAND } \\ \text { USE PERMIT FLAG }\end{array}\right\}$ Prg3-		
V91	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }}$ Link1		
V92	LINK COMMAND USE PERMIT FLAG		
V93	LINK COMMAND ERROR FLAG Link2		
V94	$\left.\begin{array}{l}\text { LINK COMMAND } \\ \text { USE PERMIT FLAG }\end{array}\right\}$ Prg3-		
V95	LINK COMMAND ERROR FLAG Link3		
V96	LINK COMMAND USE PERMIT FLAG		
V97	$\underset{\substack{\text { LINK COMMAND } \\ \text { ERROR FLAG }}}{\text { Link4 }}$		
V98	LINK COMMAND USE PERMIT FLAG		
V99	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }}$ Link5		
V9A	LINK COMMAND USE PERMIT FLAG		
V9B	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }} \mathrm{j}$ Link6		
V9C	$\left.\begin{array}{l}\text { LINK COMMAND } \\ \text { USE PERMIT FLAG }\end{array}\right\}$ Prg3-		
V9D	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND }}$ Link7		
V9E	LINK COMMAND USE PERMIT FLAG		
V9F	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAND Link8 }}$		
VA0	ALL ST IN COMMUNICATING		
VA1	LINK PARAMETER ERROR Prg3-	0: No error	
VA2	$\underset{\text { ERROR }}{\text { COMICATION Link1 }}$	1: Error	
VA3			
VA4	ALL ST IN COMMUNICATING		
VA5	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$ Prg3-	0: No error	
VA6	$\underset{\text { ERROR }}{\substack{\text { COMMUNICATION } \\ \text { ER2 } \\ \hline}}$	1: Error	
VA7			
VA8	ALL ST IN COMMUNICATING		
VA9	${ }^{\text {LINK PARAMETER }}$ ERROR	0: No error	
VAA	$\underset{\substack{\text { COMMMUNICATION } \\ \text { ERROR }}}{ }$	1: Error	
VAB			
VAC	ALL ST IN COMMUNICATING		
VAD	LINK PARAMETER ERROR Prg3-	0: No error	
VAE		1: Error	
VAF			
VB0	ALL ST IN COMMUNICATING		
VB1	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$	0: No error	
VB2	$\underset{\text { ERROR }}{\text { COMMUNTION }}$ Link5	1: Error	
VB3			

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name		Outline	Description
VB4	ALL ST IN COMMUNICATING	$\begin{aligned} & \text { Prg3- } \\ & \text { Link6 } \end{aligned}$	0: No error 1: Error	
VB5	LINK PARAMETER ERROR			
VB6	COMMUNICATION ERROR			
VB7				
VB8	ALL ST IN COMMUNICATING			
VB9	LINK PARAMETER ERROR	Prg3-	0: No error	
VBA	COMMUNICATION	Link7	1: Error	
VBB				
VBC	ALL ST IN COMMUNICATING			
VBD	LINK PARAMETER ERROR	Prg3-	0: No error	
VBE	COMMUNICATION	Link8	1: Error	
VBF				
VE2	$\begin{aligned} & \hline \text { PRG. } 3 \\ & \text { COMMAND } \\ & \text { ERROR } \\ & \hline \end{aligned}$	APPLIED LATCH	0: No error 1: Error	ON against occurrence of applied command error (V50) in program-3 and it is held until reset or 0 write.

(Note) For the communication (link) modules, see the respective Instruction Manuals.

(1-4) Data memory separate mode, extended area

Address	Name	Outline	Description
EVE00 \imath EVEFF	S-N input data link area		
EVF00 \vdots EVFFF	S-N output data link area		

(2-1) Data memory single mode, basic area

Address	Name	Outline	Description		
V01	MAJOR ERROR	0: No ERR0 1: ERR0 in occurring	ON against occurrence of major error OFF after ERROR is reset		
V02	MINOR ERROR	0: No ERR1 1: ERR1 in occurring	ON against occurrence of minor error. OFF after ERROR is reset.		
V03	ALARM	0: No ALM $1:$ ALM in outputting	ON against ALARM OFF after ERROR is reset.		
V04	NORMALLY ON	Normally 1	Normally ON irrespective of run status.		
V05	NORMALLY OFF	Normally 0	Normally OFF irrespective of run status.		
V06	1ST SCAN	ON OF	Reset	\quad	OFF
:---					

Address	Name	Outline	Description
V70	0.1 SEC CLOCK	$7 ^ { 0 . 0 5 \mathrm { sec } } \longdiv { 0 . 0 5 \mathrm { sec } }$	Clock of cycle 0.1 sec and duty 50%
V71	0.2 SEC CLOCK	$0.1 \mathrm{sec}$	Clock of cycle 0.2 sec and duty 50%
V72	1-SEC CLOCK	$7 ^ { 0 . 5 \mathrm { sec } } \longdiv { 0 . 5 \mathrm { sec } }$	Clock of cycle 1 sec and duty 50%
V73	2-SEC CLOCK	$\underline{1}^{1 \mathrm{sec}} \sqrt{1 \mathrm{sec}}$	Clock of cycle 2 sec and duty 50%
V74	60-SEC CLOCK	$\square^{30 \mathrm{sec}} \sqrt{30 \mathrm{sec}}$	Clock of cycle 60 sec and duty 50%
V78	SCAN CLOCK	$\downarrow^{1 \text { scan }} \sqrt{1 \text { scan }}$	Clock to turn ON/ OFF SCAN every 1 scan.
V79	$\begin{array}{\|l\|} \hline \text { USER DEFINED CLOCK } \\ 1 \end{array}$	$\square^{\mathrm{n} \text { scan }} \sqrt{\text { m scan }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V7A	USER DEFINED CLOCK 2	$7^{\mathrm{n} \text { scan }} \sqrt{\text { m scan }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V80	Prg1-Link1 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V81	Prg1-Link2 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V82	Prg1-Link3 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V83	Prg1-Link4 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V84	Prg1-Link5 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V85	Prg1-Link6 COMMUNICATION RESET	$\begin{array}{\|l} \hline \text { 0: RESET OFF } \\ \text { 1: RESET ON } \\ \hline \end{array}$	
V86	Prg1-Link7 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V87	Prg1-Link8 COMMUNICATION RESET	0: RESET OFF 1: RESET ON	
V90	$\left.\begin{array}{l}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V91	$\left.\begin{array}{l} \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link1 }$		
V92	$\left.\begin{array}{l}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V93	$\left.\begin{array}{l} \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link2 }$		
V94	$\left.\begin{array}{\|l\|}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V95	$\left.\begin{array}{\|l\|l\|} \hline \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link3 }$		
V96	$\left.\begin{array}{\|l\|}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V97	$\left.\begin{array}{l} \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link } 4$		
V98	$\left.\begin{array}{l}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V99	$\left.\begin{array}{l} \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link }$		
V9A	$\left.\begin{array}{\|l\|}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V9B	$\left.\begin{array}{l} \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link6 }$		
V9C	$\left.\begin{array}{l}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V9D	$\underset{\text { ERROR FLAG }}{\text { LINK COMMAN }} \mathrm{j}$ Link7		
V9E	$\left.\begin{array}{l}\text { LINK COMMAND USE } \\ \text { PERMIT FLAG }\end{array}\right\}$ Prg1-		
V9F	$\left.\begin{array}{l} \text { LINK COMMAND } \\ \text { ERROR FLAG } \end{array}\right\} \text { Link8 }$		

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name	Outline	Description
VA0	$\begin{aligned} & \hline \hline \text { ALL ST IN } \\ & \text { COMMUNICATING } \end{aligned}$		
VA1	${\underset{\text { ERROR }}{\text { LINK PARAMETER }}}_{\text {Prg1- }}$	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	
VA2	$\underset{\text { ERROR }}{\text { COMMUATION }}$		
VA3			
VA4	ALL ST IN COMMUNICATING		
VA5	${\underset{\text { ERROR }}{\text { LINK PARAMETER }}}_{\text {Prg1- }}$	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	
VA6	$\underset{\text { ERROR }}{\substack{\text { COMMCATION } \\ \text { ERO }}}$		
VA7			
VA8	ALL ST IN COMMUNICATING		
VA9	${\underset{\text { ERROR }}{\text { LINK PARAMETER }}}_{\text {ETg1- }}$	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	
VAA	$\underset{\substack{\text { COMMUNICATION } \\ \text { ERROR }}}{ }$		
VAB			
VAC	$\begin{aligned} & \text { ALL ST IN } \\ & \text { COMMUNICATING } \end{aligned}$		
VAD	${\underset{\text { ERROR }}{\text { LINK PARAMETER }}}_{\text {Erg1- }}$	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	
VAE	$\underset{\text { ERROR }}{\substack{\text { COMMCATION } \\ \text { ERO }}}$		
VAF			
VB0	$\begin{aligned} & \begin{array}{l} \text { ALL ST IN } \\ \text { COMMUNICATING } \end{array} \end{aligned}$		
VB1	${\underset{\text { ERROR }}{\text { LINK PARAMETER }}}_{\text {Prg1- }}$	0: No error 1: Error	
VB2	$\underset{\text { ERROR }}{\substack{\text { COMMUNATION } \\ \text { ERO }}}$		
VB3			
VB4	$\begin{aligned} & \begin{array}{l} \text { ALL ST IN } \\ \text { COMMUNICATING } \end{array}, \end{aligned}$		
VB5	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$	0: No error1: Error	
VB6	$\underset{\text { ERROR }}{\substack{\text { COMMUNCATION } \\ \text { Link6 }}}$		
VB7			
VB8	ALL ST IN COMMUNICATING		
VB9	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$	0: No error1: Error	
VBA	COMMUNICATION ERROR		
VBB			
VBC	ALL ST IN COMMUNICATING		
VBD	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$	0: No error1: Error	
VBE	COMMUNICATION ERROR		
VBF			
VC0	CPU ERROR	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \end{aligned}$	ON upon detection of CPU module error.
VC1	POWER DOWN	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \\ & \hline \end{aligned}$	ON upon detection of POWER DOWN . OFF after reset or power rethrow-in
VC2	MEMORY DATA ERROR	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \\ & \hline \end{aligned}$	ON detection of program or parameter data error.
VC3	I/O BUS ERROR	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \\ & \hline \end{aligned}$	ON upon detection of I/O bus error.
VC4	SPECIAL MODULE ERROR	$\begin{array}{\|l\|l\|} \hline \text { 0: No error } \\ \text { 1: Error } \\ \hline \end{array}$	ON upon detection of special module error ON after ERROR reset
VC5	$\begin{aligned} & \text { MODULE } \\ & \text { PARAMETER ERROR } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 0: No error } \\ \text { 1: Error } \\ \hline \end{array}$	ON when CPU can not recognize correctly I/O module.
VC6	PARAMETER ERROR	$\begin{array}{\|l\|} \hline \text { 0: No error } \\ \text { 1: Error } \\ \hline \end{array}$	ON upon detection of parameter error.
VC7	I/O MODULE ERROR (Fuse blown, etc.)	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \\ & \hline \end{aligned}$	ON upon detection of I/O module error OFF after ERROR reset

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name	Outline	Description
VC8	I/O COMPOSITION ERROR	0: No error 1: Error	ON upon detection of I/O module composition error/ (Allocation of special card number and I/O addresses)
VC9	USER PROGRAM ERROR	0: No error 1: Error	ON upon detection of error related to user program. OFF after ERROR reset.
VCA	BACK UP MEMORY ERROR	0: No error 1: Error	ON upon detection of back-up memory error
VCB	DATA ERROR UNCHECK	0: checked 1: uncheck	ON upon detection of memory data error (VC2) . OFF with V5E ON or use of peripheral equipment.
VD0	$\begin{aligned} & \text { PRG. } 1 \\ & \hline \text { USER PROGRAM ERROR } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 0: No error } \\ \text { 1: Error } \\ \hline \end{array}$	ON upon errors related to user program as program-1
VD1	PRG. 2 USER PROGRAM ERROR	$\begin{aligned} & \text { 0: No error } \\ & \text { 1: Error } \\ & \hline \end{aligned}$	ON upon errors related to user program as program-2
VD2	PRG. 3 USER PROGRAM ERROR	0: No error 1: Error	ON upon errors related to user program as program-3
VD8	$\begin{aligned} & \text { PRG. } 1 \text { PARAMETER } \\ & \hline \text { ERROR } \end{aligned}$	0: No error 1: Error	ON upon detection of program-1 parameter error
VD9	PRG. 2 PARAMETER ERROR	0: No error 1: Error	ON upon detection of program-2 parameter error
VDA	$\begin{aligned} & \text { PRG. } 3 \text { PARAMETER } \\ & \hline \text { ERROR } \end{aligned}$	0: No error 1: Error	ON upon detection of program-3 parameter error
VE0	I/O VERIFICATION ERROR	0: No error 1: Error	ON upon detection of SCAN TIME OVER . OFF after reset or power rethrow-in
VE1	SCAN TIME-OVER	0: No error 1: Error	ON upon detection of SCAN TIME OVER . OFF after reset or power rethrow-in
VE2	PRG. 1 APPLIED COMMAND ERROR LATCH	0: No error 1: Error	ON against occurrence of error of applied command (V50) in program-1. It is held until reset or 0 write.
VE8	PRG. 1 SCAN TIME	0: No error 1: Error	ON upon detection of scan time-over in program-1. OFF after reset or power rethrow-in
VE9	PRG. 2 SCAN TIME	0: No error 1: Error	ON upon detection of scan time-over in program-2. OFF after reset or power rethrow-in
VEA	PRG. 3 SCAN TIME	0: No error 1: Error	ON upon detection of scan time-over in program-3. OFF after reset or power rethrow-in
VF0	BATTERY ERROR	0: No error 1: Error	ON upon error detection OFF after ERROR reset
VF2	SPECIAL MODULE ALLOCATION ERROR	0: No error 1: Error	ON against allocation error of communication (link) module.
VF3	DIAGNOSIS MODULE ERROR	0: No error 1: Error	ON against diagnosis module error.
VF5	BATTERY ERROR	0: No error 1: Error	ON upon detection of built-in clock error.

(2-2) Data memory single mode, extended area

Note) For the communication (link) modules, see the respective Instruction Manuals.

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name	Outline	Description
EV60	ALL ST IN COMMUNICATING		
EV61	LINK PARAMETER ERROR Prg3-	0: No error	
EV62	$\underset{\text { ERROR }}{\text { COMMUATION }}$ Link1	1: Error	
EV63			
EV64	ALL ST IN COMMUNICATING		
EV65	LINK PARAMETER ERROR Prg3-	0: No error	
EV66	COMMUNICATION ERROR	1: Error	
EV67			
EV68	ALL ST IN COMMUNICATING		
EV69	LINK PARAMETER ERROR Prg3-	0: No error	
EV6A	$\underset{\substack{\text { COMMUNICATION } \\ \text { ERROR }}}{ }$	1: Error	
EV6B			
EV6C	ALL ST IN COMMUNICATING		
EV6D	$\underset{\text { ERROR }}{\text { LINK PARAMETER }}$ Prg3-	0 : No error	
EV6E	COMMUNICATION ERROR	1: Error	
EV6F			
EV70	ALL ST IN COMMUNICATING		
EV71	LINK PARAMETER ERROR Prg3-	0: No error	
EV72	$\underset{\substack{\text { COMMUNICATION } \\ \text { ERROR }}}{\substack{\text { Link5 } \\ \hline}}$	1: Error	
EV73			
EV74	ALL ST IN COMMUNICATING		
EV75	$\underset{\substack{\text { LINK PARAMETER } \\ \text { ERROR }}}{\text { Prg3- }}$	0: No error	
EV76	$\underset{\substack{\text { COMMUNICATION } \\ \text { ERROR }}}{\substack{\text { Link6 } \\ \hline}}$	1: Error	
EV77			
EV78	ALL ST IN COMMUNICATING		
EV79	LINK PARAMETER ERROR Prg3-	0: No error	
EV7A	$\underset{\substack{\text { COMMUNICATION } \\ \text { ERROR }}}{\substack{\text { Link7 } \\ \\ \hline}}$	1: Error	
EV7B			
EV7C	ALL ST IN COMMUNICATING		
EV7D	$\underset{\substack{\text { LINK PARAMETER } \\ \text { ERROR }}}{\text { Prg3- }}$	0: No error	
EV7E	$\underset{\text { ERROR }}{\text { COMMUNATION }}$ Link8	1: Error	
EV7F			
$\begin{gathered} \text { EVE00 } \\ \vdots \\ \text { EVEFF } \end{gathered}$	SN-I/F input data link area		
$\begin{gathered} \text { EVE00 } \\ \vdots \\ \text { EVEFF } \end{gathered}$	SN-I/F output data link area		

Note) For the communication (link) modules, see the respective Instruction Manuals.
(3) PC2 compatible mode

Address	Name	Outline	
V01	MAJOR ERROR	$\begin{array}{l}0: \text { No ERR0 } \\ \text { 1: ERR0 in occurring }\end{array}$	$\begin{array}{l}\text { ON against occurrence of major error } \\ \text { OFF after ERROR is reset }\end{array}$
V02	MINOR ERROR	$\begin{array}{l}\text { 0: No ERR1 } \\ \text { 1: ERR1 in occurring }\end{array}$	$\begin{array}{l}\text { ON against occurrence of minor error. } \\ \text { OFF after ERROR is reset. }\end{array}$
V03	ALARM	$\begin{array}{l}\text { 0: No ALM } \\ 1: \text { ALM in outputting }\end{array}$	$\begin{array}{l}\text { ON against ALARM } \\ \text { OFF after ERROR is reset. }\end{array}$
V04	NORMALLY ON	Normally 1	Normally ON irrespective of run status.
V05	NORMALLY OFF	Normally 0	Normally OFF irrespective of run status.
V06	1ST SCAN	$\begin{array}{l}\text { END command } \\ \text { OFF }\end{array}$	Reset

processing.\end{array}\right]\)

Address	Name		Outline	Description
V78	SCAN Clock		$\square^{1 \text { scan }} \sqrt{1 \text { scan }}$	Clock to turn ON/ OFF SCAN every 1 scan.
V79	USER DEFINED Clock 1		$\overbrace{}^{\mathrm{n} \text { scan }} \sqrt{\mathrm{m} \text { sec }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V7A	USER DEFINED CLOCK 2		$7^{\mathrm{n} \text { scan }} \sqrt{\mathrm{m} \text { scan }}$	Clock to turn ON/OFF scan at scanning interval preset by applied command.
V80	Prg1-Link1		$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \end{aligned}$	
V81	Prg1-Link2		0: RESET OFF 1: RESET ON	
V82	Pry1-LinksCOMMUNICATION RESET		$\begin{aligned} & 0: \text { RESET OFF } \\ & 1: \text { RESET ON } \end{aligned}$	
V83	Pry1-Link4COMMUNICATION RESET		$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \\ & \hline \end{aligned}$	
V84	Pry1-LinkeCOMMUNICATION RESET		$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \\ & \hline \end{aligned}$	
V85	Prg1-Link6COMMUNICATION RESET		$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \\ & \hline \end{aligned}$	
V86	Prg1-LinkTCOMMUNICATION RESET		$\begin{aligned} & \text { 0: RESET OFF } \\ & \text { 1: RESET ON } \end{aligned}$	
V87	Pry1-Link8		$\begin{array}{\|l\|} \hline 0: \text { RESET OFF } \\ 1: \text { RESET ON } \\ \hline \end{array}$	
V90	LINK CoMMAND USE PERMIT FLAC	$\left\{\begin{array}{l} \text { Prg1- } \\ \text { Link1 } \end{array}\right.$		
V91				
V92	LINK COMMAND USE	$\begin{aligned} & \text { Prg1- } \\ & \text { Link2 } \end{aligned}$		
V93	LINK COMMAND ERROR FLAG			
V94		$\begin{aligned} & \text { Prg1- } \\ & \text { Link8 } \end{aligned}$		
V95	LINK COMMAND ERROR FLAG			
V96	$\xrightarrow{\text { LINK CoMMAND USE }}$	$\begin{aligned} & \text { Prg1- } \\ & \text { Link4 } \end{aligned}$		
V97	${ }_{\text {ERROR }}^{\text {LINK COMMAND }}$			
V98	LINK COMMAND USE	$\begin{aligned} & \text { Prg1- } \\ & \text { Pink } \\ & \text { Link } \end{aligned}$		
V99	$\begin{aligned} & \text { LINK COMMAND } \\ & \text { ERROR FIAG } \end{aligned}$			
V9A		$\begin{aligned} & \text { Prg1- } \\ & \text { Link6 } \end{aligned}$		
V9B	LINK Command ERROR FL AG			
V9C	PERMIT FLAG	$\begin{aligned} & \text { Prg1- } \\ & \text { Link } 7 \\ & \hline \end{aligned}$		
V9D	LINK COMMAND			
V9E		Prg1-Link8		
V9F	LINK COMMAND ERROR FLAG			
VA0				
va1	$\begin{aligned} & \text { LINK PARAMETER } \\ & \text { ERROR } \end{aligned}$	$\begin{aligned} & \text { Prg1- } \\ & \text { Link1 } \end{aligned}$	0: No error	
VA2	${ }_{\text {CRROR }}^{\text {COMMUNICATION }}$		1: Error	
VA3				
VA4	ALL ST IN	$\begin{aligned} & \text { Prg1- } \\ & \text { Link2 } \end{aligned}$		
VA5	LNK PARAMETER ERROR		0\% No error	
VA6	COMMUNICATION ERROF		1: Error	
VA7				
VA8	${ }_{\text {a }}^{\text {ald }}$ ALIN	$\begin{aligned} & \text { Prg1- } \\ & \text { Link3 } \end{aligned}$		
VA9	LINK PARAMETER ERROR		0: No error1: Error	
VAA	COMMUNICATION ERROR			
VAB				
VAC	ALL ST IN			
VAD	$\begin{aligned} & \text { LINK PARAMETER } \\ & \text { ERROR } \end{aligned}$	$\begin{aligned} & \text { Prg1-1 } \\ & \text { Link4 } \end{aligned}$	0: No error	
vaE	${ }_{\text {CRROR }}^{\text {COMMUNICATION }}$		1: Error	
VAF				

Note) For the communication (link) modules, see the respective Instruction Manuals.

Address	Name	Outline	Description
VB0	ALL ST IN COMMUNICATING		
VB1	${\underset{\text { ERROR }}{\text { LINK PARAMETER }}}^{\text {Eng1- }}$	0: No error	
VB2	$\underset{\text { ERROR }}{\text { COMMUATION }}$ Link5	1: Error	
VB3			
VB4	ALL ST IN COMMUNICATING		
VB5	$\underset{\text { ERROR }}{\text { LINK PARAMETER }}$ Prg1-	0: No error	
VB6	$\underset{\substack{\text { ERROR } \\ \text { ERMATATON }}}{\substack{\text { Link6 } \\ \hline}}$	1: Error	
VB7			
VB8	ALL ST IN CoMMUNICATING		
VB9	${ }_{\text {ERROR }}^{\text {LINK PARAMETER }}$ Prg1-	0: No error	
VBA	$\underset{\text { ERROR }}{\substack{\text { COMMUNATION } \\ \text { Link7 }}}$	1: Error	
VBB			
VBC	ALL ST IN CoMMUNICATING		
VBD	$\underset{\text { ERROR }}{\text { LINK PARAMETER }}$	0: No error	
VBE	$\underset{\text { ERROR }}{\text { COMMUATION }}$	1: Error	
VBF			
VC0	CPU ERROR	0: No error 1: Error	ON upon detection of CPU module error.
VC1	POWER DOWN	0: No error 1: Error	ON upon detection of POWER DOWN . OFF after reset or power rethrow-in
VC2	MEMORY DATA ERROR	0: No error 1: Error	ON detection of program or parameter data error.
VC3	I/O BUS ERROR	0: No error 1: Error	ON upon detection of I/O bus error.
VC4	SPECIAL MODULE ERROR	0: No error 1: Error	ON upon detection of special module error ON after ERROR reset
VC5	MODULE PARAMETER ERROR	0: No error 1: Error	ON when CPU can not recognize correctly I/O module.
VC6	PARAMETER ERROR	0: No error 1: Error	ON upon detection of parameter error.
VC7	I/O MODULE ERROR (Fuse blown, etc.)	0: No error 1: Error	ON upon detection of I/O module error OFF after ERROR reset
VC8	I/O COMPOSITION ERROR	0: No error 1: Error	ON upon detection of I/O module composition error/ (Allocation of special card number and I/O addresses)
VC9	USER PROGRAM ERROR	0: No error 1: Error	ON upon detection of error related to user program. OFF after ERROR reset.
VCA	BACK UP MEMORY ERROR	0: No error 1: Error	ON upon detection of back-up memory error
VCB	DATA ERROR UNCHECK	0: Checked 1: Uncheck	ON upon detection of memory data error (VC2) . OFF with V5E ON or use of peripheral equipment.
VE0	I/O VERIFICATION ERROR	0: No error 1: Error	ON upon detection of SCAN TIME OVER. OFF after reset or power rethrow-in
VE1	SCAN TIME-OVER	0: No error 1: Error	ON upon detection of SCAN TIME OVER . OFF after reset or power rethrow-in
VF0	BATTERY ERROR	0: No error 1: Error	ON upon error detection OFF after ERROR reset
VF2	SPECIAL MODULE ALLOCATION ERROR	0: No error 1: Error	ON against allocation error of communication (link) module.
VF3	DIAGNOSIS MODULE ERROR	0: No error 1: Error	ON against diagnosis module error.
VF5	BATTERY ERROR	0: No error 1: Error	ON upon detection of built-in clock error.

Note) For the communication (link) modules, see the respective Instruction Manuals.

7.2.6 Table of special registers

The special registers listed in the table below are available for special applications such as CPU status, built-in clock, link modules, etc. These special registers exit in basic area and extended area. Under data memory separate mode the special registers in basic area are available individually for each program. In this case, the special registers for built-in clock time, annunciator, link modules, etc. used in each sequence program are in special register area corresponding to the program. Other special registers are all in the special register area for "PRG.1".
It is all reservation area for the address that doesn't exist in the list. Therefore, the user cannot use its address.

(1-1) Data memory separate mode PRG. 1

Address	Name		Description		
S001	SCAN TIME max value		Maximum scan time in sequence program (ms)	Binary	
S002	SCAN TIME min value		Minimum scan time in sequence program (ms)	Binary	
S003	SCAN TIME Present value		Updated scan time in sequence program (ms)	Binary	
S004	Time (Sec)		Present time of the built-in clock is stored. For data display, 1 digit is displayed by 1Byte in BCD code. (Ex. "0102" represents "12".) Year data is displayed with lower two digits of AD year. "day of week" data is represented by $0 \sim 6$, which correspond to Sun. ~ Sat. Even if the register is rewritten directly, t i me change is impossible.Please perform a setup of time from <Setup data/time> of Pcwin or use an exclusive use of an application instruction. (Please refer to "309 SYS Clock adjustment instruction(FUN300) PC3J series since version 2.6" in "PROGRAMMING MANUAL" about an application instruction.)	BCD (1 digit/byte)	
S005	Time (Minutes)				
S006	Time (Hours)				
S007	Time (Day)				
S008	Time (Month)				
S009	Time (Year)				
S00A	Day of week				
S00C	Integrated make time		Cumulative value of CPU module make (current feed) time (h)	Binary, lower	
S00D			Binary, upper		
S00E	Integrated run time			Cumulative value of sequence program run time (h)	Binary, lower
S00F			Binary, upper		
S010	End processing time max value		Maximum end processing time in sequence program (ms)	Binary	
S011	End processing time Min value		Minimum end processing time in sequence program (ms)	Binary	
S012	End processing time Present value		Updated end processing time in sequence program (ms)	Binary	
S019	Time (Minute $\operatorname{sec\text {)}}$		Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code.(Ex. "1234" represents "12 (min).34(sec).)	BCD (2 digit/byte)	
S022	1 ms timer		This timer works by 1 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
S023	10 ms timer		This timer works by 10 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
S024	100 ms timer		This timer works by 100 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
$\begin{gathered} \text { S0A8 } \\ 2 \\ \text { S0AF } \\ \hline \end{gathered}$	Link module corde		See 9-7 "Special register".		
S0C0	PRG. 1	Initial scan time	Initial sequence program execution time in program-1 (ms)	Binary	
S0C1		SCAN TIME max value	Maximum scan time in sequence program of program-1 (ms)	Binary	
S0C2		SCAN TIME min value	Minimum scan time in sequence program of program-1	Binary	
S0C3		SCAN TIME Present value	Updated scan time in sequence program of program-1	Binary	
S0C4	PRG. 2	Initial scan time	Initial sequence execution time in program-2 (ms)	Binary	
S0C5		SCAN TIME max value	Maximum scan time in sequence program of program-2 (ms)	Binary	
S0C6		SCAN TIME min value	$\underset{(\mathrm{ms})}{\text { Minimum scan time }}$ in sequence program of program-2	Binary	
S0C7		SCAN TIME Present value	Updated scan time in sequence program of program-2 (ms)	Binary	

Address		Name	Description	
S0C8	PRG. 3	Initial scan time	Initial sequence execution time in program-3 (ms)	Binary
S0C9		SCAN TIME max value	Maximum scan time in sequence program of program-3 (ms)	Binary
S0CA		SCAN TIME min value	Minimum scan time in sequence program of program-3 (ms)	Binary
S0CB		SCAN TIME Present value	Updated scan time in sequence program of program-3 (ms)	Binary
S0E0	Program change history 1	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0E1		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0E2		Time (Day•Hour)		
S0E3		Time (Year•month)		
S0E4	Program change history 2	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0E5		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0E6		Time (Day•Hour)		
S0E7		Time (Year•month)		
S0E8	Program change history 3	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 , Bit 8: parameter	Bit
S0E9		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0EA		Time (Day•Hour)		
S0EB		Time (Year•month)		
S0EC	Program change history 4	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0ED		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}$
S0EE		Time (Day•Hour)		
S0EF		Time (Year•month)		
S0F0	Program change history 5	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0F1		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0F2		Time (Day•Hour)		
S0F3		Time (Year month)		
S0F4	Program change history 6	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0F5		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0F6		Time (Day•Hour)		
S0F7		Time (Year \cdot month)		
S0F8	Program change history 7	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9 : PRG. 1 ,Bit 8: parameter	Bit
S0F9		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}$
S0FA		Time (Day•Hour)		
S0FB		Time (Year•month)		
S0FC	Program change history 8	Changed portion	$\begin{array}{ll}\begin{array}{l}\text { Bit B:PRG. } 3 \\ \text { parameter }\end{array} & \text { Bit A: PRG.2, Bit } 9: \text { PRG. } 1\end{array}$,Bit 8:	Bit
S0FD		Time (Minute•sec)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}$
S0FE		Time (Day•Hour)		
S0FF		Time (Year•month)		
S130	TOYOPUC-PCSdata	Communication status	bit0:communicating bit1:RUN signal bit2:ERR0 signal bit3:ERR1 signal bit4:ALM signal bit8:link command usable bit9:link command error	
S131		Flaming error	Flaming error counter	
S132		Parity error	Parity error counter	
S133		Overrun error	Over run error counter	

Address		Name	Description
$\begin{gathered} \hline \hline \text { S140 } \\ \text { r } \\ \text { S14F } \end{gathered}$	G-S input data link area		
$\begin{gathered} \hline \mathrm{S} 150 \\ \imath \\ \text { S} 15 \mathrm{~F} \end{gathered}$	G-S output data link area		
$\begin{gathered} \hline \text { S200 } \\ \imath \\ \text { S24F } \end{gathered}$	Error information		See 5-4 "Special register for error information output. "
$\begin{gathered} \text { S250 } \\ \imath \\ \text { S2CF } \end{gathered}$	PRG. 1 Annunciator information		See Programming Manual.
S2D1	CPU Version		CPU Version is stored.
$\begin{gathered} \text { S300 } \\ \text { ? } \\ \text { S3FF } \end{gathered}$	$\frac{\text { Prg1-Link1 }}{2}$ Prg1-Link8	Communication (link) module status information	See the individual instruction manual for each communication(link) module.

(1-2) Data memory separate mode PRG. 2

Address	Name		Description	
S004	Time (Sec)		Present time of the built-in clock is stored. For data display, 1 digit is displayed by 1Byte in BCD code. (Ex. "0102" represents "12".) Year data is displayed with lower two digits of AD year. "day of week" data is represented by $0 \sim 6$, which correspond to Sun. ~ Sat. Note) Even if the register is rewritten directly, t i m e change is impossible.Please perform a setup of time from <Setup data/time> of Pcwin or use an exclusive use of an application instruction. (Please refer to "309 SYS Clock adjustment instruction(FUN300) PC3J series since version 2.6 " in "PROGRAMMING MANUAL" about an application instruction.)	$\begin{gathered} \text { BCD } \\ \text { (1 digit/byte) } \end{gathered}$
S005	Time (Minutes)			
S006	Time (Hours)			
S007	Time (Day)			
S008	Time (Month)			
S009	Time (Year)			
S00A	Day of week			
S019	Time (Minute $\cdot \mathrm{sec}$)		Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte) }) \end{gathered}$
S01A	Time (Day•Hour)			
S01B	Time (Year month)			
S022	1 ms timer		This timer works by 1 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary
S023	10 ms timer		This timer works by 10 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary
S024	100 ms timer		This timer works by 100 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary
$\begin{gathered} \hline \text { S0A8 } \\ ? \\ \text { S0AF } \end{gathered}$	Link module corde		See 9-7 "Special register".	
$\begin{gathered} \mathrm{S} 250 \\ ? \\ \mathrm{~S} 2 \mathrm{CF} \end{gathered}$	PRG. 2 Annunciator information		See Programming Manual.	
S300 \vdots S3FF	$\frac{\text { Prg2-Link1 }}{2}$ Prg2-Link8	Communication (link) module status information	See the individual instruction manual for each communication(link) module.	

(1-3) Data memory separate mode PRG. 3

Address	Name	Description	
S004	Time (Sec)	Present time of the built-in clock is stored. For data display, 1 digit is displayed by 1Byte in BCD code. (Ex. "0102" represents "12".) Year data is displayed with lower two digits of AD year. "day of week" data is represented by $0 \sim 6$, which correspond to Sun. ~ Sat. Note) Even if the register is rewritten directly, t i m e change is impossible.Please perform a setup of time from <Setup data/time> of Pcwin or use an exclusive use of an application instruction. (Please refer to "309 SYS Clock adjustment instruction(FUN300) PC3J series since version 2.6 " in "PROGRAMMING MANUAL" about an application instruction.)	$\begin{gathered} \text { BCD } \\ \text { (1 digit/byte) } \end{gathered}$
S005	Time (Minutes)		
S006	Time (Hours)		
S007	Time (Day)		
S008	Time (Month)		
S009	Time (Year)		
S00A	Day of week		
S019	Time (Minute sec)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S01A	Time (Day•Hour)		
S01B	Time (Year-month)		
S022	1 ms timer	This timer works by 1 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary
S023	10 ms timer	This timer works by 10 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary
S024	100 ms timer	This timer works by 100 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary
$\begin{gathered} \text { S0A8 } \\ 2 \\ \text { S0AF } \end{gathered}$	Link module corde	See 9-7 "Special register".	
$\begin{gathered} \text { S250 } \\ \imath \\ \text { S2CF } \end{gathered}$	PRG. 3 Annunciator information	See Programming Manual.	
S300 2 S3FF	Prg3-Link1 Communication (link) module Prg3-Link8 status information	See the individual instruction manual for each communication(link) module.	

(2-1)Data memory single mode, Basic area

Address		Name	Description		
S001	SCAN TIME max value		Maximum scan time in sequence program (ms)	Binary	
S002	SCAN TIME min value		Minimum scan time in sequence program (ms)	Binary	
S003	SCAN TIME Present value			Binary	
S004	Time (sec)		Present time of the built-in clock is stored. For data display, 1 digit is displayed by 1Byte in BCD code. (Ex. "0102" represents "12".) Year data is displayed with lower two digits of AD year. "day of week" data is represented by $0 \sim 6$, which correspond to Sun. ~ Sat. Note) Even if the register is rewritten directly, t i m e change is impossible.Please perform a setup of time from <Setup data/time> of Pcwin or use an exclusive use of an application instruction. (Please refer to "309 SYS Clock adjustment instruction(FUN300) PC3J series since version 2.6" in "PROGRAMMING MANUAL" about an application instruction.)	$\begin{gathered} \text { BCD } \\ \text { (1 digit/byte) } \end{gathered}$	
S005	Time (minutes)				
S006	Time (Hours)				
S007	Time (day)				
S008	Time (Month)				
S009	Time (year)				
S00A	Day of week				
S00C	Integrated make time		Cumulative value of CPU module make (current feed) time (h)	Binary, ower	
S00D			Binary, pper		
S00E	Integrated run time			Cumulative value of sequence program run time (h)	Binary, ower
S00F			Binary, pper		
S010	End processing time max value		Maximum end processing time in sequence program (ms)	Binary	
S011	End processing time Min value		Minimum end processing time in sequence program (ms)	Binary	
S012	End processing time Present value		Updated end processing time in sequence program (ms)	Binary	
S019	Time (Minute•sec)		Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\left\lvert\, \begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}\right.$	
S01A	Time	ay•Hour)			
S01B	Time (Year-month)				
S022	1 ms timer		This timer works by 1 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
S023	10 ms timer		This timer works by 10 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
S024	100 ms timer		This timer works by 100 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
$\begin{gathered} \hline \text { S0A8 } \\ ? \\ \text { S0AF } \end{gathered}$	Link module corde		See 9-7 "Special register".		
S0C0	PRG. 1	Initial scan time	Initial sequence program execution time in program-1 (ms)	Binary	
S0C1		SCAN TIME max value	Maximum scan time in sequence program of program-1 (ms)	Binary	
S0C2		SCAN TIME min value	Minimum scan time in sequence program of program-1	Binary	
S0C3		SCAN TIME Present value	Updated scan time in sequence program of program-1	Binary	
S0C4	PRG. 2	Initial scan time	Initial sequence execution time in program-2 (ms)	Binary	
S0C5		SCAN TIME max value	Maximum scan time in sequence program of program-2 (ms)	Binary	
S0C6		SCAN TIME min value	$\underset{(\mathrm{ms})}{\text { Minimum }}$ scan time in sequence program of program-2	Binary	
S0C7		SCAN TIME Present value	Updated scan time in sequence program of program-2 (ms)	Binary	
S0C8		Initial scan time	Initial sequence execution time in program-3 (ms)	Binary	
S0C9		$\begin{array}{\|l} \hline \text { SCAN TIME } \\ \text { max value } \\ \hline \end{array}$	Maximum scan time in sequence program of program-3 (ms)	Binary	
S0CA	PRG. 3	SCAN TIME min value	$\underset{(\mathrm{ms})}{\text { Minimum }}$ scan time in sequence program of program-3	Binary	
S0CB		SCAN TIME Present value	Updated scan time in sequence program of program-3 (ms)	Binary	

Address		Name	Description	
S0E0	Program change history 1	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 , Bit 8: parameter	Bit
S0E1		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0E2		Time (Day•Hour)		
S0E3		Time (Year month)		
S0E4	Program change history 2	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0E5		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte) } \end{gathered}$
S0E6		Time (Day•Hour)		
S0E7		Time (Year-month)		
S0E8	Program change history 3	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 , Bit 8: parameter	Bit
S0E9		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	BCD (2 digit/byte)
S0EA		Time (Day•Hour)		
S0EB		Time (Year month)		
S0EC	Program change history 4	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 , Bit 8: parameter	Bit
S0ED		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	BCD (2 digit/byte)
S0EE		Time (Day•Hour)		
S0EF		Time (Year month)		
S0F0	Program change history 5	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit
S0F1		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ \text { (2 digit/byte) } \end{gathered}$
S0F2		Time (Day-Hour)		
S0F3		Time (Year month)		
S0F4	Program change history 6	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9 : PRG. 1 , Bit 8: parameter	Bit
S0F5		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	BCD (2 digit/byte)
S0F6		Time (Day•Hour)		
S0F7		Time (Year month)		
S0F8	Program change history 7	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9 : PRG. 1 ,Bit 8: parameter	Bit
S0F9		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte) } \end{gathered}$
S0FA		Time (Day-Hour)		
S0FB		Time (Year month)		
S0FC	Program change history 8	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9 : PRG. 1 ,Bit 8: parameter	Bit
S0FD		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte) } \end{gathered}$
S0FE		Time (Day•Hour)		
S0FF		Time (Year month)		
S130	TOYOPUC-PCSdata	Communication status	bit0:communicating bit1:RUN signal bit2:ERR0 signal bit3:ERR1 signal bit4:ALM signal bit8:link command usable bit9:link command error	
S131		Flaming error	Flaming error counter	
S132		Parity error	Parity error counter	
S133		Overrun error	Over run error counter	

Address	Name		Description
$\begin{gathered} \hline \hline \text { S140 } \\ \text { ? } \\ \text { S14F } \\ \hline \end{gathered}$	S-N input data link area		
$\begin{gathered} \hline \mathrm{S} 150 \\ ? \\ \text { S } 15 \mathrm{~F} \\ \hline \end{gathered}$	S-N output data link area		
$\begin{gathered} \text { S200 } \\ ? \\ \text { S24F } \end{gathered}$	Error information		See 5-4 "Special register for error information output."
$\begin{gathered} \mathrm{S} 250 \\ ? \\ \mathrm{~S} 2 \mathrm{CF} \end{gathered}$	Annunciator information		See Programming Manual.
S2D1	CPU Version		CPU Version is stored.
$\begin{gathered} \text { S300 } \\ ? \\ \text { S3FF } \end{gathered}$	$\begin{aligned} & \hline \text { Prg1-Link1 } \\ & 2 \\ & \text { Prg1-Link8 } \end{aligned}$	Communication (link) module status information	See the individual instruction manual for each communication(link) module.

(2-2)Data memory single mode, extended area

Address	Name		Description	
$\begin{gathered} \hline \hline \text { ESO000 } \\ \imath \\ \text { ESOFF } \end{gathered}$	$\begin{aligned} & \hline \hline \frac{\text { Prg2-Link1 }}{\prime} \\ & \text { Prg2-Link8 } \end{aligned}$	Communication (link) module status information	See the individual instruction communication (link) module. (Corresponding to S300-S3FF).	manual for each
$\begin{gathered} \text { ES100 } \\ ? \\ \text { ES1FF } \end{gathered}$	Prg3-Link1 , Prg3-Link8	Communication (link) module status information	See the individual instruction communication (link) module. (Corresponding to S300-S3FF).	manual for each

(3) PC2 Compatible Mode

Address		Name	Description		
S000	Initial scan time		Initial sequence program execution time (ms)	Binary	
S001	SCAN TIME max value			Binary	
S002	SCAN TIME min value		Maximum scan time in sequence program (ms)	Binary	
S003	SCAN TIME Present value			Binary	
S004	Time (sec)		Updated scan time in sequence program (ms) Present time of the built-in clock is stored. For data display, 1 digit is displayed by 1Byte in BCD code. (Ex. "0102" represents "12".) Year data is displayed with lower two digits of AD year. "day of week" data is represented by $0 \sim 6$, which correspond to Sun. ~ Sat. Note) Even if the register is rewritten directly, t i m e change is impossible.Please perform a setup of time from <Setup data/time> of Pcwin or use an exclusive use of an application instruction. (Please refer to "309 SYS Clock adjustment instruction(FUN300) PC3J series since version 2.6" in "PROGRAMMING MANUAL" about an application instruction.)	$\begin{gathered} \mathrm{BCD} \\ \text { (1 digit/byte) } \end{gathered}$	
S005	Time (minutes)				
S006	Time (Hours)				
S007	Time (day)				
S008	Time (Month)				
S009	Time (year)				
S00A	Day of week				
S00C	Integrated make time		Cumulative value of CPU module make (current feed) time (h)	Binary, ower	
S00D			Binary, pper		
S00E	Integrated run tim			Cumulative value of sequence program run time (h)	Binary, ower
S00			Binary, pper		
S010	End processing time max value		aximum end processing time in sequence program (ms)	Binary	
S011	End processing timeMin value		Minimum end processing time in sequence program (ms)	Binary	
S012	End processing time Present value		Updated end processing time in sequence program (ms)	Binary	
S019	Time (Minute•sec)		Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \mathrm{BCD} \\ \text { (2 digit/byte) } \end{gathered}$	
S	Time	(Day Hour)			
S0	Time	(Year-month)			
S022	1 ms timer		This timer works by 1 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
S023	10 ms timer		This timer works by 10 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
S024	100 ms timer		This timer works by 100 ms as 0 seconds when the power supply is turned on. Note) This special register can be used 3JG series/3J series since Ver3.3.	Binary	
$\begin{aligned} & \text { S0A8 } \\ & \text { ? } \\ & \text { S0AF } \end{aligned}$	Link module corde		See 9-7 "Special register".		
S0E0	Program change history 1	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9 : PRG. 1 ,Bit 8: parameter	Bit	
S0E1		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min). $34(\mathrm{sec})$.)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}$	
S0E2		Time (Day Hour)			
S0E3		Time (Year month)			
S0E4	Program change history 2	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit	
S0E5		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents " 12 (min). $34(\mathrm{sec})$.)	BCD (2 digit/byte)	
S0E6		Time (Day•Hour) Time (Year month)			
S0E8	Program change history 3	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit	
S0E9		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}$	
S0EA		Time (Day•Hour)			
S0EB		Time (Year month)			
S0EC	Program change history 4	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit	
S0ED		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte) } \end{gathered}$	
S0EE		Time (Day•Hour)			
S0EF		Time (Year-month)			
S0F0	Program change history 5	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9 : PRG. 1 ,Bit 8: parameter	Bit	
S0F2		Time (Day•Hour)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min). $34(\mathrm{sec})$.)	BCD (2 digit/byte)	
S0F3		Time (Year month)			
S0F4	Program change history 6	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit	
S0F5		Time (Minute \cdot sec)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \mathrm{BCD} \\ (2 \text { digit/byte) } \end{gathered}$	
S0F6		Time (Day \cdot Hour)			
S0F7		Time (Year month)			
S0F8	Program change history 7	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 ,Bit 8: parameter	Bit	
S0F9		Time (Minute $\cdot \mathrm{sec}$)	Present time of the built-in clock is stored. For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents "12 (min).34(sec).)	$\begin{gathered} \text { BCD } \\ (2 \text { digit/byte }) \end{gathered}$	
S0FA		Time (Day Time (Year)			
S0FC	Program change history 8	Changed portion	Bit B:PRG. 3 Bit A: PRG.2, Bit 9: PRG. 1 , Bit 8: parameter	Bit	
S0FD		Time (Minute \cdot sec)	Present time of the built-in clock is stored. \square For data display, 2 digits are represented by 1Byte in BCD code. (Ex. "1234" represents " 12 (min).34(sec).)	$\begin{gathered} \mathrm{BCD} \\ (2 \text { digit/byte }) \end{gathered}$	
S0FE		Time (Day Hour)			
S0FF		Time (Year \cdot month)			

Address	Name	Description
S200 2	Error information	See 5-4 "Special register for error information output".
S24F		

7.2.7 Command words

The command words used in PC3J are compatible with those in PC2 Series. Sequence programs created in PC2 Series can be executed as are in PC3J.

As the command words available in PC3J, exclusive commands 7 different timer and counter extended commands and other 56 applied commands are added to the PC3J, in addition to the common command words from PC2 Series.
(1) Basic commands

No.	Symbol	Language	Step number	Function	Processing time Ms
1	Hト	STR	1(2)	Computing start (a-contact)	0.08~0.28
2	HK	STR NOT	1(2)	Computing start (b-contact)	0.08~0.28
3	-1	AND	1(2)	Series connection (a-contact)	0.08~0.28
4	- 2	AND NOT	1(2)	Series connection (b-contact)	0.08~0.28
5	-\|	OR	1(2)	Parallel connection (a-contact)	0.08~0.28
6	LK	OR NOT	1(2)	Parallel connection (b-contact)	0.08~0.28
7	$-\square-\square$	AND STR	1	Logic interblock series connection	0.08
8	$\square \square$	OR STR	1	Logic interblock parallel connection	0.08
9	--1	OUT	1(2)	Coil output	0.12~0.4
10	-(5)-1	SET	1(2)	Keep-relay setting	0.32~0.4
11	-(B) -1	RST	1(2)	Keep-relay resetting	0.32~0.4
12	-†	PTS	1(2)	Rise differentiation	0.32~0.4
13	- 11	NTS	1(2)	Fall differentiation	0.32~0.4
14	\square	FPS	1	Multi-coil branching start	0.08
15	1	FRD	1	Multi-coil branching	0.08
16	'	FPP	1	Multi-coil branching end	0.08
17	1	FST	1	Unconditional output	0.08
18	\checkmark	NOT	1	Condition reversing	0.08
19		NOP	1	Non-processing	0.08

The parenthesized step number is subject to designation of the data in other area or an extended area.

Timer and counter commands

Classification	Function	Nnemonic	$\begin{array}{\|c\|} \hline \text { Step } \\ \text { number } \\ \hline \end{array}$	Symbol (example)	Content of computation	Processing
Timer	Direct-designate d 10 ms timer	TMRH	4	TOOO - TMRH K=655.35	10 ms timer of 655.35 sec at setup value	3.7
	Indirect-designa ted 10 ms timer	TMRH	4	$\begin{array}{ll} \text { T001 } \\ - \text { TMRH } & \mathrm{S}=\mathrm{D0100} \end{array}$	10 ms timer on which D0100 content is set up (as a setup value)	3.8
	Direct-designate d 100 ms timer	TMR	4	$\underset{-}{\text { TO002 }}$	100ms timer of 6553.5 sec at setup value	3.7
	Indirect-designa ted 100 ms timer	TMR	4	${\underset{-}{\text { TMR }}}^{\text {T003 }} \quad \mathrm{S}=\mathrm{D} 0100$	100ms timer on which D0101 content is set up (as a setup value)	3.8
Integrating timer	Direct-designate d 10 ms integrating timer	TMRSH	4	$\underbrace{I^{\text {T004 }}} \underbrace{\text { TMRSH K=123.45 }}$	10 ms integrating timer of 123.45 sec at setup value	3.7
	Indirect-designa ted 10 ms integrating timer	TMRSH	4	$\left.\left.\right\|_{-} ^{T} \int^{\text {TOOL }}{ }^{\text {TMRSH S }=\text { D0102 }}\right]$	10ms integrating time on which D0102 content is set up (as a setup value).	3.8
	Direct-designate d 100 ms integrating timer	TMRS	4	$\underbrace{T^{T 006}}_{\underline{R}}{ }^{\text {TMRS }} \quad \mathrm{K}=1234.5$	100 ms integrating timer of 1234.5 sec at setup value	3.7
	Indirect-designa ted 100 ms integrating timer	TMRS	4	$\left.\right\|_{T^{T}}{ }^{\text {T007 }} \text { TMRS S=D0103 }$	100 ms integrating time on which D0103 content is set up (as a setup value).	3.8
UP counter	Direct-designate d UP counter	CNT	4		UP-counter of 65535 at a setup value	3.8
	Indirect-designa ted UP counter	CNT	4	$\underbrace{C^{C 009}}_{f^{C K}} \begin{gathered} C N T \\ C=D 0104 \end{gathered}$	UP-counter on which D0104 content is set (as a setup value).	3.9
DOWN counter	Direct-designate d DOWN counter	CNTD	4	$\begin{array}{ll} C_{K}^{C O O A} \\ \mathrm{R} \end{array} \int_{\text {CNTD }} \mathrm{K}=12345$	DOWN-counter of 12345 at setup value	3.6
	Indirect-designa ted DOWN counter	CNTD	4		DOWN-counter on which D0105 content is set up (as a setup value)	3.7
UP-DOWN counter	Direct-designate d UP-DOWN counter	CNTH	4		UP-DOWN counter of 65535 at setup value	3.5
	Indirect-designa ted UP-DOWN counter	CNTH	4		$\begin{aligned} & \text { UP-DOWN counter } \\ & \text { on which D0106 } \\ & \text { content is set up (as a } \\ & \text { setup value) } \end{aligned}$	3.6

U/D : "EITHER UP-COUNT OR DOWN-COUNT" command input UP-count is executed with conditional satisfaction and DOWN -count executed with conditional dissatisfaction
(3) Exclusive extended timer nd counter commands for PC3J

Classification	Function	Nnemonic	$\begin{array}{\|c\|} \hline \text { Step } \\ \text { number } \\ \hline \end{array}$	Symbol (ex	(example)	Content of computation	$\begin{aligned} & \text { Processing } \\ & \text { timeus } \end{aligned}$
Timer	Extended 10 ms timer	ETMRH	3	$\begin{aligned} & \text { ET000 } \\ & \text {-fTMRH s } \end{aligned}$	$\mathrm{s}=\mathrm{H} 0000$)	10 ms timer on which content of extended setup value register H0000 is set as a setup value	5.6
	Extended 100ms timer	ETMR	3	$\begin{gathered} \text { ET001 } \\ -f^{E T M R} \\ \hline \end{gathered}$	S=H0001	100 ms timer on which content of extended setup value register H0001 is set as a setup value	5.6
Integrating timer	Extended 10 ms integrating timer	ETMRSH	3			10 ms integrating timer on which the content of register H0002 is set up as a setup value	5.6
	$\begin{array}{\|l\|} \text { Extended } \\ 100 \mathrm{~ms} \\ \text { integrating } \\ \text { timer } \end{array}$	ETMRS	3	$\frac{T^{T}}{T^{\text {ETOOO3 }}}$	$\mathrm{S}=\mathrm{H} 0003 \mathrm{~J}$	100ms integrating timer on which the content of extended setup value register H0003 is set up as a setup value	5.6
UP counter	Extended UP-counter	ECNT	3	$\frac{C K C 004}{C_{R}} \int^{E C N T} s$	S=H0004	UP-counter on which the content of extended setup value register H0004 is set up as a setup value	5.7
DOWN counter	Extended DOWN-counte r	ECNTD	3		$\mathrm{S}=\mathrm{H} 0005$	DOWN-counter on which the content of extended setup value register H0005 is set up as a setup value	5.5
UP-DOWN counter	Extended UP-DOWN counter	ECNTH	3		S=H0006	UP-DOWN counter on which the content of extended setup value register H0006 is set up as a setup value	5.4

Extended setup value register : Fixed setup value register corresponding to coil address
U/D: "EITHER UP COUNT OR DOWN COUNT" command input -- UP count is executed with conditional satisfaction and DOWN count executed with conditional dissatisfaction.
(4) Applied commands

The same applied commands as used in PC2J can be used.
(4-1) Contact type applied commands

Classification					No.			$\begin{gathered} \text { Command } \\ \text { word } \end{gathered}$	Symbol				Function	Execution time ($\mu \mathrm{s}$)		
					STR	AND	OR							STR	AND	OR
$=$			$\begin{aligned} & \text { Hexa-de } \\ & \text { cimal } \end{aligned}$	2 digits	640	576	664	= H	$\begin{aligned} & =\mathrm{H} \\ & \mathrm{~W}=\mathrm{H} \\ & \mathrm{D}=\mathrm{H} \end{aligned}$	S	H		The current flows across the contact if $\mathrm{S}=\mathrm{H}, \mathrm{S}=\mathrm{K}, \mathrm{S}_{1}=\mathrm{S}_{2}$ upon comparison of register to constant or register to register.	1.08	1.08	1.08
				4 digits	648	579	672	W=H						1.08	1.08	1.08
				8 digits	656	582	680	$\mathrm{D}=\mathrm{H}$						1.92	2.08	1.92
			Decima 1 3 digits 5 digits 10digits		641	577	665	=D	$\begin{aligned} & =\begin{array}{l} =D \\ W=D \\ D=D \end{array} \\ & \hline \end{aligned}$	S	K			1.08	1.08	1.08
					649	580	673	W=D						1.08	1.08	1.08
					657	583	681	$\mathrm{D}=\mathrm{D}$						1.92	2.08	1.92
			8bits		644	587	668	=N	$-\begin{aligned} & =N \\ & W=N \\ & D=N \end{aligned}$	S_{1}	S_{2}			1.20	1.20	1.20
			16bits		652	581	676	$\mathrm{W}=\mathrm{N}$						1.20	1.20	1.20
			32bits		660	584	684	$\mathrm{D}=\mathrm{N}$						2.16	2.24	2.16
		$\begin{aligned} & \stackrel{N}{त} \\ & \frac{\pi}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Hexa-de } \\ & \text { cimal } \end{aligned}$	2 digits	688	585	712	<>H		S	H		The current flows across the contact if $\mathrm{S} \neq \mathrm{H}, \mathrm{S} \neq \mathrm{K}, \mathrm{S}_{1} \neq \mathrm{S}_{2}$ upon comparison of register to constant or register to register.	1.16	1.16	1.16
				4 digits	696	588	720	W<>H						1.16	1.16	1.16
				8 digits	704	591	728	D<>H						2.08	2.08	2.08
			Decima 1	3 digits	689	586	713	<>D	$\begin{aligned} & -\begin{array}{l} <D \\ W>D \\ D<>D \end{array} \\ & \hline \end{aligned}$	S	K			1.16	1.16	1.16
				5 digits	697	589	721	W<>D						1.16	1.16	1.16
				10digits	705	592	729	D<>D						2.08	2.08	2.08
			8bits		692	587	716	<>N						1.28	1.28	1.28
		\%	16bits		700	590	724	W<>N	W<>N	S_{1}	S_{2}			1.28	1.28	1.28
		$\stackrel{\text { ¢ }}{\sim}$	32bits		708	593	732	D<>N	D<>N					2.32	2.32	2.32
		$\begin{aligned} & \text { 苞 } \\ & \text { W0 } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Hexa-de } \\ & \text { cimal } \end{aligned}$	2 digits	736	594	760	$>\mathrm{H}$	$-\begin{aligned} & >H \\ & \mathrm{~W}>\mathrm{H} \\ & \mathrm{D}>\mathrm{H} \end{aligned}$	S	H		The current flows across the contact if $\mathrm{S}>\mathrm{H}, \mathrm{S}>\mathrm{K}, \mathrm{S}_{1}>\mathrm{S}_{2}$ upon comparison of register to constant or register to register.	1.16	1.16	1.16
				4 digits	744	597	768	$\mathrm{W}>\mathrm{H}$						1.16	1.16	1.16
				8 digits	752	600	776	D>H						2.16	2.16	2.16
			$\begin{array}{\|l\|} \text { Decima } \\ 1 \end{array}$	3 digits	737	595	761	$>\mathrm{D}$	$-\begin{aligned} & >D \\ & w>D \\ & D>D \end{aligned}$	S	K			1.16	1.16	1.16
$\stackrel{0}{2}$				5 digits	745	598	769	W>D						1.16	1.16	1.16
\ddagger	>			10digits	753	601	777	D>D						2.16	2.16	2.16
$\underset{\substack{0 \\ \mathbb{O} \\ \hline}}{ }$			8bits		740	596	764	>N	$\begin{aligned} & \substack{>N \\ W>N \\ D>N} \end{aligned}$	S_{1}	S_{2}			1.28	1.28	1.28
$\stackrel{\rightharpoonup}{\mathrm{C}}$			16bits		748	599	772	$\mathrm{W}>\mathrm{N}$						1.28	1.28	1.28
8			32bits		756	602	780	D>N						2.52	2.48	2.48
	>=	$\begin{aligned} & \text { N} \\ & \text { N} \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { Hexa-de } \\ & \text { cimal } \end{aligned}$	2 digits	784	603	808	>= H	$\begin{aligned} & \left.\begin{array}{l} >=H \\ \mathrm{w}>=\mathrm{H} \\ \mathrm{D}>=\mathrm{H} \end{array} \right\rvert\, \end{aligned}$	S	H		The current flows across the contact if $\mathrm{S}>=\mathrm{H}, \mathrm{S}>=\mathrm{K}, \mathrm{S}_{1}>=\mathrm{S}_{2}$ upon comparison of register to constant or register to register.	1.08	1.08	1.08
$1 . \underline{n}$				4 digits	792	606	816	W $>={ }^{\text {H }}$						1.08	1.08	1.08
$\frac{-\frac{2}{\overline{0}}}{}$				8 digits	800	609	824	D>=H						2.08	2.08	2.08
$\stackrel{0}{E}$			Decima 1	3 digits	785	604	809	>=D	$\left\{\begin{array}{l} >=D \\ w>=D \\ D>=D \end{array}\right.$	S	K			1.08	1.08	1.08
18				5 digits	793	607	817	$\mathrm{W}>=\mathrm{D}$						1.08	1.08	1.08
				10digits	801	610	825	D>=D						2.08	2.08	2.08
		$\begin{aligned} & \stackrel{\stackrel{\rightharpoonup}{0}}{\stackrel{10}{\sigma}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	8bits		788	605	812	>=N	$\begin{aligned} & >=\mathrm{N} \\ & \mathrm{~W}=\mathrm{N} \\ & \mathrm{D}>=\mathrm{N} \end{aligned}$	S_{1}	S_{2}			1.20	1.20	1.20
			16bits		796	608	820	$\mathrm{W}>=\mathrm{N}$						1.20	1.20	1.20
			32bits		804	611	828	D>=N						2.40	2.40	2.40
	<	$\begin{aligned} & \stackrel{\rightharpoonup}{W} \\ & \text { Win } \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \text { Hexa-de } \\ & \text { cimal } \end{aligned}$	2 digits	832	612	856	< H	$-\begin{aligned} & <\mathrm{H} \\ & \mathrm{~W}<\mathrm{H} \\ & \mathrm{D}<\mathrm{H} \end{aligned}$	S	H		The current flows across the contact if $\mathrm{S}<\mathrm{H}, \mathrm{S}<\mathrm{K}, \mathrm{S}_{1}<\mathrm{S}_{2}$ upon comparison of register to constant or register to register.	1.16	1.16	1.16
				4 digits	840	615	864	$\mathrm{W}<\mathrm{H}$						1.16	1.16	1.16
				8 digits	848	618	872	$\mathrm{D}<\mathrm{H}$						2.16	2.16	2.16
				3 digits	833	613	857	<D	$-\begin{aligned} & \angle D \\ & W<D \\ & D<D \end{aligned}$	S	K			1.16	1.16	1.16
				5 digits	841	616	865	W<D						1.16	1.16	1.16
				10digits	849	619	873	D<D						2.16	2.16	2.16
			8bits		836	614	860	<N	$-\begin{aligned} & <N \\ & W<N \\ & D<N \end{aligned}$	S_{1}	S_{2}			1.28	1.28	1.28
			16bits		844	617	868	W<N						1.28	1.28	1.28
			32bits		852	620	876	D<N						2.48	2.48	2.48
	<=	$\begin{aligned} & \text { त्र } \\ & \text { Nu } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \text { Hexa-de } \\ \text { cimal } \end{array}$	2 digits	880	621	904	<= H	$-\begin{aligned} & <=H \\ & W<=H \\ & D<=H \end{aligned}$	S	H		The current flows across the contact if $\mathrm{S}<=\mathrm{H}, \mathrm{S}<=\mathrm{K}, \mathrm{S}_{1}<=\mathrm{S}_{2}$ upon comparison of register to constant or register to register.	1.08	1.08	1.08
				4 digits	888	624	912	W<=H						1.08	1.08	1.08
				8 digits	896	627	920	D<=H						2.08	2.08	2.08
			$$		881	622	905	<=D	$-\begin{aligned} & \quad \begin{array}{l} <=D \\ W<=D \\ D<=D \end{array} \end{aligned}$	S	K			1.08	1.08	1.08
					889	625	913	W<=D						1.08	1.08	1.08
					897	628	921	$\mathrm{D}<=\mathrm{D}$						2.08	2.08	2.08
			8bits		884	623	908	<=N	$<=N$ $W<=N$ $\mathrm{D}<=\mathrm{N}$ S_{1} $\mathrm{~S}_{2}$					1.20	1.20	1.20
			16bits		892	626	916	$\mathrm{W}<=\mathrm{N}$						1.20	1.20	1.20
			32bits		900	629	924	$\mathrm{D}<=\mathrm{N}$						2.40	2.40	2.40

S,D: Register H: Hexadecimal constant K: Decimal constant
(4-2) Output type applied commands

S,D : register H:hexadecimal constant K:Decimal constant Q: Octal constant C: Character constant

S,D: Register H: Hexadecimal constant K: Decimal constant

Classification			No.	Command word	Symbol			Function	Execution time (us)	
	Parity bit create	Odd	83	MKP1	$-{ }^{\text {MKP1 }}{ }_{\text {MKP2 }}$		$\mathrm{D}-1$	Most significant bit is set/reset so that the bit number of "1" becomes odd (MKP1) [Even (MKP2)], using the lower 7bits in the content of S as "source data". The result is stored in D .	3.96	
		Even	81	MKP2					3.96	
	Parity check	Odd	84	PCH1	$-\sqrt{\begin{array}{l} \mathrm{PCH} 1 \\ \mathrm{PCCH} 2 \end{array}}$		\square	CARRY FLAG is turned ON unless the bit number of "1" is odd (PCH 1) [even (PCH 2)] upon parity check of S content.	5.52	
		Even	82	PCH2					5.52	
	BCD \rightarrow Conversion to binary data	2 digits $\rightarrow 8$ bits	152	BIN	$-\begin{aligned} & \text { BIN } \\ & \text { WBIN } \\ & \text { DBIN } \end{aligned}$	S		$B C D$ data stored in S is converted to binary data and, thereafter, stored in D.	3.56	
		ts $\rightarrow 16$ bits	3	WBIN					7.12	
		ts $\rightarrow 32 \mathrm{bits}$	153	DBIN					15.88	
	Binary \rightarrow Conversion to BCD data \square	$\rightarrow 2$ digits	154	BCD	$-\begin{aligned} & \hline B C D \\ & \text { WBCD } \\ & D B C D \end{aligned}$			Binary data stored in S is converted to BCD data and, thereafter, stored in D.	3.64	
		$\rightarrow 4$ digits	4	WBCD					10~13	
		8 digits	155	DBCD					27~38	
	$\mathrm{JIS} \rightarrow$ Conversion to binarydata		156	JBIN	JBIN		,	Character and numeral data shown with K from the address of S are deemed as JIS code and then stored in the area having D as its head address, after converted to binary number.	$3.08+3.92 n$	
	Binary data \rightarrow Conversion to JIS		157	BJIS	BJIS		-	The digit number shown with K from the address of S is deemed as hexadecimal number and the stored in the area having D as its head address, after converted to JIS code.	$2.84+3.00 \mathrm{n}$	
	$4 \rightarrow 16$ DECODER		50	DECO	$-\sqrt{\mathrm{DECO}}$	S	5	The content of S is stored in D, after its lower 4bit was decoded to hexadecimal data.	1.24	
	$16 \rightarrow 4$ DECODER		51	ENCO	ENCO		B	ON bit position, of 16 bits in the S content, is converted to binary data (two or more ON bits; Priority is given to the lower bit.) and the converted data is stored in lower 4 bits of D.	5.80	
	7-SEGMENT DECODER		52	SEG	SEG		K	Binary 4bit data is converted to 7 -segment data, but limited to the digit number shown with K from the address of S, and the converted data is stored in the area which of head address is D.	$8.88+2.26 n$	
	Hour, minute, second \rightarrow Convert to sec		158	WTIM1	Wтім1		D	The BCD type data of hour, minute and second which is stored in 4 bytes with S on its head is converted to binary data of 0.1 sec unit and the converted data is stored in D .	11.20	
	Sec \rightarrow Convert to hour, minute, sec		159	WTIM2	WTIM2		D	The content of S is deemed as binary data of 0.1 sec unit and converted to BCD type data of hour, minute and second. The converted data is stored in 4 bytes with D on its head.	47.83	
	Code conversion Setting		85	CDSET	CDSET		D	The content of S_{1} is transferred to register shown with (D address $+\mathrm{S}_{2}$ content). The content of S_{1} is handled as BCD.	6.04	
	Code conversion Output 1		86	CDO1	$-\mathrm{CDO} 1$		D	The content of register shown with (S_{2} address +S content) is transferred to D . The content of S_{1} is handled as BCD .	6.04	
	Code conversion Output 2		87	CDO2	CDO2		D	BCD data stored in the register shown with (S_{2} address $+\mathrm{S}_{1}$ content) is transferred to $\mathrm{D}+1$ and furthermore transferred to D after converted to binary data.	8.20	
	Comparison	8bits	17	CP	$-\begin{aligned} & \begin{array}{l} C P \\ W C P \\ \text { WCP } \\ \hline \end{array} \\ & \hline \end{aligned}$	S_{1}	S_{2}	Upon comparison of S_{1} content with S_{2} content, either one of >, =, < FLAGS is turned ON from the size relation between the two.	2.84	
		16bits	12	WCP					2.84	
		32bits	211	DCP					4.36	
	Bit set	8bits	136	BSET	$-\begin{gathered} \text { BSET } \\ \text { BBSET } \\ \text { DBSET } \end{gathered}$	S	D	D bit is set as designated in S content.	2.00	
		16bits	137	WBSET					2.00	
		32bits	138	DBSET					2.80	
	Bit reset	8bits	139	BRST	$-\begin{aligned} & \text { BRST } \\ & \text { WBRST } \\ & \text { WBRST } \\ & \hline \text { DBR } \end{aligned}$	S	D	D bit is reset as designated in S content.	2.00	
		16bits	140	WBRST					2.00	
		32bits	141	DBRST					2.80	
	Bit extract	8bits	54	BPU	$-\begin{aligned} & \text { BUP } \\ & \text { WBUUP } \\ & \text { DBUP } \end{aligned}$	S_{1}	S_{2}	Bit content of S_{2} which is designated in S_{1} content is transferred to CARRY FLAG.	3.16	
		16bits	142	WBUP					4.16	
		32bits	143	DBUP					3.96	
	On bit counter	8bits	208	SUM	$-\begin{aligned} & \text { SUM } \\ & \text { WSUM } \\ & \text { WSUMM } \end{aligned}$	S	D	The sum of bits under ON, of bits in S content, is counted and the result is stored in D.	3~9	
		16bits	209	WSUM					3~16	
		32bits	210	DSUM					3~30	
$\begin{array}{\|l} \frac{\pi}{c} \\ \hline \bar{\omega} \\ \hline \end{array}$	1 bit right shift	8bits	217	SFR	$\begin{aligned} & \mathrm{D} \\ & \mathrm{I} \\ & \begin{array}{l} \text { SFR } \\ \text { WSFR } \\ \text { WSFR } \end{array} \\ & \hline \end{aligned}$	S		S content is shifted by 1 bit to the right. The content entered in D is shifted to most significant bit and the content of least significant bit is shifted to CARRY FLAG.	2.76	
		16bits	36	WSFR				2.64		
		32bits	218	DSFR				3.52		
	n-bit right shift	8bits	224	BSFR	$-\begin{array}{c\|} \hline \text { BSFR } \\ \text { WBSFR } \\ \text { DBSFR } \\ \hline \end{array}$	s	K		S content is shifted by designated bit number (K) to the right.	$3.36+0.56 \mathrm{n}$
		16bits	225	WBSFR						$3.36+0.56 \mathrm{n}$
		32bits	226	DBSFR				$3.80+0.96 \mathrm{n}$		
	1 bit left shift	8bits	219	SFL	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~T} \end{aligned} \begin{aligned} & \mathrm{SFLL} \\ & \mathrm{~W} \\ & \mathrm{WSFL} \\ & \mathrm{DSFL} \end{aligned}$	S		S content is shifted by 1 bit to the left. the content entered in D is shifted to most significant bit and the content of least significant bit is shifted to CARRY FLAG	2.76	
		16bits	37	WSFL				2.64		
		32bits	220	DSFL				3.28		
	n bit left shift	8bits	227	BSFL	$-\begin{aligned} & \text { BSFL } \\ & \text { WBSFL } \\ & \text { DBSFL } \end{aligned}$	S	K		S content is shifted by designated bit number (K) to the left.	$3.36+0.56 \mathrm{n}$
		16bits	228	WBSFL						$3.36+0.56 \mathrm{n}$
		32bits	229	DBSFL				$3.88+0.96 \mathrm{n}$		
	1 bit right/left shift	8bits	221	SRL	$\begin{array}{l\|l\|} \hline \frac{D}{l \mid} & \text { SRL } \\ \text { UR } & \text { WRRL } \\ T & \text { WSRL } \\ \hline \end{array}$	S		S content is shifted by 1 bit to the left ($L / R=O N$) [right (L/R=OFF).	3.76	
		16bits	222	WSRL				3.76		
		32bits	223	DSRL				4.28		
	n bit right/left shift	8bits	230	BSRL	$\frac{\mathrm{L} / \mathrm{R}}{\mathrm{~T}} \begin{aligned} & \mathrm{BSRL} \\ & \mathrm{WBSRL} \\ & \text { WBSRL } \\ & \text { DBSR } \end{aligned}$	S			S content is shifted 1 bit by designated bit number (K) to the left ($\mathrm{L} / \mathrm{R}=\mathrm{ON}$) [right $) L / R=O F F)]$.	$4.52+0.48 \mathrm{n}$
		16bits	231	WBSRL				$4.52+0.48 \mathrm{n}$		
		32bits	232	DBSRL				$4.68+0.80 \mathrm{n}$		

Classification				No.	Command		mb		Function	Execution time (us)	
	Upper significant shift		4bits	251	SUP	$-\begin{aligned} & \text { SUP } \\ & \text { UP2 } \\ & \text { WUP } \\ & \text { DUP } \end{aligned}$	S	K	Data in area with S on its head address and with data number designated with K are shifted to upper significant direction. The least significant data is 0 .	$6.34+1.10 \mathrm{n}$	
			8bits	252	UP2					$5.20+0.92 \mathrm{n}$	
			16bits	253	WUP					$5.52+0.92 \mathrm{n}$	
			32bits	254	DUP					$5.76+1.68 \mathrm{n}$	
			8bits	91	UP1	$- \text { UP1 }$	S_{1}	S_{2}	Data in areas from S_{1} up to S_{2} are shifted at unit of 1 byte. Least significant data remains unchanged.	$4.52+0.92 \mathrm{n}$	
	Lower significant shift		4bits	255	SDOWN	$\left.-\left\lvert\, \begin{array}{l} \text { SDOWN } \\ \text { DOWN } \\ \text { woown } \\ \text { DDOW } \end{array}\right.\right]$	S	K	Data in area with S on its head address and with data number designated with K are shifted to lower significant direction. Most significant data is 0 .	$6.62+0.94 n$	
			8bits	256	DOWN					$5.28+0.92 \mathrm{n}$	
			16bits	257	WDOWN					$5.76+0.92 \mathrm{n}$	
			32bits	258	DDOWN					$5.88+1.68 \mathrm{n}$	
$\begin{aligned} & \text { O } \\ & \frac{1}{1 亠 䒑} \end{aligned}$	Fifo write		8bits	160	FIFW	$-\begin{aligned} & \text { FIFW } \\ & \text { WFIIV } \\ & \text { WFIFV } \end{aligned}$	S		S content is transferred to the address shown with (offset value shown with D_{1} address $+\mathrm{D}_{2}$ content). Furthermore, +1 is added to D_{2} content.	5.84	
			16bits	161	WFIFW					6.36	
			32bits	162	DFIFW					7.12	
	Fifo read		8bits	163	FIFR	$-\begin{aligned} & \text { FIFR } \\ & \text { WFIFI } \\ & \text { DFIF } \end{aligned}$	s	D_{2}	S content is transferred to D_{2}. Data in the area with S as its head address and with D_{1} content as its data number are shifted to lower significant direction. Furthermore, -1 is added to D_{1} content.	$5.88+1.00 \mathrm{n}$	
			16bits	164	WFIFR					$6.08+1.00 \mathrm{n}$	
			32bits	165	DFIFR					$6.40+1.84 \mathrm{n}$	
	Stack shift input			68	SFIN	iFIN	S	\bar{D}	The areas from S address up to D address are deemed as STACK and the content of S is all stacked. However, 0 is deemed as "no data".	$6.68+0.84 n$	
	Stack shift output			69	SFOUT	SFOUT		D_{2}	S content is transferred to D_{2}. The data from D_{1} address up to $\mathrm{S}-1$ are shifted to upper significant direction. D_{1} content is made to 0 .	$9.94+0.96 \mathrm{n}$	
$\begin{aligned} & \mathbb{0} \\ & \frac{\pi}{0} \\ & 0 \\ & \text { \% } \end{aligned}$	Rotate to right	With carry	8bits	233	RRC	$-\begin{aligned} & \text { RRC } \\ & \text { WRRC } \\ & \text { DRRC } \end{aligned}$	S	K	S content and CARRY FLAG are rotated to the right, by the bit number designated with K .	$3.72+0.48 \mathrm{n}$	
			16bits	234	WRRC					$3.72+0.48 \mathrm{n}$	
			32bits	235	DRRC					$4.48+0.88 \mathrm{n}$	
		Without carry	8bits	242	RR	$-\begin{array}{\|c} \mathrm{RR} \\ \mathrm{WRR} \\ \mathrm{DRR} \\ \hline \end{array}$	s	K	S content is rotated to the right, by the bit number designated with K.	$3.72+0.48 \mathrm{n}$	
			16bits	243	WRR					$3.72+0.48 \mathrm{n}$	
			32bits	244	DRR					$4.52+0.88 \mathrm{n}$	
	Rotate to left	With carry	8bits	236	RLC	$-\begin{aligned} & \text { RLC } \\ & \text { WRLC } \\ & \text { DRLC } \end{aligned}$	S	K	S content and CARRY FLAG is rotated to the left, by the bit number designated with K.	$3.72+0.48 \mathrm{n}$	
			16bits	237	WRLC					$3.72+0.48 \mathrm{n}$	
			32bits	238	DRLC					$4.48+0.88 \mathrm{n}$	
		Without carry	8bits	245	RL	$-\begin{aligned} & \mathrm{RL} \\ & \text { WRL } \\ & \mathrm{DRL} \end{aligned}$	S	K	S content is rotated to the left, by the bit number designated with K.	$3.72+0.48 \mathrm{n}$	
			16bits	246	WRL					$3.72+0.48 \mathrm{n}$	
			32bits	247	DRL					$4.52+0.88 \mathrm{n}$	
	Rotate to right/left	With carry	8bits	239	RLRC	$\begin{array}{l\|l\|l\|} \hline \text { L/R } & \begin{array}{l} \text { LRC } \\ \text { WRLRC } \\ \text { DRLRC } \end{array} \\ \hline \end{array}$			S content and CARRY FLAG are rotated to the left $(\mathrm{L} / \mathrm{R}=\mathrm{ON})$ [right (L/R=OFF), by the bit number designated with K .	$4.52+0.48 \mathrm{n}$	
			16bits	240	WRLRC					$4.52+0.48 \mathrm{n}$	
			32bits	241	DRLRC					$5.60+0.88 \mathrm{n}$	
		Without carry	8bits	248	RLR	$\begin{gathered} \frac{L R}{T} \begin{array}{l} \text { RLR } \\ \text { WRLR } \\ \text { DRLR } \end{array} \\ \hline \end{gathered}$	S		S content is rotated to the left ($\mathrm{L} / \mathrm{R}=\mathrm{ON}$) [right (L / R $=\mathrm{OFF})$], by the bit number designated with K .	$4.52+0.48 \mathrm{n}$	
			16bits	249	WRLR				$4.52+0.48 \mathrm{n}$		
			32bits	250	DRLR				$5.60+0.88 \mathrm{n}$		
	Jump			272	JMP	JMP				Jumped into label No. Ln.	8.00
	Sub-routine call			273	CALL	CALL				Sub routine of label No. Sn is executed and steps following this command example are executed.	14.20
	Return from sub routine			464	RET	RET		1	After termination of subroutine, the steps following the CALL command which called applicable subroutine are executed.	5.40	
	Repeating start			472	FOR	OR			This command - NEXT command are repeated K times.	4.56	
	Repeating start (indirect)			476	FORN	ORN			This command - NEXT command are repeated by the frequency shown with S content. -1 is deducted from S content whenever executed.	4.64	
	Repeating end								Program from FOR and FORN commands up to this	4.04(FOR)	
				480	NEXT				command is repeated by the frequency designated with FOR, FORN commands.	4.24(FORN)	
Master control			Set	440	MC	$-l_{M C}^{M C R}$			Output command of the master control range from SET up to RESET is controlled. Normally controlled if MO command input is ON and all OFF if the same command input is OFF.	5.96	
			Reset	444	MCR				3.86		
$\begin{aligned} & \overline{0} \\ & \text { Do } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	I/O refresh			280	RIO	$-\mathrm{RIO}$		\rightarrow		External input ON/OFF information is transferred to Device X and the ON/OFF information of Device Y is transferred to the external output unit.	$\begin{gathered} 23.28 \\ +0.18 n \end{gathered}$
	Input refresh			281	RI	RI	D		External input data of Kbyte portion is transferred to Device X from the address of D.	$8.84+1.32 n$	
	Output refresh			282	RO	RO	D		ON/OFF information on Device Y of Kbyte portion is transferred to external output unit from D address,	$9.64+1.08 n$	
$\begin{aligned} & \overline{0} \\ & \stackrel{\text { ®Th }}{1} \end{aligned}$	Main program start			448	START	tar		H	Indicating start-up of main sequence program.	-	
	Main program end			452	END	END			Indicating end of main sequence program.	-	
	Program end			456	PEND	PEND		-	Indicating end of sequence program including subroutine.	-	
	Label			460	LABEL	- Label		n -	Indicating division and jump of sequence program.	1.48	

S,D: Register H:Hexadecimal constant K:decimal constant n: Label No.

	Classification	No.	Command word	Symbol		Function	Execution time ($\mu \mathrm{s}$)
	High speed counter data read	316	HCR	- HCR	s_{1} $\mathrm{~s}_{2}$	Directly reads internal memory of high speed counter module.	151
	High speed counter data write	317	HCW	- HCW	S_{1} $\mathrm{~S}_{2}$ H 	Directly writes data in internal memory of high speed counter module.	$3+115 n$
	Common I/O data read	318	IOR	$-10 R$	$\mathrm{S}_{1} \mathrm{~S}_{2} \mathrm{H}$	Directly reads internal memory of analog module.	$3+120 n$
	Common I/O data write	319	IOW	$-10 \mathrm{~W}$	S_{1} $\mathrm{~S}_{2}$ H	Directly writes data in internal memory of analog module.	$\begin{gathered} 15 \\ +78.5 n \end{gathered}$
	Special module byte data read	304	SPR	-SPR	S_{1} $\mathrm{~S}_{2}$ $\mathrm{~S}_{3}$	Directly reads internal memory of serial I/O module.	$\begin{gathered} \\ 633 \\ +250 n \end{gathered}$
	Special module byte data write	306	SPW	- SPW	S_{1} $\mathrm{~s}_{2}$ $\mathrm{~s}_{3}$	Directly write data in internal memory of serial I/O module.	$\begin{gathered} 371 \\ +383 n \\ \hline \end{gathered}$
	Annunciator	291	ANN	- ANN	H	Message data and time in the 16Byte area with code H and S on its head address are transferred to the annunciator area of special register.	141.88
	User defined clock	293	USC	-USC	K_{1} $\mathrm{~K}_{2}$ $\mathrm{~K}_{3}$	User defined clock 1, 2 in special relay are set up.	75.42
	Built-in clock 30 sec correction	292	ADJ	ADJ	-1	30 sec correction is made to the built-in clock. Less than 30 sec is rounded off. More than 30 sec is counted up as 1 minute.	188
	Communication speed setting for peripheral equipment	288	BAUD	- BAUD	K -	The communication speed for peripheral equipment is changed into the speed designated with K.	55.46
	Program stop	287	STOP	$- \text { STOP }$	H	Run of sequence program is stopped.	-
	Scan time reset	46	WDR	-WDR	\square	The scan time monitor timer is reset.	52

S,D: Register H: Hexadecimal constant K: Decimal constant
(5) Exclusive applied commands for PC3J

Classification				No.	$\begin{gathered} \text { Command } \\ \text { word } \end{gathered}$		Symb			Function	Execution time ($\mu \mathrm{s}$)	
$\begin{array}{\|l\|l} \hline \frac{0}{0} \\ \stackrel{\rightharpoonup}{\sigma} \\ \varepsilon \\ \hline \end{array}$	Bit block transfer			121	BBMOV	BBMOV	Sh1		K -	Bit data with bit position represented by h1 of S at its head and with points represented by K is transferred to an area with bit position represented by h 2 of D at its head.	$\begin{gathered} 27 \sim 39 \\ +0.34 n(\mathrm{Bit}) \end{gathered}$	
¢0	Inversion		4bit	259	STURN	$-\begin{aligned} & \text { STURN } \\ & \text { TURN } \\ & \text { WTURN } \end{aligned}$		D		Transfer to area with D as its head address in inverse sequence from last data in data area with S as its head address and with points represented by K .	8.76+2.36n	
$\stackrel{\text { ¢ }}{0}$			8bit	260	TURN						$8.76+1.72 \mathrm{n}$	
$\stackrel{\sim}{\circ}$			16bit	261	WTURN						$8.76+1.72 \mathrm{n}$	
는	Address constant transfer			320	MOVAD	MOVAD	S		-	S is stored in D after changed into indirect address.	0.72	
	Constant addition	Binary	8bit	323	+ H	$\begin{aligned} & \begin{array}{l} +\mathrm{H} \\ \mathrm{~W}+\mathrm{H} \end{array} \\ & \hline \end{aligned}$			D 1	After S content and constant H were added, the result is stored in D. Data are all handled as binary value.	2.40	
			16bit	324	W+H						2.40	
			32bit	325	D+H	$\mathrm{D}+\mathrm{H}$	S		-	S content and constant H are added and the result is stored in the address next to S . The data are all handled as binary number.	4.04	
		BCD	2 digits	326	+ HP	$-\begin{aligned} & +\begin{array}{l} +H P \\ W+H P \end{array} \\ & \hline \end{aligned}$	S	K	D	After S content and constant K were added, the result is stored in D. The data are all handled as BCD.	7.80	
			4 digits	327	W+HP						23.80	
			8 digits	328	D+HP	D+HP	S		H	S content and constant K are added and the result is stored in the address next to S . The data are all handled as BCD.	58~64	
	Constant deduction	Binary	8bit	329	-H	$\xrightarrow{-\mathrm{H}}$	S	H		After S content and constant H were deducted, the result is stored in D. The data are all handled as binary value.	3.20	
			16bit	330	W-H						3.20	
			32bit	331	D-H	D-H	S		,	S content and constant H are deducted and the result is stored in D. The data are all handled as binary number.	4.52	
		BCD	2 digits	332	HP	$-\begin{aligned} & -\mathrm{HP} \\ & \mathrm{~W}-\mathrm{HP} \end{aligned}$	S	K	D	After S content and constant K were deducted, the result is stored in D. The data are all handled as BCD.	6.92	
			4 digits	333	W-HP						22.76	
			8 digits	334	D-HP	D-HP	S		-1	S content and constant K are deducted and the result is stored in the address next to S. The data are all handled as binary number.	55~67	
	Constant multiplication	Binary	8bit	335	* H	$-{ }_{\text {* }}^{\text {W }}$	S	H	$\overline{\mathrm{D}}$	After S content and constant H were multiplied, the result is stored in D . The data are all handled as binary value.	1.24	
			16bit	336	W* ${ }^{\text {H }}$						4.60	
			32bit	337	D*H	D*H	S		-1	After S content and constant H were multiplied, the result is stored in the address next to S. The data are all handled as binary value.	23.04	
		BCD	2 digits	338	* HP	$\begin{aligned} & *+\mathrm{HP} \\ & \mathrm{w}^{*} \mathrm{HP} \end{aligned}$	S	K		After S content and constant K were multiplied, the result is stored in D. The data are all handled as BCD.	13~15	
			4 digits	339	W*HP						39~50	
			8 digits	340	D*HP	$\mathrm{D}^{\text {+ }} \mathrm{HP}$	S		-	After S content and constant K were multiplied, the result is stored in the address next to S . The data are all handled as BCD .	160~180	
	Constant dividing	Binary	8bit	341	/H		s	H	D	After S content and constant H were divided, the result is stored in D and remainder stored in next address. The data are all handled as binary value.	17~19	
			16bit	342	W/H						28~30	
			32bit	343	D/H	D/H	S		$\mathrm{H}-1$	After S content and constant H were divided, the result is stored in address next to S and remainder stored in next next address. The data are all handled as binary value.	77~82	
		BCD	2 digits	344	/HP	/HP	S	K		After S content and constant K were divided, the result is stored in D and	21.26	
			4 digits	345	W/HP	W/HP				remainder stored in next address. The data are all handled as BCD	56.92	
			8 digits	346	D/HP	D/HP	S		K -	After S content and constant K were divided, the result is stored in address next to S and remainder stored in next next address. The data are all handled as BCD.	149~164	
	Constant logic product		8bit	347	ANDH	$-$ANDH WANDH	$\begin{array}{l\|l\|} \hline \\ \hline \end{array}$	H		After logic product (AND) of S content and constant H was computed, the result is stored in D.	2.40	
			16bit	348	WANDH						2.40	
			32bit	349	DANDH	DANDH	S		-1	After logic product(AND) of S content and constant H was computed, the result is stored in address next to S .	3.96	
	Constant logic sum		8bit	350	ORH	$\begin{aligned} & \mathrm{ORH} \\ & \text { WORH } \end{aligned}$	S	H	\bar{D}	After logic sum (OR) of S content and constant H was computed,the result is stored in D .	2.40	
			16bit	351	WORH						2.40	
			32bit	352	DORH	DORH	S		-1	After logic sum (OR) of S content and constant H was computed, the result is stored in address next to S .	3.96	
	Constant exclusive logic sum		8bit	353	XORH	XORH	S	H		After exclusive logic sum (XOR) of S content and constant H	2.72	
			16bit	354	WXORH	wxorh				was computed, the result is stored in D .	2.72	
			32bit	355	DXORH	DXORH	S		$\mathrm{H}-1$	After exclusive logic sum (XOR) of S content and constant H was computed, the result is stored in address next to S.	3.96	
	Sum		8bit	362	STI1					The sum in data area with S1 as head address and	$6.12+0.84 \mathrm{n}$	
			16bit	363	WSTI1	WSTI1	S1	D		with number represented by S2 content is stored in D.	7.00+1.08n	
			32bit	364	DSTI1	DST11				The data are all handled as binary value.	$7.80+1.52 \mathrm{n}$	
	Max value retrieval		8bit	374	MAX	$-$MAX WMAX DMAX	S1	D	$\mathrm{s} 2-1$	Maximum value in data area with S1 as head address and with number represented by S 2 content is stored in D.	$5.56+1.00 \mathrm{n}$	
			16bit	375	WMAX						$5.72+1.00 \mathrm{n}$	
			32bit	376	DMAX						$6.20+1.60 \mathrm{n}$	
	Min value retrieval		8bit	377	MIN	$\begin{aligned} & \\ & \hline \text { MIN } \\ & \text { WMIN } \\ & \text { DMIN } \end{aligned}$		D	$52-1$	Minimum value in data area with S1 as head address and with number represented by S 2 content is stored in D.	$5.72+1.00 \mathrm{n}$	
			16bit	378	WMIN						$5.72+1.00 \mathrm{n}$	
			32bit	379	DMIN						$6.20+1.60 \mathrm{n}$	
											Mean value in data area with S 1 as head address and with number represented by S 2 content is stored in D . The data are all handled as binary value and fractions over 4 at first decimal point are counted as one.	$33.24+1.08 \mathrm{n}$
										S2		82.08+1.32n
												131+1.44n
										-CRET	Subroutine is closed when the conditions are met, and applicable subroutine is called and executed from step next toCALL command.	5.40
										\square	External I/O of Kbyte portion from D address are refreshed.	16.00+2.40n
										0 -	Set up so that applied command flag is cleared at reading of applied command .	81.70
										0 -	Set up so that applied command flag is not cleared at reading of applied command.	82.10

S,D: Register, H: Hexadecimal constant K:decimal constant

S,D: Register, H: Hexadecimal constant K:decimal constant
*1 PC3JG PC3JBG PC3JP can use this instruction. PC3JL, PC3JD, PC3JB, PC3JM can use this instruction since version 2.6 PC3J PC3JNF PC3JNM can not use this instruction.
(6) Exclusive applied commands for PC3JG

Classification			No.	Command word	Symbol				Function	Execution time ($\mu \mathrm{s}$)
	Buffer register transfer	register address setting	371	BRSET	-BRSET	S		D-1	The Indirect address of the buffer register(EB) specified S is set to the 2 word area with D as the head address.	0.96
		Indirect loading	372	WBR	-WBR			K-1	Data in buffer registers which of address is the content of 2 word area with S as the head address is transferred to registers with D as the head address. Size is K.	$80+2 n$
		Indirect saving	373	WBW	-WBW	S		K -	Registers with S as the head address is transferred to buffer registers which of address is the content of 2 word area with D as the head address. Size is K.	$80+2 n$
	Order the message command for DLNK-M2		302	MSET	MSET	H		D-1	Message of the number indicated with H which of head address is S are tranfered to DLNK-M2 indicated with H . The response data from DLNK-M2 are trnsfered to the area which of head address is D.	$80+4 n$
	Order the I/O resister read-out instruction for TOYOPUC-PCS		370	CSET	-CSET	H	S	D-1	I/O register read-out instruction of the number indicated with H which of head address is S are transferred to PCS. The response data from PCS are transferred to the area which of head address is D	$60+4 n$

S,D: Register, H: Hexadecimal constant K:decimal constant

The equipment information memory is available to store comments, etc. on sequence circuits separately from sequence program, parameters and data.
This equipment information memory of 640KB capacity can normally store 10,000 points or more, where limited to the address comments only. The number of storable comments differs depending on the content of comment.

Storing comments ,etc. in the equipment information memory is effected by peripheral equipment (PCwin).
The peripheral equipment (PCwin) can display commented circuit diagram, cycle chart, etc. by reading the information stored in the equipment information memory.
Storing and reading in/from the equipment information memory can be made by the peripheral equipment (PCwin) for the PC3J, irrespective of CPU operation mode. The PC2 Series peripheral equipment (GL1, etc.) can not store and read data in/from the equipment information memory.

Further, it is impossible to change the information stored in the equipment information memory and to store data in the same memory in sequence program. Also it is impossible to refer to the stored information in accordance with sequence program.

7.3 Link specification

(1) Communication port and Link function

Communication port	Link function
Communication port L1	SN-I/F or PC link or Commputer link
Communication port DLNK	DLNK-M2

(Note)When the "Communication port L1" (built-in standard link) parameters are not set, the link acts as SN-I/F. It operates as CMP for PC2 interchangeable mode.
(2) Computer link specification (Communication port L1)

Items	Specification
Interface standard	Conforming to EIA RS-422
Communication system	Start-stop synchronous, semi-dual
Transmission line	Shielded twist bare cable
Communication speed	$\begin{array}{lll} \hline 0.3,0.6,1.2,2.4, & \\ 4.8,9.6, \quad, 38.4 \mathrm{kbps} & \text { (Presetting }{ }^{* 1} \text {) } \end{array}$
Transmission distance	Max 1 km (total length)
Transmission form	1:N
Number of stations	Max 32 stations (Address No. ~ 37) [set with octal number)
Data type	Start bit........... 1 bit Data length.... 7 or bit (presetting) Parity 1 bit (even parity Stop bit or 2 bit (presetting)
Characters used	ASCII code
Error detection	Parity check, sum check

[^0](3) PC link specification (Communication port L1)

Items	Specification
I/O points	Max 512 points/1 port
Transmission points per station	When 19/.2kbps/57.6kbp is selected : Max 384 points When NC $\times 3$ selected
No. of stations	Max 16 stations (master 1, slave 15) /1 line points
I/O allocation	Minimum setting unit :8 points
Transmission distance	Max 1 km (total length)
Signal level	Conforming to EIA RS-422
Communication speed	19.2kbps / 57.6kbps / NC×3speed ${ }^{* 1} \quad$ (Presetting ${ }^{* 2}$)
Synchronous system	Start-stop synchronous
Transmission system	Semi-dual system (2-wire type)
Bit composition	JIS 7 unit system, 10 bits
Check system	Vertical parity, horizontal parity (Even number)
Cable	Shielded twist bare cable
Transmission data at CPU stopping	OFF data / Pre-stop data (Presetting ${ }^{* 2}$)
CPU operation against communication error	Stop/RUN continue (Presetting ${ }^{* 2}$)
Communication error under connection sequence	As error /repeat (Presetting ${ }^{* 2}$)

*1 This speed is set to communicate with NC machine corresponding to M-NET $\times 3$ speed.
*2 It is set up by the link parameter.
(4) SN-I/F specification (Communication port L1)

Items	Specification
Data link	I/O : 32byte, register : 32byte
Transmission distance	Max 3 m (only inside of controller box)
Data type	Parity 1 bit (even parity) Data length ... 8 bit Stop bit........ 1 bit
Signal level	Conforming to EIA RS-422
Synchronous system	Start-stop synchronous
Transmission system	Semi-dual system (2-wire type)
Communication speed	288kbps
Cable	Shielded twist bare cable

(5) DLNK-M2 specification (Communication port DLNK)

No.	Items	Specification			
1	Data rate	$500 / 250 / 125 \mathrm{Kbps}$ (selectable by switch)			
		Data rate	Maximum cable distance	Drop line length	Total expansion of drop line
2	distance	500Kbps	Below 100m	Below 6m	Below 39m
		250Kbps	Below 250m	Below 6m	Below 78m
		125Kbps	Below 500m	Below 6m	Below 156m
3	Maximum number of connected nodes	64 units (master 1 unit slave 63 units) ${ }^{* 1}$			
4	Node address	Master : 00 Slave : 01~63			
5	I/O points numbe of DLNK	Input: Maximum 2048 points (256 bytes) Output: Maximum 2048 points (256 bytes)			
6	I/O allotment	Minimum unit of 8 points			
7	Communication area	X•Y,M,L,EX • EY,EM,EL,GX•GY,GM *2			
8	Function	I/O refresh, message command			

*1 In the case of TOYOPUC DLNK, this applies only to the asynchronous mode.
There are no relations in input and output type, and the number of maximum connection notebooks is restricted with synchronous mode in the following.

Data rate	Maximum number of connected nodes
500 kbps	9
250 kbps	7
125 kbps	6

*2 GX/GY and GM area can be used in the PC3JG separate mode.

7.4 I/O Specification

7.4.1 Allocation of connector pin
(a) PC3JG

Pin arrangement	0~1F(Left Connector)				20~3F(Right Connector)			
	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
	A1	$\begin{gathered} \text { COM2 } \\ (0 \mathrm{~V}) \\ \hline \end{gathered}$	B1	$\begin{aligned} & \text { PWR2 } \\ & (+24 \mathrm{~V}) \end{aligned}$	A1	$\begin{gathered} \text { COM4 } \\ (0 \mathrm{~V}) \\ \hline \end{gathered}$	B1	$\begin{aligned} & \hline \text { PWR4 } \\ & (+24 \mathrm{~V}) \\ & \hline \end{aligned}$
	A2	$\begin{gathered} \text { COM2 } \\ (0 \mathrm{~V}) \end{gathered}$	B2	$\begin{aligned} & \text { COM1 } \\ & (+24 \mathrm{~V}) \end{aligned}$	A2	$\begin{gathered} \text { COM4 } \\ (\mathrm{OV}) \end{gathered}$	B2	$\begin{aligned} & \text { COM3 } \\ & (+24 \mathrm{~V}) \end{aligned}$
	A3	$\begin{gathered} \text { COM2 } \\ (0 \mathrm{~V}) \\ \hline \end{gathered}$	B3	(A3	(0V)	B3	(
	A4	$\begin{gathered} \text { COM2 } \\ (0 \mathrm{~V}) \\ \hline \end{gathered}$	B4	-	A4	-	B4	-
	A5	Y1F	B5	X0F	A5	Y3F	B5	X2F
	A6	Y1E	B6	X0E	A6	Y3E	B6	X2E
	A7	Y1D	B7	X0D	A7	Y3D	B7	X2D
	A8	Y1C	B8	X0C	A8	Y3C	B8	X2C
	A9	Y1B	B9	X0B	A9	Y3B	B9	X2B
	A10	Y1A	B10	X0A	A10	Y3A	B10	X2A
	A11	Y19	B11	X09	A11	Y39	B11	X29
	A12	Y18	B12	X08	A12	Y38	B12	X28
	A13	Y17	B13	X07	A13	Y37	B13	X27
When it was seen from the front of the module.	A14	Y16	B14	X06	A14	Y36	B14	X26
	A15	Y15	B15	X05	A15	Y35	B15	X25
	A16	Y14	B16	X04	A16	Y34	B16	X24
	A17	Y13	B17	X03	A17	Y33	B17	X23
	A18	Y12	B18	X02	A18	Y32	B18	X22
	A19	Y11	B19	X01	A19	Y31	B19	X21
	A20	Y10	B20	X00	A20	Y30	B20	X20

The external connectors are the following.

	Type	Specification	Type for TMW
Fujitsu 9	FCN-361J040-AU	40 pins, soldering type	TIP-5867
Fujitsu 4	FCN-360C040-B	40 pins , case	

The size of the screw of the connector is M2.6 .
And, it Can be Connected with the FCN-360 jack type (for the gold plating) made by Fujitsu Takamisawa Component Ltd.. Be sure to use contact goods for the gold plating.
*1 : Fujitsu Takamisawa Component Ltd..
(b) PC3JG-P

Pin arrangement		0~1F(Left Connector)				20~3F(Right Connector)			
		Pin No.	Signal	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal
		A1	$\begin{aligned} & \hline \text { COM2 } \\ & (+24 \mathrm{~V}) \end{aligned}$	B1	PWR2 (OV)	A1	$\begin{gathered} \hline \text { COM4 } \\ (+24 \mathrm{~V}) \end{gathered}$	B1	-
		A2	$\begin{aligned} & \text { COM2 } \\ & (+24 \mathrm{~V}) \end{aligned}$	B2	COM1 (0V)	A2	$\begin{aligned} & \text { COM4 } \\ & (+24 \mathrm{~V}) \end{aligned}$	B2	$\begin{gathered} \text { COM3 } \\ (0 \mathrm{~V}) \end{gathered}$
		A3	$\begin{aligned} & \text { COM2 } \\ & (+24 \mathrm{~V}) \end{aligned}$	B3	-	A3	-	B3	-
		A4	$\begin{aligned} & \text { COM2 } \\ & (+24 \mathrm{~V}) \end{aligned}$	B4	-	A4	-	B4	-
		A5	Y1F	B5	XOF	A5	Y3F	B5	X2F
		A6	Y1E	B6	XOE	A6	Y3E	B6	X2E
		A7	Y1D	B7	XOD	A7	Y3D	B7	X2D
		A8	Y1C	B8	XOC	A8	Y3C	B8	X2C
		A9	Y1B	B9	XOB	A9	Y3B	B9	X2B
		A10	Y1A	B10	X0A	A10	Y3A	B10	X2A
		A11	Y19	B11	X09	A11	Y39	B11	X29
		A12	Y18	B12	X08	A12	Y38	B12	X28
		A13	Y17	B13	X07	A13	Y37	B13	X27
When it was seen from the front of the module.		A14	Y16	B14	X06	A14	Y36	B14	X26
		A15	Y15	B15	X05	A15	Y35	B15	X25
		A16	Y14	B16	X04	A16	Y34	B16	X24
		A17	Y13	B17	X03	A17	Y33	B17	X23
		A18	Y12	B18	X02	A18	Y32	B18	X22
		A19	Y11	B19	X01	A19	Y31	B19	X21
		A20	Y10	B20	X00	A20	Y30	B20	X20

The external connectors are the following.

	Type	Specification	Type for TMW
Fujitsu 9	FCN-361J040-AU	40 pins, soldering type	TIP-5867
Fujitsu 4	FCN-360C040-B	40 pins, case	

The size of the screw of the connector is M2.6 .
And, it Can be Connected with the FCN-360 jack type (for the gold plating) made by Fujitsu Takamisawa Component Ltd.. Be sure to use contact goods for the gold plating.
*1 : Fujitsu Takamisawa Component Ltd..

7.4.2 Specification of input

No.	Items		Specification
1	Input voltage		DC24V
2	Input Current		5 mA
3	Voltage range		DC21.6-26.4V
4	ON voltage/ON Current		16.8V Min. / 5mA Max.
5	OFF voltage/OFF Current		7.2V Min. / 1.5mA Max.
6	Input impedance		Approximately $4.7 \mathrm{k} \Omega$
7	Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	10ms Max.
		$\mathrm{ON} \rightarrow \mathrm{OFF}$	10ms Max.
8	Points		32points
9	Address		X000-X00F, X020-X02F
10	Common		16points per Common (COM1,COM3)
11	Indication		LED Display

PC3JG

PC3JG-P

7.4.3 Specification of Output
(1)Specification of Output(Output to device)

No	Items		Specification
1	Output voltage		DC24V
2	Output Current		0.3A/points 2A/16 points
3	Voltage range		DC21.6-26.4V
4	Max voltage drop at ON		1.5V Max.
5	Leak Current at OFF		0.1mA Max.
6	Output element		FET open drain
7	Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	$1 \mathrm{~ms} \mathrm{Max}$.
		ON \rightarrow OFF	$1 \mathrm{~ms} \mathrm{Max}$.
8	Points		16 points
9	Address		Y010-Y01F
10	Common		16 points per Common (COM2)
11	Fuse		3.2 A (with fuse alarm indication) ${ }^{*}$
12	indication		LED Display

*1 When a fuse has blown, fuse alarm is indicated on LED Display.

(2)SpeCifiCation of Output(Output for signal CommuniCation)

No.	Items	SpeCifiCation
1	Output voltage	DC24V
2	Output Current	$0.05 \mathrm{~A} /$ points $0.8 \mathrm{~A} / 16$ points
3	Voltage range	DC21.6 -26.4 V
4	Max voltage drop at ON	1.5 V Max.
5	Leak Current at OFF	0.5 mA Max.
6	Output element	Transistor
7	Response time	OFF \rightarrow ON
$~$	ON \rightarrow OFF	1ms Max.
8	Points	$1 m s$ Max.
9	Address	16 points
10	Common	Y030 - Y03F
11	Fuse	16 points per Common (COM4)
12	indiCation	Without

*1 "Supply voltage to the PWR4" >= "Supply voltage to the load"
*2 Output for signal CommuniCation Can not drive induCtion loads(like relay or solenoid valve).
7.5 I/O module specification
7.5.1 Input module specification
(1) IN-11 Module (THK-2749)

(note:Please use a short bar for terminal COM1-2 connection of the terminal block attachment to suit the CE marking.)
(2) IN-12 Module (THK-2750)

Specification Title		DC24V Input Module			
		IN-12	(Identification Code: 07 H)		
Number of circuits		16 points	Maximum simultaneous input points-Input voltage characteristics		
Insulation method		Photo coupler insulation			
Rated input voltage		DC24V			
Rated inp	at current	10 mA			
Operating voltage range		DC18-30V			
ON voltage/ON		DC 16.8V Max/7mA Max	Ambient temperature $55^{\circ} \mathrm{C}$ Ambient temper		
OFF voltage/OFFcurrent		DC7.2V Min/2.5mA Min			
Input impedance		Approximately $2.5 \mathrm{k} \Omega$			
Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	15m sec Max			
	$\mathrm{ON} \rightarrow \mathrm{OFF}$	15 m sec Max			
Internal current consumption (5V)		60mA(TYP. All points ON) $(1+3.7 \mathrm{n})$ points$\quad \mathrm{n}$: Number of ON			
Common system		8 points 1 common		$=5$	
Status indication		LED light with ON		27	DC(V)
Polarity		Non-polarity (Either plus common or minus common available for use)	Input Voltage		
Weight		0.22 kg			

(3) IN-22Dmodule (THK-2871)

(4)IN-SW module(THK-5977)

Title Specification	Switch input module	
	IN-SW	(identification code:07H)
Number of circuits	16 points	
Response time	OFF \rightarrow ON	10 ms or less
	ON \rightarrow OFF	10 ms or less
Internal consumption(5V)	126 mA (Typ . all points ON)	
Weight	0.18 kg	

7.5.2 Output Module Specification

(1) OUT-1 Module (THK-2751)

Specification	TRIAC (Triode AC) Output Module	
	OUT-1 (Identification Code:1FH)	
Number of circuits	8 points *1	
Insulation method	Photo coupler insulation	
Rated load voltage	AC100V/115V 50/60Hz	
Maximum load voltage	AC132V	
Maximum load current	$1 \mathrm{~A} /$ Point 4A/COM	
Minimum load voltagelcurrent	AC15V 10mA	
Maximum rush current	80 A	
Leak current at OFF	1.5 mA Max	
Max voltage drop at ON	1.5 V Max	
Response time	OFF \rightarrow ON	
ON \rightarrow OFF	$150 \mu \mathrm{~s}$	
Internal current consumption (5V)	$1 / 2$ cycle +1 ms	
Surge killer	174 mA (TYP. All points ON) (11 +20.3n) mA $\mathrm{n}: ~ O N ~ p o i n t s ~$	
Fuse rating	5 A	
Fuse blown display	With (ALM LED ON against fuse blown)	
Common method	8 points-1 common	
Status indication	LED ON at switch ON	
Weight	0.32 kg	

External Connection and Internal Circuit Block Diagram	Termi		Termi	
	$\begin{array}{\|l\|l} \text { nal } \\ \text { No. } \end{array}$	name	$\begin{gathered} \text { nal } \\ \text { No. } \end{gathered}$	name
	1	OUT00	2	OUT01
	3	OUT02		
			4	OUT03
	5	OUT04	6	OUT05
	7	OUT06	8	OUT07
	9	NC		
		NC	10	NC
	11	NC	12	
	13	NC		NC
			14	NC
	15	NC	16	NC
	17	COM	18	NC
	19	NC		
	19	NC		

*1: OUT-1 Module's real I/O points is 8 points. However, PC 3JG CPU permits allocation of I/O address 16 points. At this time Lower 8 points of address becomes the real I/O. Therefore, do not use upper 8 points.
(2) OUT-3 Module (THK-2931)

*1: OUT-3 Module's real I/O points is 8 points. However, PC3JG CPU permits allocation of I/O address 16 points. At this time Lower 8 points of address becomes the real I/O. Therefore, do not use upper 8 points.
(3) OUT-4 Module (THK-5040)

		TRIAC (Triode AC) Output Module		
		OUT-4	(Identification Code:	1DH)
Number of circuits		8 points *1		
Insulation method		Photo coupler insulation		
Rated load voltage		AC240V 50/60Hz		
Maximum load voltage		AC265V		
Maximum load current		1A/Point, 4A/COM		
Minimum load voltage/current		AC15V 10mA		
Maximum rush current		80A		
Leak current at OFF		1.5mA Max		
Max voltage drop at ON		1.5V Max		
Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	$150 \mu \mathrm{~s}$		
	$\mathrm{ON} \rightarrow \mathrm{OFF}$	$1 / 2$ cycle +1 ms		
Internal currentconsumption (5V)		174 mA (TYP. All points ON) $(11+20.3 \mathrm{n}) \mathrm{mA} \quad \mathrm{n}$: On Number of points		
Surge killer		CR Absorber ($0.01 \mu \mathrm{~F}+47 \Omega$)		
Fuse rating		5A		
Fuse blown display		With (ALM LED ON against fuse blown)		
Common method		8 points-1 common		
Status indication		LED ON at switch ON		
Weight		0.29 kg		

External Connection and Internal Circuit Block Diagram	Termi		Termi	
	No.	name	No.	name
	1	OUT00	2	OUT01
	3	OUT02	4	OUT03
	5	OUT04	6	
	5	OUT04		OUT05
	7	OUT06	8	OUT07
	9	NC		
	9	NC	10	NC
	11	NC		
			12	NC
	13	NC	14	NC
	15	NC		
	15		16	NC
	17	COM	18	NC
	19	NC		
	19	NC		

*1: OUT-3 Module's real I/O points is 8 points. However, PC3JG CPU permits allocation of I/O address 16 points. At this time Lower 8 points of address becomes the real I/O.
Therefore, do not use upper 8 points.
note:Please use the diode for the serge killer when you use the inductive load with DC.
(4) OUT-11 Module (THK-2795)

(note:Please use a short bar for terminal COM1-2 connection of the terminal block attachment to suit the CE marking.)
*1 Modules produced before January 1996, the "ERR" is not printed on the LED cover.
(5) OUT-12 Module (THK-2752)

Specification		Contact Output Module			
			OUT-12	(Identification Code:	2FH)
Number of circuits		16 points			
Insulation method		Relay insulation			
Rated switching voltage Rated switching current		DC24V 2A (Resistance load) $\mathrm{AC} 240 \mathrm{~V} 2 \mathrm{~A}(\cos \phi=1)$	5A/COM	(note:It is rated voltage DC24V,AC120V the CE marking.)	itching to suit
Minimum switching load		DC5V 10mA			
Maximum switching voltage		DC30V AC264V (note:It is DC30V or AC132V to suit the CE marking.)			
Response time	$\mathrm{OFF} \rightarrow \mathrm{ON}$	$13 \mathrm{~ms} \mathrm{Max} \mathrm{(at} \mathrm{DC} \mathrm{24V)}$			
	$\mathrm{ON} \rightarrow \mathrm{OFF}$	$13 \mathrm{~ms} \mathrm{Max} \mathrm{(at} \mathrm{DC} \mathrm{24V)}$			
Relay life		Electric: Resistance load 200,000 min Induced load Mechanic: 20,000,000 min			
Maximum switching frequency		At ON: 1 sec min At OFF: 1 sec min			
Surge killer		None			
Internal current consumption (5V)		380 mA (TYP. All points ON) $(11+23.1 \mathrm{n}) \mathrm{mA} \quad \mathrm{n}$: On Number of points			
Fuse rating		7.5A/COM			
Fuse blown display		With (ALM LED ON against fuse blown)			
Common method		8 point-1 common (Inter common insulation) (note:It is 16 points 1 common to suit the CE marking.)			
Status indication		LED ON at switch ON			
Weight		0.3 kg			

(note: It is rated switching voltage DC24V,AC120V and maximum switching voltage DC30V,AC132V
to suit the CE marking. Moreover, please use a short bar for terminal COM1-2 connection of the terminal block attachment.)
(note2 : Please use the diode for the serge killer when you use the inductive load with DC.
(6) OUT-15 Module (THK-2790)

Tpecification Title		Power MOS FET Output (-) COM		
		OUT-15	(Identification Code:	14H)
Number of circuits		16 points		
Insulation method		Photo coupler insulation		
Rated load voltage		DC5V/12V/24V		
Operating load voltage range		DC4.75~30V		
Maximum load current		1A/Point (2A/2 Points) 4A/COM		
Leak current at OFF		0.1mA Max		
Max voltage drop at ON		0.3 V Max, 0.17V (TYP.) 14/point 2A/at 2 poins		
Response time	OFF \rightarrow ON	2 mS Max		
	ON \rightarrow OFF	6 mS Max		
$\substack{\text { Internal current consumption } \\ (5 \mathrm{~V})}$		310 mA Max (All points ON) (11+18.4n) mA n: On Number of points		
Surge killer		Silicon surge absorber		
Fuse rating		6.3A/COM		
Fuse blown display		with (ALM LED ON against fuse blown)		
Common method		8 points, 1 common (Inter common insulation)		
Status indication		LED ON at switch ON		
Weight		0.26 kg		

(7) OUT-16 Module (THK-2791)

Specification Title		Power MOS FET Output (+) COM		
		OUT-16	(Identification Code:	15H)
Number of circuits		16 points		
Insulation method		Photo coupler insulation		
Rated load voltage		DC5V/12V/24V		
Operating load voltage range		DC4.75~30V		
Maximum load current		1A/Point (2A/2 Points) 4A/COM		
Leak current at OFF		0.1mA Max		
Max voltage drop at ON		0.3V Max, 0.17V (TYP.) 1A/point 2A/at 2 Points		
Response time	OFF \rightarrow ON	2 mS Max		
	ON \rightarrow OFF	6 mS Max		
Internal current consumption		$310 \mathrm{~mA} \mathrm{Max} \mathrm{(All} \mathrm{points} \mathrm{ON)}(11+18.4 \mathrm{n}) \mathrm{mA} \quad \mathrm{n}$: On Number of points		
Surge killer		Silicon surge absorber		
Fuse rating		6.3A/COM		
Fuse blown display		With (ALM LED ON against fuse blown)		
Common method		8 points, 1 common (Inter common insulation)		
Status indication		LED ON at switch ON		
Weight		0.26 kg		

(8) OUT-18 Module (THK-2753)

Tpecification Title		Transistor Output Module (-) COM		
		OUT-18	(Identification Code:	16H)
Number of circuits		16 points		
Insulation method		Photo coupler insulation		
Rated load voltage		DC12V/24V		
Operating load voltage range		DC10~30V		
Maximum load current		0.5A/Point 2A/COM		
Leak current at OFF		0.1mA Max		
Max voltage drop at ON		1.5V Max		
Response time	OFF \rightarrow ON	1 ms Max		
	ON \rightarrow OFF	1ms Max		
Internal current consumption		136mA Max (All points ON time) (11+7.8n) mA n: On Number of points		
Surge killer		By Zener diode contained in the transistor (Zener voltage $60 \pm 10 \mathrm{~V}$)		
Fuse rating		3.2A/COM *1		
Fuse blown display		None		
Common method		8 points, 1 common (Inter-common insulation)		
Status indication		LED ON at switch ON		
Weight		0.23 kg		

*1: This fuse is to protect printed circuit board from burning. When short-circuited, this fuse element may be unable to protect the elements.
(This fuse is soldered to the printed circuit board.)
(9) OUT-19 Module (THK-2754)

\qquad Specification		Transistor Output Module (+) COM	
		OUT-19	(Identification Code : 17H)
Number of circuits		16 points	
Insulation method		Photo coupler insulation	
Rated load voltage		DC12V/24V	
Operating load voltage range		DC10~30V	
Maximum load current		0.5A/Point 2A/COM	
Leak current at OFF		0.1mA Max	
Max voltage drop at ON		1.5V Max	
Response time	OFF \rightarrow ON	1ms Max	
	ON \rightarrow OFF	1ms Max	
Internal current consumption		136mA Max (All points ON time) (11+7.8n) mA	On Number of points
Surge killer		By Zener diode contained in the transistor (Zen	tage $60 \pm 10 \mathrm{~V}$)
Fuse rating		3.2A/COM *1	
Fuse blown display		None	
Common method		8 points, 1 common (Inter-common insulation)	
Status indication		LED ON at switch ON	
Weight		0.23 kg	

*1: This fuse is to protect printed circuit board from burning. When short-circuited, this fuse element may be unable to protect the elements.
(This fuse is soldered to printed circuit board.)
(10) OUT-28D Module (THK-2870)

*1: This fuse is to protect printed circuit board from burning. When short-circuited, this fuse may be unable to protect the elements. (This fuse is soldered to the printed circuit board.)
(11) OUT-29D Module (THK-5025)

Specification Title		Transistor Output Module (+) COM		
		OUT-29D	(Identification Code	12H)
Number of circuits		32 points		
Insulation method		Photo coupler insulation		
Rated Load voltage		DC12V/24V		
Operating Load voltage range		DC10~30V		
Maximum Load current		0.2A/point 2A/COM		
Leak current at OFF		0.1mA Max		
Max voltage drop at ON		1.5V Max, 0.8V (TYP.) 0.2A		
$\begin{array}{l\|l} \hline \begin{array}{l} \text { Response } \\ \text { time } \end{array} & \text { Of } \\ \text { Or } \end{array}$	$\mathrm{OFF} \rightarrow \mathrm{ON}$	1 ms Max		
	\rightarrow OFF	1 ms Max		
Internal current consumption(DC5V)		210mA Max (ALL points ON)		
External power supply	voltage	DC12/24V (DC10-30V)		
	Current	Max 148mA (at DC30V, per 1 PWR) Typ. 82mA (at DC24V, per 1 PWR)		
Surge killer		C-E .. by Zener diode		
Fuse rating		3.2A/COM *1		
Fuse blown display		None		
Common method		16 points, 1 common (Inter-common insulation)		
Status indication		LED ON at switch ON (16 points display switching)		
External connecting method		37-Pin D-sub connector, 1 piece		
Weight		0.20 kg		

*1: This fuse is to protect printed circuit board from burning. When short-circuited, this fuse may be unable to protect the elements. (This fuse is soldered to the printed circuit board.)
7.5.3 Identification and function of each I/O module component

(1) I/O display LED ----- 0 - F lamps display ON/OFF status of I/O.
(OUT-1, OUT-11, OUT-12, OUT-15, and OUT-16 modules "FUSE BLOWN" of each is alarmed by other ALM lamp, in addition to status display by $0-\mathrm{F}$ lamps.
(2) Terminal block lock lever -- To set and lock terminal block to the module. (2 levers altogether at top and bottom)
(3) Terminal block -------Detachable terminal block for I/O wiring

Detachment of terminal block

- PC3J/2JI/O module is of such a construction as to permit simple detachment of I/O terminal block.
In detaching and attaching, follow the operation sequence given below.

How to remove the terminal block
(1) Open outward both of top and bottom terminal block lock levers with them in fingers.
(2) After complete open of the levers, draw frontward the terminal block.
(If single-side lever only is opened, again draw frontward the terminal block, with its floated-up end in hand.)
[How to remove the terminal block 1]

[How to remove the terminal block 2]

How to set the terminal block
(1) Be sure to check that both of top and bottom terminal block lock levers are fully opened outward.
(2) Push-in the terminal block, with its lower stage faced to the left, until it clicks.

Be sure to check that the terminal block is perfectly locked at both top and bottom sides when the lever was push in.
[Hot to set the terminal block 1]

7.5.4 Fuse Specification

Item Type name	GP-50	GP-75	MP-63	HM-32	LM-32
Module used	OUT-1	OUT-12	OUT-15 OUT-16	OUT-11	OUT-18* OUT-19* OUT-28D OUT-29D * OUT-38F * OUT-39F *
Profile	Plug-shaped				Dip shaped microfuse

* The fuses used in OUT-18, OUT-19, OUT-28D, OUT-29D, OUT-38F, OUT-39F can not be replaced because of the soldered type.

Fuse blown detecting function:

Output modules OUT-1, OUT-11, OUT-12, OUT-15, OUT-16 have fuse blown detecting function, which then enables to set up at the unit of each module whether fuse blown is detected or not as error. (OUT-3, OUT-18, OUT-19, OUT-28D, OUT-29D, OUT-38F, OUT-39F are not provided with this function.)

Jumper status	Setting	Contents	CPU status	Output module display
	ON	Fuse blown .. detected as error	RUN stop Error code 43	ALM LED .. ON

7.6 Base Specification

Five different bases of 2 -slot base, 4 -slot base, 6 -slot base, and 8 -slot base (2 bases) are available to install according to the number of I/O modules. These can be used with additional I/O rack.
And, there is Selector Base. It has selector function.

Bases for PC3J /2J application

Items \quad Type	THR-2766	THR-2872	THR-2813	THR-2775	THR-2814
Number of I/O modules installed	8 m		6 modules	4 modules	2 modules
Outer dimension ($\mathrm{W} \times \mathrm{H} \times \mathrm{D} \mathrm{mm}$)	$406 \times 130 \times 7$	$424 \times 130 \times 7$	$335 \times 130 \times 7$	$264 \times 130 \times 7$	$193 \times 130 \times 7$
Installing dimension ($\mathrm{W} \times \mathrm{Hmm}$)	391×86	409×86	320×86	249×86	178×86
Mounting hole	06 bell-shaped hole (M5 screw used)				
Weight (kg)	0.8	0.85	0.65	0.5	0.35

* Precautions in use of PC2J:

Only one I/O bus connector is used for 2 -slot base, 4 -slot base, 6 -slot base and 8 -slot base. Hence, the number of additionally connectable bases is one set maximum. When connecting two or more additional bases, use two 8 -slot bases (2 pieces of I/O bus connectors) or I/O Branch Module.
Further, in this case the total length of I/O cables and length per cable shall be 5 m max and 3m max respectively.
(Note) The maximum quantity of additionally connectable bases is 3 sets maximum. When connecting MC256 IV, calculate the quantity of additional bases as one base for one MC256 IV.

Base

(1) Module fixing hole

To fix the selector module, I/O module, power module, etc.
(2) Module connector

To connect the power module to the power unit, the selector module, high-speed remote SAT Station module to CPU/SEL, and I/O, communication and special modules to 0-7 respectively.
(3) Base mounting hole

Used to mount the base.
(4) I/O bus connector

To connect I/O cable.
(5) 5 V terminal block ($5 \mathrm{~V}, 0 \mathrm{~V}, \mathrm{FG}$)

DC5V and FG terminal block

7.7 Power Module Specification

There are power supply module, AC input power source unit (POWER 1) and DC input power source unit (POWER 2).
The POWER 1 can work on input voltage ranging from AC85 to 264 V .
The POWER 2 can work on input voltage ranging from DC18 to 264 V .
Power module specification

Type Items		THV-2747	THV-2748
Name		POWER1	POWER2
Input voltage		AC85 ~ 264V	DC18 ~ 32V
Input frequency		$47 \sim 66 \mathrm{~Hz}$	-
Power consumption		38 W max, 80VA max	40VA max
Rush current		Max 20A (subject to AC100V input) 40A (subject to AC200V input)	Max 5A
Rated output current	DC5V	4A	
over current protection	DC5V	5.25A	
Over-voltage protection		$5.75 \sim 7.00 \mathrm{~V}$	
Efficiency		65\%typ	70\%typ
Outside dimension		$35(\mathrm{~W}) \times 130(\mathrm{H}) \times 110(\mathrm{D}) \mathrm{mm}$	
Weight		0.33 kg	0.34 kg

Power module

(1) Lower cover
(2) Terminal block

POWER 1 is the terminal block to input AC85-264V and output to RUN relays. POWER 2 is the terminal block to input DC18-32V and output to RUN relays.
"RUN relay" output contact will open and close synchronizing with the CPU-RUN signal.
CPU at running: output contact is closed
CPU at not running: output contact is opened
But the output to RUN relays is only effective in the rack (CPU rack) wherein CPU module is installed.
(No output is effective in the additional I/O rack.)
note:Please use the diode for the serge killer when you use the inductive load with DC.

7.8 Selector Module Specification

This selector module is used when using additional base other than the basic base on which CPU is mounted. This module enables to set up Rack No. and head address of I/O Module addresses to be allocated. When Selector Base is used, this module isn't used.

Items	Type
Function	Enable to set up Rack No. and I/O address
Consumption current	31 mA
Outside dimension	$35(\mathrm{~W}) \times 130(\mathrm{H}) \times 110(\mathrm{D}) \mathrm{mm}$
Weight	0.16 kg

Selector module

This is needed when I/O rack for additional installation is used.

Showing that 5 V power supply is ready in the base, but turning off when instantaneous interruption of the power is detected. (When power throw-in is made at the additional I/O rack side later than the CPU rack, the CPU detect I/O power interruption and, hence, this lamp does not turn ON. For resetting it, turn on CPU RESET switch.
(2) ERROR lamp
This lamp turns ON against error of the I/O module, which is installed on applicable rack, and parity error of I/O bus.
(3) RACK NO. selector switch
This switch is to select Rack No. in the range of $1-E$ (hexadecimal).
Selection of Rack No. "F" or Rack No. doubling would result in error.
(4) I/O ADDRESS selector switch
This switch intended to decide the head address of the rack selects the addresses in the range of $00-3 \mathrm{~F}$ (hexadecimal).
(5) Upper cover

Rack No. setup and head address setup
Where additional I/O racks are installed, rack No. and head address must both be set up using RACK NO. selector switch and I/O ADDRESS selector switch in the selector module. Further, with PC3JNF and PC3JNM, CPU Rack No.= 0 and head address = X000 (Y000) are fixed.
(1) Rack No.

Rack No. is selected from the range of 0 to E . (But actual selection range of additional I/O rack No.is 1 to E because of fixed CPU rack No. 0 for PC3JNF and PC3JNM) Rack No. has no relation with I/O cable connection order. Rack No. is intended to discriminate each rack. Where two or more racks exist, avoid double setup.
(2) Rack head address

PC3 enables to set up the head address individually for each rack.
Set up it by upper two digits of the head address of each rack and I/O ADDRESS selector switch. Further, in setting up, be careful to avoid overlapping of other rack to I/O address. Skip setup of I/O address is trouble free.

Note) Switch OFF the power source before switch setting up.
Related self-diagnosis
For the details of the following items, refer to "Self-Diagnosis."

- Use of I/O Rack F
- I/O Rack No. overlap
- Overlap of I/O Rack No.
(3) I/O Address

I/O addresses in each base are allocated according to the number of allocation points which were setup on PARAMETER in the order from left slot (slot 0), based on the head address as a reference.

7.9 I/O Cable Specification

This cable is used to connect the basic base, on which CPU is mounted, with additional base on which Selector Module is mounted.

Items Type	THY-2770	THY-2771
Cable length	0.5 m	1 m
Weight	0.17 kg	0.24 kg

*) Cable length is optionally available up to 3 m maximum on special request (order).

7.10 I/O Branch Module Specification

This module is used to connect two or more additional bases.

Type	THU-2774
Items	$93(\mathrm{~W}) \times 113(\mathrm{H}) \times 18.5(\mathrm{D}) \mathrm{mm}$
Outside dimension	$77.6(\mathrm{~W}) \times 86(\mathrm{H}) \mathrm{mm}$
Installing dimension	06 bell-shaped hole $(\mathrm{M} 5$ screw used $)$
Installing holes	0.19 kg
Weight	

*) This module is not needed when 8 -slot bases (2 pcs.)are used.

7.11 I/O Conversion Cable Specification

This cable is used to connect bus line to devices (MC256IV, etc.) where in PC2 bus is ready and to connect bus line to the I/O base of PC2.

Items Type	THY-2772	THY-2773
Cable length	0.5 m	1 m
Weight	0.17 kg	0.24 kg

*) The cable length is optionally available up to 3 m maximum on special request (order).

7.12 Selector base specification

Selector base PC3J/PC2J is the integrated base combining conventional base and selector module and can be used additional base for each CPU module. (However cannot be used for CPU base.)
Setting for rack No. and heading address setting for I/O module are executed.
Selector base

Item	Type	THR-5643	THR-5644
Actually installed I/O number	8 Modules	6 Modules	4 Modules
Outer dimension $(W \times H \times D ~ m m)$	$370.5 \times 160 \times 7$	$299.5 \times 160 \times 7$	$228.5 \times 160 \times 7$
Mounting dimension $(\mathrm{W} \times \mathrm{H}$ mm) $)$	350×145	280×145	210×145
Consuming current	$32 \mathrm{~mA}($ Typ. $)$		
Weight	0.69 kg	0.57 kg	0.45 kg

7.12.1 Composition example of Selector Base Selector base has configuration shown in below:

System configuration example
I/O module Communication module Special module or blank

Note) Selector base cannot be used as CPU base.
Use one of the bases for CPU from 8 slots base(2), 6 slots base, 4 slots base and 2 slots base.
7.12.2 Name and function of each portion for Selector Base

(1) POWER lamp

Indicates 5 V power source is supplied to base module.
However the lamp turned off when interruption of power source is detected. (This lamp does not light because CPU detects I/O power down when power source of selector base is turned on after CPU started up. Turn on CPU's reset switch to release this state)
(2) Error lamp

Lights when module error and I/O bus parity error that are amounted on applicable rack are generated.
(3) Rack number selective switch

Rack number is set within range $1 \sim \mathrm{E}$ (Hexadecimal notation). Error is generated when rack number " E " is selected or duplicated rack No. is selected.
(4) I/O address selective switch

Determines heading of address number for rack I/O module within range $00 \sim 3 \mathrm{~F}$.
Pay attention for giving overlapped I/O address to the rack belonging to other rack. Random setting of I/O address is not problem.

Setting example of rack No. and I/O address

(1) 5 V power source terminal

This terminal is used for receiving terminal 5 V from external source or supply 5 V to outer load. Do not connect 5 V and 0 V terminals between racks having power source in their rack. This will be parallel operation of module, which causes breakage of module. Also do not connect terminal in reverse polarity or supply power other than 5 V , which prevents module from breakage.
(Recommending screw tightening torque: $1 \mathrm{~N} \cdot \mathrm{~m}$)
(2) I/O bus connector

Serves to connect I/O bus cable.
(3) Connector for power module

This connector is used to connect POWER 1 module or POWER 2 module.
(4) Connector for I/O module

This connectors are used to connect with such module as I/O module, communication module or special module. Do not connect with CPU module or selector module, if connected the module could be broken.

8. Link function

PC3JG CPU has SN-I/F, computer link, PC link and DLNK-M2 as standard.
PC3JG CPU has capability to install as many as 14 sets of link (communication) module ${ }^{* 1}$ other than built-in links.

Refer to operation manual for each link module in PC3J/PC2 Series concerning each link module.
Concerning built-in link refer to "10. Built-in link function".
*1 Maximum link number is total 16 links: 14 sets of link module and such 2 links as $\mathrm{SN}-\mathrm{I} / \mathrm{F}$, computer link, PC link and DLNK (However " 8 module/program" and "consuming memory capacity is less than 60K bit").
SN-I/F, computer and PC link require no consuming memory.
Maximum 8 modules are required for a program (1 module is allocated for built-in link except SN-I/F.)
Accordingly, maximum module number will become 8 modules when such operation mode requires only one program (PRG.1) as PC2 compatible mode.
Also such installation that requires more than 60K bite of consuming memory more is incapable. Consuming memory capacity varies depending on each communication module.

8.1. Link parameter setting

Set parameter for each program when link module is used installing on PC3JG.Please do not set the same link parameter to link No.1~8. Moreover, please do not set the same parameter through the other programs.

When link module is used installing on PC3JG ${ }^{* 2}$, a few notices are required to set parameter for each program.

Have a good understanding explanation in this chapter before operation start.
*2 Handling of link module is the same with conventional PC2 Series when CPU in PC3JD Series is used in PC2 compatible mode.
Except that link No. is handled as 1-1~1-8. Accordingly Link No. data in CPU in PC2 Series and CPU in PC3J Series become different as shown below when status information is stored in special register at the time communication abnormality.
< Link No. data stocked in special register >
CPU in PC2 Series: "01H" ~ "08H" (expression in hexadecimal notation)
CPU in PC3J Series: "11H" ~ "18H" (expression in hexadecimal notation)

8.2. Data link area

When the link modules for data link are mounted in the PC3J, the data link areas available for use (usable devices) are as listed below.

Link modules	Data link areas (usable devices)							
	L,M	X, Y	R,D	EL,EM	EX,EY	GM	GX,GY	U
PC link	\bigcirc	\bigcirc		\bigcirc	\bigcirc	©	©	
PC1-I/F	\bigcirc	\bigcirc		\bigcirc	\bigcirc	©	©	
High speed remote I/O	\bigcirc	\bigcirc		\bigcirc	\bigcirc	0	©	
HPC link	\bigcirc		\bigcirc	\bigcirc		©		
Multiple communication I/F	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	©	
M-NET	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	©	
Pulse output	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
DLNK-M	\bigcirc	\bigcirc		\bigcirc	\bigcirc			
DLNK-M2	\bigcirc	\bigcirc		\bigcirc	\bigcirc	©	©	
AF1K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
MA1K	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	©	©	
ME-NET	\bigcirc		\bigcirc					
FL-NET	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	©	©	©
PROFI-S2	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	©	©	
Motion controller	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	©	©	

- The \bigcirc-marked devices are the conventional usable devices and the device that can use the division mode of 3 J is O and and the device that can be the use it at the PC3JG division mode is O, O, and © .
- Where the PC3J CPU is in run under PC2 compatible Mode, the usable devices are limited to the \bigcirc-marked ones. Use of the -marked devices is not allowed.
*1: For HPC link, Ver 2.20 and higher Ver can use some (EL, EM) of the extended relay areas.

Furthermore, availability of the data link areas differs depending on CPU operation mode.

< Case of Data Area Separate Mode >

Only data areas in a program wherein applicable link parameters are set up can be applied to the data link areas (devices).
For example, where PC link host station is set up in Program 2 and parameters are set up so as to send L0000 ~ L001F to slave station 1, L0000 ~ L001F in Program 2 are sent to slave station 1.

Under "Data Area Separate Mode", attention must be paid to the following items regarding the data link areas.
-L, M, R. D are independent every program.
Set up each area to store the received data so as to avoid doubling in each link setup every program. Furthermore, set up each area so as to avoid doubling with those in the data registers intended to store output coil in the program and calculated result.

- X, Y, EL, EM, EX, EY,GX, GY ,GM and U are common to each program.

Set up each area to store the received data so as to avoid doubling in all the installed links. In addition, set up each area so as to avoid doubling with the data register to store the output coils of all programs and calculated result.
< Case of Data Area Single Mode or PC2 compatible Mode>
Only data areas common to each program are applied to the data link areas.
For example, where PC link host station is set up in Program 2 and link parameters are set up so as to send L0000 ~ L001F to slave station 1, L0000 ~ L001F in the basic area are sent to the slave station 1.

In the case of Data Area Single Mode or PC2 compatible Mode, attention must be paid to the following regarding the data link areas.

- All the data link areas are common to each program .

Set up each area to store the received data so as to avoid doubling in all the installed links. In addition, set up each area so as to avoid doubling with the data register to store the output coils of all programs and calculated result.

8.3. Commands

Where link module to issue commands is mounted in the PC3J, some restrictions are given to handling of the commands as described below.

1. Where commands for data read, etc. are sent, the PC3J operation and response are different depending on CPU operation mode.
< Case of Data Area Separate Mode >
Where commands for data read, etc. are sent, the data areas in a program wherein link parameters are set up are applied to the PC3J operation and response. The data areas in other program (no link parameters set up therein) can not be applied.
For example, where the computer link is set in Program 1 and V40 is read using one I/O point read command, the response data is V40 in Program 1.
< Case of Data Area Single Mode or PC2 compatible Mode >
Where the commands for data read, etc. are sent, the data areas common to each program are applied to the PC3J operation and response.
For example, where the computer link is set in Program 2 and S200 is read using I/O register word read command, the response data is S 200 in the basic area.
2. Extended relay and extended register can not be applied to the commands.
3. Commands intended for control of CPU operation such as scan halt, halt reset (release), etc. are applied to control of the system overall. These can not be applied to individual control every program.
4. Some commands for program read, etc. are not available for the use.

However, it is possible to issue the commands intended to support the PC3J CPU function by mounting a link module which contains therein the command function corresponding to the PC3J, whereby the restrictions mentioned above are eliminated.

8.3.1. Computer Link commands

Where any of the computer link modules in Ver 5.00 and lower Version is mounted in the PC3J, the PC3J operates and responds as described on next page when the computer link commands are sent.

However, the PC3J operation and response are identical to Ver 5.00 and lower Version when it is operated in PC2 compatible Mode.

Even if the computer link modules Version is before Ver 5.20, it cannot access "GM, GX, GY, EB" domain added to the PC3JG division mode.

- The computer link built in as a standard corresponds to the PC3J commands
- Only the computer link bulit in PC3JG can access "GM,GX,GY,EB" domain.(Version 6 or more)

PC2J PC/CMP LINK(THU-2755)
PC2J PC/CMP LINK2(THU-5139)
PC2J 2PORT LINK(THU-2927)

No	Commands	PC3J operation and response
1	I/O 1 POINT READ	Response is sent to the data area in the parameter-set program from the computer link. (But unable to be applied to extended relay and extended register .) ${ }^{* 1}$
2	I/O REGISTER BYTE READ	
3	I/O 1 POINT WRITE	
4	I/O REGISTER BYTE WRITE	
5	SEQUENCE PROGRAM READ	Unable to be applied .(NAK sent back)
6	SEQUENCE PROGRAM WRITE	
7	I/O REGISTER WORD READ	Response is sent to the data area in the parameter-set program from the computer link. (But unable to be applied to extended relay and extended register .) *1
8	I/O REGISTER WORD WRITE	
9	SCAN HALT	Works for the system overall. (not work individually every program.)
10	SCAN HALT RESET(RELEASE)	
11	SCAN RESTART	
12	CPU STATUS READ	Identical to conventional Ver.
13	FILL I/O REGISTER	Response is sent to the data area in the parameter-set program from the computer link. (But unable to be applied to extended relay and extended register .) ${ }^{* 1}$
14	WRITE MODE SETTING	Identical to conventional Ver.
15	WRITE MODE READ	
16	RESET	Identical to conventional Ver.
17	DUMMY SCAN HALT	Unable to be applied .(NAK sent back)
18	DUMMY SCAN HALT RESET(RELEASE)	
19	CPU ID READ	Identical to conventional Ver.
20	TIMER/ COUNTER SETUP VALUE \& PRESENT VALUE READ	Response is sent back to the timer/counter of parameter-setup program from the computer link.
21	TIMER/ COUNTER SETUP VALUE \& PRESENT VALUE WRITE	
22	TIMER/COUNTER SETUP VALUE WRITE	
23	TIMER /COUNTER PRESENT VALUE WRITE	
24	PARAMETER READ	Unable to be applied .(NAK sent back)
25	PARAMETER WRITE	
26	EXECUTE RIGHT LIMIT SETTING	Identical to conventional Ver.
27	EXECUTE RIGHT LIMIT READ	
28	CLOCK TIME READ	Identical to conventional Ver.
29	CLOCK TIME SETTING	
30	FILL SEQUENCE PROGRAM	Unable to be applied .(NAK sent back)
31	I/O REGISTER MULTI-POINT READ, ADDRESS REGISTRATION	Response is sent to the data area in the parameter-set program from the computer link. (But unable to be applied to extended relay and extended register .) *1
32	I/O REGISTER MULTI-POINT WORK READ	

*1 Extended relay: EP, EK, EV, ET, EC, EX, EY, EM, GX,GY,GM
Extended register: ES, EN, H, U, EB

8.3.2. Ethernet commands

Where any of the ETHERNET modules for Ver 1.10 and lower Versions is mounted in the PC3J, the PC3J operation and response are as described below when the ETHERNET commands are sent.

However, the PC3J operation and response are identical to Ver 1.10 and lower Versions when it is in run under PC2 compatible Mode.

No	Commands	PC3J operation and response
1	SEQUENCE PROGRAM WORD READ	Unable to be applied .(NAK sent back)
2	SEQUENCE PROGRAM WORD WRITE	
3	I/O REGISTER	WORD READ
4	Response is sent back to the data areas in	
parameter setup program from		
ETHERNET .(but unable to be applied to		
extended relays and extended registers.) ${ }^{*} 1$		

*1 Extended relay: EP, EK, EV, ET, EC, EX, EY, EM, GX, GY, GM
Extended register: ES, EN, H, U, EB

8.4. Special Relays and Special Registers

The PC3J CPU stores the link module related error information and status information in special relays and special registers individually every each program. The areas and addresses to be stored in these special relays and special registers differ depending on CPU operation mode applied.
(1) Data Separate Mode

Store area	Address *2	Name and content	Applicable link No.
PRG. 1	V80 ~ V87	COMMUNICATION RESET	Link 1-1
	V90 ~ V9F	LINK COMMAND USE OK FLAG	
		LINK COMMAND ERROR FLAG	
	VAO ~ VBF	IN COMMUNICATION WITH ALL STS / COMMUNICATION ERROR	Link 1-8
PRG. 2	V80 ~ V87	COMMUNICATION RESET	Link 2-1
	V90 ~ V9F	LINK COMMAND USE OK FLAG LINK COMMAND ERROR FLAG	
	VAO ~ VBF	LINK PARAMETER ERROR IN COMMUNICATION WITH ALL STS/ COMMUNICATION ERROR	Link 2-8
PRG. 3	V80 ~ V87	COMMUNICATION RESET	Link 3-1
	V90 ~ V9F	LINK COMMAND USE OK FLAG LINK COMMAND ERROR FLAG	
	VAO ~ VBF	LINK PARAMETER ERROR IN COMMUNICATION WITH ALL STS / COMMUNICATION ERROR	Link 3-8

< Special Registers >

Store area	Address *2	Name and content	Applicable link No.
PRG. 1	$\begin{gathered} \text { SOA8 } \\ 1 \\ \text { SOAF } \end{gathered}$	LINK MODULE CODE	Link 1-1 Link 1-8
	$\begin{gathered} \mathrm{S} 300 \\ 1 \\ \text { S3FF } \end{gathered}$	COMMUNICATION (LINK) MODULE STATUS INFORMATION	Link 1-1 Link 1-8
PRG. 2	$\begin{gathered} \hline \text { SOA8 } \\ 1 \\ \text { SOAF } \\ \hline \end{gathered}$	LINK MODULE CODE	Link 2-1 Link 2-8
	$\begin{gathered} \mathrm{S} 300 \\ 1 \\ \text { S3FF } \\ \hline \end{gathered}$	COMMUNICATION (LINK) MODULE STATUS INFORMATION	Link 2-1 Link 2-8
PRG. 3	$\begin{gathered} \text { SOA8 } \\ \quad! \\ \text { SOAF } \\ \hline \end{gathered}$	LINK MODULE CODE	$\begin{gathered} \text { Link 3-1 } \\ \text { ' } \\ \text { Link 3-8 } \\ \hline \end{gathered}$
	$\begin{gathered} \text { S300 } \\ 1 \\ \text { S3FF } \end{gathered}$	COMMUNICATION (LINK) MODULE STATUS INFORMATION	Link 3-1 Link 3-8

*1 *-mark prefixed to Link No. (Link *-1 ~ *-8) means corresponding Program No.(PRG.1~3).
*2 The name and content of each address are same as those in PC2 Series.

For the details, see " 7-2-5 Table of Special Relays" and "7-2-6 Table of Special Registers ".
(2) Data Single Mode
< Special Relays >

Store area	Address ${ }^{* 2}{ }^{*}$	Name and content	Applicable link No.
Basic area	V80 ~ V87	COMMUNICATION RESET	*1 $\begin{aligned} & \text { * } \\ & \text { Link 1-1 } \\ & \\ & \\ & \\ & \\ & \text { Link 1-8 }\end{aligned}$
	V90 ~ V9F	LINK COMMAND USE OK FLAG LINK COMMAND ERROR FLAG	
	VAO ~ VBF	LINK PARAMETER ERROR IN COMMUNICATION WITH ALL STS / COMMUNICATION ERROR	
Extended area	EV00 ~ EV07	COMMUNICATION RESET	Link 2-1 Link 2-8
	EV10 ~ EV1F	LINK COMMAND USE OK FLAG LINK COMMAND ERROR FLAG	
	EV20 ~ EV3F	LINK PARAMETER ERROR IN COMMUNICATION WITH ALL STS / COMMUNICATION ERROR	
	EV40 ~ EV47	COMMUNICATION RESET	Link 3-1
	EV50 ~ EV5F	LINK COMMAND USE OK FLAG LINK COMMAND ERROR FLAG	
	EV60 ~ EV7F	LINK PARAMETER ERROR IN COMMUNICATION WITH ALL STS / COMMUNICATION ERROR	Link 3-8

< Special Registers >

Store area	Address $^{*^{* *}}$	Name and content	Applicable link No.
Basic area	SOA8		Link 1-1
	\imath	LINK MODULE CODE	1
	SBF		Link 3-8
	S300	COMMUNICATION (LINK)	Link 1-1
	\imath	MODULE	1
	S3FF	STATUS INFORMATION	Link 1-8
	ES000	COMMUNICATION (LINK)	Link 2-1
	\imath	MODULE	1
	ES0FF	STATUS INFORMATION	Link 2-8
	ES100	COMMUNICATION (LINK)	Link 3-1
	\imath	MODULE	1
	ES1FF	STATUS INFORMATION	Link 3-8

*1 *-mark prefixed to each Link No.(Link *-1 ~ *8) means corresponding Program No. (PRG. 1 ~ 3).
*2 The name and content of each address in the basic area are same as those of same address in PC2 Series.
*3 The name and content of each address in the extended area are as follows.
$V 80=E V 00=E V 40, V 81=E V 01=E V 41 \ldots V B F=E V 3 F=E V 7 F$
*4 The name and content of each address in the extended area are as follows. S300=ES000=ES100,S301=ES001=ES101...S3FF=ES0FF=ES1FF

For the details, see " 7-2-5 Table of Special Relays" and "7-2-6 Table of Special Registers ".
(3) PC2 compatible Mode
< Special Relays >

Address ${ }^{*}{ }^{\text {2 }}$	Name and content	Applicable link No.
V80 ~ V87	COMMUNICATION RESET	*1
V90 ~ V9F	LINK COMMAND USE OK FLAG LINK COMMAND ERROR FLAG	Link 1-1
VAO ~ VBF	LINK PARAMETER ERROR IN COMMUNICATION WITH ALL STS / COMMUNICATION ERROR	Link 1-8

< Special Registers >

Address $^{\text {" }}$	Name and content	Applicable link No.
SOA8		Link 1-1
1	LINK MODULE CODE	1
SOAF		Link 1-8
S300	COMMUNICATION (LINK) MODULE	Link 1-1
1	STATUS INFORMATION	1
S3FF		Link 1-8

*1 *-mark prefixed to Link No. (Link *-1 ~*-8) means corresponding Program No.(PRG. 1 ~ 3).
*2 The name and content of each address are same as those in PC2 Series.

For the details, see " 7-2-5 Table of Special Relays" and "7-2-6 Table of Special Registers ".

Link module code list

module name	code
PC link master	0102
PC1-I/F output	0102
PC link slave	0002
PC1-I/F input	0002
Computer link	0003
ME-NET master	0104
ME-NET slave	0004
SIO module	0005
Memory card I/F	0005
High speed remote I/O	0008
AS-I	0008
HPC link master	4009
SUB-CPU master	4009
HPC link slave	${ }^{* *} 09$
SUB-CPU slave	${ }^{* *} 09$
2-port M-NET	0002
Pulse output module	0100
DLNK-M	8008
DLNK-S2	8008
DLNK-M2	8208
Ethernet	8203
AF1K	800 E
MA1K	810 E
Motion controller	820 E
FL-net(8KB)	8009
FL-net(16KB)	8109
FL-net(32KB)	8209
PROFI-S2	8309

** : Slave number
**: Slave number

9. Built-in function

Total two ports are equipped as standard; one is port for CMP link (computer link) or PC link or SN-I/F, the other port for DLNK-M2.
Parameter setting for built-in link ${ }^{* 1}$ is set using peripheral equipment (PCwin). Built-in link can be allocated at required link No. $\left(1-1 \sim 3-8^{* 1}\right)$. However, please do not set the same link parameter to each link No.

In link parameter setting CMP link (computer link) or PC link is set to built-in rack No. and standard slot No. and DLNK-M2 is set to rack No. 0 and slot No. O. If nothing is set to built-in rack No. and standard slot No., SN-I/F is set automatically. It operates as CMP for PC2 interchangeable mode.
*1 In link No. (Link\#-1~\#-8), mark " \#" demotes corresponding program No. (Program 1 ~ 3).

Link module setting

Link	Link No.	Rack No.	Slot No.	Module name
L1 (CMP/PC)	Random	Built-in (F)	Standard (0)	Computer link PC link
DLNK	Random	0	0	DLNK-M2

(Note1) If built-in lack No., standard slot No. is not made setting, SN-I/F is selected. In the case of PC2 compatible mode, it can be used as computer link.
(Note2)Even when not using built-in DLNK-M2, a link module needs to be set up.
It is necessary to choose「Do not」to slave in a detailed setup of a link parameter.

(Note3)Please turn on the terminal switch when using it as $\mathrm{SN}-\mathrm{I} / \mathrm{F}$. It operates as $\mathrm{PC} / \mathrm{CMP}$ at the time of turning off. When you do not use it as SN-I/F, please turn OFF.

9.1. Built-in computer link

For the link detail, see " Instruction Manual for PC Link/Computer Link for PC2 Series ".
(1) Computer link specification

Items	Specification
Interface standard	Conforming to EIA RS-422
Communication system	Start-stop synchronous, semi-dual (4-wire type/ selectable)
Transmission line	Shielded twist bare cable
Communication speed	$\begin{array}{\|lll\|} \hline 0.3,0.6,1.2,2.4,4.8 & \\ 9.6,19.2,38.4 & \text { kbps } & \text { (Presetting) } \\ \hline \end{array}$
Transmission distance	Max 1 km (total length)
Transmission form	1:N
Number of stations	Max 32 stations (Address No. ~37) [set with octal number)
Data type	Start bit -------- 1 bit Data length --- 7 or bit (presetting) Parity \qquad 1 bit (even parity Stop bit \qquad or 2 bit (presetting)
Characters used	ASCII code
Error detection	Parity check, sum check

(2) Communication formats

The communication formats for command and response are as follows.

AD(H) (L)----------------- This represents Station No. to receive command in command format and Station No. to send response in response format. Two-digit octal number ($00 \sim 37$) is expressed with ASCII Code.

RI---------------------------- Designates the time from receipt of command until sending response. One-digit hexadecimal number $(0 \sim \mathrm{~F})$ is expressed with ASCII Code (30H~39H, 41H~46H).
The relationship of RI to response time is as per the table below.

RI	Response time (msec)	RI	Response time (msec)
0	0	8	80
1	10	9	90
2	20	A	100
3	30	B	200
4	40	C	300
5	50	D	400
6	60	E	500
7	70	F	600

PRG ------------------------ Representing an objective of command processing.
$0 \sim 3$ are expressed with ASCII Code.

PRG	Program	PRG	Program
0	System overall	2	Program 2
1	Program 1	3	Program 3

"PRG" is divided into "mandatory", "omittable" and "unnecessary" depending on commands. Where omitted, parameter-set program No. is an objective of command processing.

SC (H) (L)
Representing sum check data .
Two-digit hexadecimal number ($00 \sim$ FF) is expressed with ASCII Code.

EC (H)(L)-------------------Representing error code against error occurrence.
Two-digit hexadecimal number ($00 \sim 1 \mathrm{~F}$) is expressed with ASCII Code.

Supplement: Sum Check

For improving the reliability of transmission data this module detects error by means of sum check in addition to parity check. The sum check sequence in this module is as follows.
(1) Command content (or response content) up to last data from $\mathrm{AD}(\mathrm{H})$ is added as ASCII code remained unchanged.
(2) Two-digit hexadecimal number in "SC" field is converted to 8 -bit data, which is then added to the sum of (1). If this result is 0 , the message is deemed as normal.
Hence, sum check code is created by the sequence given below.

Step-1 : Add the command content (or response content) up to its last data from AD (H) with ASCII Code remained unchanged.
Step-2 : Obtain " complement of 2 (Note 1)" of lower 1 byte from the sum created in above (1).
Step-3: Divide 1-byte data created in above (2) into upper 4bit and lower 4bit, thereafter converting each to ASCII Code.
(Note 1) Complement of 2 --- Reverse all bits of the binary expressed data ($0 \rightarrow 1$, $1 \rightarrow 0$) and add 1 to each.
(Note 2) When two characters in the sum check field [SC (H),(L) in command format are @ (ASCII 40H)", this module does not execute sum check. Hence, enter "@ @" in a column which needs no sum check. In this case, however, enter sum check data in this column as far as possible because the detection rate of transmission error comes down.
(3) Communication commands

No	Function	PRG	Commands	Remarks
1	I/O 1-POINT READ	O	MRL	
2	I/O REGISTER BYTE READ	0	MRB	Unit of 8 points
3	I/O 1-POINT WRITE	O	SRR	
4	I/O REGISTER BYTE WRITE	O	SRB	Unit of 8 points
5	SEQUENCE PROGRAM READ	Δ	RPM	PRG=1,2,3
6	SEQUENCE PROGRAM WRITE	Δ	WPM	PRG=1,2,3
7	I/O REGISTER WORD READ	O	RDR	Unit of 16 points
8	I/O REGISTER WORD WRITE	0	WDR	Unit of 16 points
9	SCAN HALT	0	HLT	PRG $=0,2,3$
10	SCAN HALT(RELEASE) RESET	0	RUN	PRG=0,2,3
11	SCAN RESTART	O	STA	PRG=0,2,3
12	CPU STATUS READ	-	MPC	
13	FILL I/O REGISTER	0	FDR	Unit of 16 points
14	WRITE MODE SETTING	-	EWR	
15	WRITE MODE READ	-	SWE	
16	RESET	-	RST	
17	DUMMY SCAN HALT	-	PSC	PC2 interchange mode only
18	DUMMY SCAN HALT RESET	-	PRC	PC2 interchange mode only
19	CPU ID READ	-	IDR	
20	TIMER/COUNTER SETUP /PRESENT VALUE READ	0	TCR	Except extended timer and counter
21	TIMER/COUNTER SETUP /PRESENT VALUE WRITE	0	TCW	Except extended timer and counter
22	TIMER/COUNTER SETUP VALUE WRITE	0	SPW	Except extended timer and counter
23	TIMER/COUNTER PRESENT VALUE WRITE	O	PPW	Except extended timer and counter
24	PARAMETER READ	Δ	PRR	
25	PARAMETER WRITE	Δ	PRW	
26	EXECUTE RIGHT LIMIT SETTING	-	ELS	
27	EXECUTE RIGHT LIMIT READ	-	ELR	
28	CLOCK TIME READ	-	WTR	
29	CLOCK TIME SETTING	-	WTC	
30	FILL SEQUENCE PROGRAM	Δ	FIL	PRG=1,2,3
31	I/O REGISTER MULTI-POINT WORD READ \& ADDRESS REGISTRATION	-	RDA	
32	I/O REGISTER MULTI-POINT WORD READ	-	RDM	
33	I/O REGISTER EXTENDED MULTI-POINT READ \& ADDRESS REGISTRATION	-	REA	PC3J
34	I/O EXTENDED MULTI-POINT BYTE READ	-	REM	PC3J
35	IIO REGISTER EXTENDED MULTI-POINT WRITE \& ADDRESS REGISTRATION			
36	I/O REGISTER EXTENDED MULTI-POINT BYTE WRITE	-	WEM	PC3J
37	EQUIPMENT INFORMATION BYTE READ	-	IBR	PC3J
38	EQUIPMENT INFORMATION BYTE WRITE	(0)	IBW	PC3J
39	PROGRAM+PARAMETER WRITE START	©	RWS	PC3J
40	PROGRAM + PARAMETER WRITE END \& STATUS CONTINUE	©	ERC	PC3J
41	PROGRAM + PARAMETER WRITE END \& RESET/STATUS CONTINUE		ERS	PC3J
42	EQUIPMENT INFORMATION WRITE START	-	IWS	PC3J
43	EQUIPMENT INFORMATION WRITE END	-	IWE	PC3J
44	CPU STATUS EXTENDED READ	-	MPE	PC3J

PRG: © = Program No. mandatory
O = Omittable(When omitted, link parameter-set program No. But "HLT", "RUN", "STA" commands are handled as $\mathrm{PRG}=0$.)
$\Delta=$ Omittable only under PC2 interchange mode

9.1.1. Communication commands

1. I/O 1 POINT READ : MRL

to read one I/O point of I/O module.

Computer Link Command

1. Conventional (Own program bit area)

:	:	$\stackrel{\widehat{1}}{\underset{\sim}{4}}$	$\frac{\underset{0}{2}}{8}$?	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$	M	R	1		Bit address 4 digits	$\underset{\substack{\mathrm{O}}}{\substack{\text { O} \\ \hline}}$	$\underset{\substack{J}}{\underset{\sim}{J}}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \end{aligned}$

Identifier: P, K, V, T, C, L, X, Y, and M (Bit area)

Designate the data area in the designated program. If it is omitted, the own area is designated.

3. Register bit designation

:	:	$\underset{\substack{\mathrm{C}}}{\text { O}}$	$\frac{\underset{\partial}{4}}{\square}$?	$\begin{gathered} \mathrm{R} \\ \mathrm{I} \end{gathered}$		M	R	I	$\begin{aligned} & \text { 흘 } \\ & \stackrel{y}{4} \\ & \frac{1}{0} \\ & \hline \underline{0} \end{aligned}$	Word address 4 digits	-		$\widehat{ভ}$	$\underset{\substack{\mathrm{J}}}{ }$	C

Designate the data area in the designated program. If it is omitted, the own area is designated. The data area (S, N, R, D, B, H, U, P, K, V, T, C, L, X, Y, M, EP, EK, EV, ET, EC, EL, EX, EY, EM, ES, EN, GX, GY, GM) is designated for identifier. Bit locate: The data bit locate in the data designated with word address is displayed with hexadecimal number ("0" to "F").

Computer link response

1. Conventional (Own program bit area)

Data .."0" or "1"

If extended bit area or extended register area (except EB) is designated with the program No., the program No. on the response is the following number.
GX, GY, GM : "7"
U : "8"
Others ; "0"

:	:		$\frac{\underset{1}{4}}{\stackrel{\rightharpoonup}{4}}$	\#	$\begin{gathered} \mathrm{R} \\ \mathrm{I} \end{gathered}$	$\begin{aligned} & 0 \\ & \text { O } \\ & \underline{E} \\ & \text { N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	M	R	1		Word address 4 digits	-		$\frac{\mathbb{O}}{0}$	$\underset{\circlearrowleft}{\widehat{I}}$	$\underset{\text { © }}{\stackrel{\rightharpoonup}{U}}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \end{aligned}$

to read the bytes in I/O or Register module. The number of maximum available bytes :256 Bytes

Computer Link Command

Identifiers...all-data-area identifiers except extended identifiers ($\mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{D}, \mathrm{B}, \mathrm{H}, \mathrm{U}, \mathrm{P}, \mathrm{K}, \mathrm{V}, \mathrm{T}, \mathrm{C}, \mathrm{L}, \mathrm{X}, \mathrm{Y}, \mathrm{M}$).
The byte number is represented by hexadecimal " 00 " to "FF", but shown with the value after deduction of 1 from actual byte number.

Designate the data area in the designated program. If it is omitted, the own area is designated. However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

Computer link response

1. Conventional (Own program bit area)

If extended bit area or extended register area (except EB) is designated with the program No. , the program No. on the response is the following number. GX, GY, GM : "7"
U: "8"
Others ; " 0 "

Computer Link Command

1. Conventional (Own program bit area)

:	佥		?	$\begin{array}{\|c\|} \mathrm{R} \\ \mathrm{I} \end{array}$	S	R	R		$\begin{aligned} & \text { Bit address } \\ & 4 \text { digits } \end{aligned}$	$\frac{\stackrel{\pi}{0}}{\square}$	$\underset{\sim}{\text { S }}$	$\stackrel{0}{0}$	C

Identifier: P, K, V, T, C, L, X, Y, and M (Bit area)
Data .."0" or "1"

Designate the data area in the designated program. If it is omitted, the own area is designated.

Designate the data area in the designated program. If it is omitted, the own area is designated. The data area (S, N, R, D, B, H, U, P, K, V, T, C, L, X, Y, M, EP, EK, EV, ET, EC, EL, EX, EY, EM, ES, $\mathrm{EN}, \mathrm{GX}, \mathrm{GY}, \mathrm{GM}$) is designated for identifier.
Bit locate: The data bit locate in the data designated with word address is displayed with hexadecimal number ("0" to "F").

Computer link response

1. Conventional (Own program bit area)

If extended bit area or extended register area (except EB) is designated with the program No., the program No. on the response is the following number.
GX, GY, GM : "7"
U : "8"
Others ; " 0 "

:	:	$\frac{\widehat{C}}{\substack{4}}$	$\stackrel{\text { ®}}{4}$	\#	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$	$\begin{aligned} & 0 \\ & \vdots \\ & E \\ & \frac{1}{0} \\ & \frac{0}{0} \\ & 0 \end{aligned}$	S	R	R		Word address 4 digits	-			$\underset{\circlearrowleft}{\stackrel{\rightharpoonup}{\omega}}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \end{aligned}$

4. I/O REGISTER BYTE WRITE : SRB
to write I/O or register byte number.
The maximum byte number : 256 bytes

Computer Link Command

Identifiers...all-data-area identifiers except extended identifiers ($\mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{D}, \mathrm{B}, \mathrm{H}, \mathrm{U}, \mathrm{P}, \mathrm{K}, \mathrm{V}, \mathrm{T}, \mathrm{C}, \mathrm{L}, \mathrm{X}, \mathrm{Y}, \mathrm{M}$).
The byte number is represented by hexadecimal " 00 " to "FF", but shown with the value after deduction of 1 from actual byte number.
Byte number "FF" is 256 bytes.

Designate the data area in the designated program. If it is omitted, the own area is designated. However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

Computer link response

1. Conventional (Own program bit area)

2. Data area

If extended bit area or extended register area (except EB) is designated with the program No., the program No. on the response is the following number.
GX, GY, GM : "7"
U : "8"
Others ; "0"
to read the program words. The maximum number of words to be read : 128 words.

Computer Link Command

Program area in the designated program is designated. Any command (conventional command) with no designation of Program $1 \sim 3$ is rejected.
However, where the PC3J is in run under PC2 Mode any command is accepted even without designation of program $1 \sim 3$.
The range of words in address 1 ~ address 2 shall be 128 words maximum.
If address 2 exceeds 7FFF (in the case of 32 KW) or 3FFF (in the case of 16KW), it would result in error.

Computer link response

:	:	$\begin{gathered} \text { A } \\ \text { D } \\ \text { (H) } \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { D } \\ & \text { (L) } \end{aligned}$	\#	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$		R	P	M	Address 1 4 digits	Address 2 4 digits	Data 1 4 digits	$\begin{aligned} & \text { Data } 2 \\ & 4 \text { digits } \end{aligned}$

	Data N	S	S	C
4 digits	C	C	R	
		(H)	(L)	

6. SEQUENCE PROGRAM WRITE : WPM
to write program words. The maximum number of words to be written is 128 bytes.

Program area in the designated program is designated. Any command (conventional command) with no designation of Program $1 \sim 3$ is rejected.
However, where the PC3J is in run under PC2 Mode any command is accepted even without designation of program $1 \sim 3$.
The range of words in address $1 \sim$ address 2 shall be 128 words maximum.
If address 2 exceeds 7FFF (in the case of 32 KW) or 3FFF (in the case of 16 KW), it would result in error.

Computer link response														
:	:	$\begin{gathered} \text { A } \\ \text { D } \\ \text { (H) } \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { D } \\ & \text { (L) } \end{aligned}$	\#	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$		W	P	M	Address 1	Address 2	$\begin{gathered} \mathrm{S} \\ \mathrm{C} \\ (\mathrm{H}) \end{gathered}$	S C (L)	C

1. Conventional (Own program area)

:	:	$\frac{\widehat{y}}{\mathbf{Y}}$?	$\begin{gathered} \mathrm{R} \\ \mathrm{I} \end{gathered}$	R	D	R		Address1 4 digits	Address2 4 digits	$\underset{\circlearrowleft}{\underline{ভ}}$	$\underset{\circlearrowleft}{\text { Ј }}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{R} \end{aligned}$	Identifiers ...all-data-area identifiers, except extended identifiers (S, N, R, D, B, H, U, P, K, V, T, C,L, X, Y,M). The range of words in address 1 to address 2 shall be 128 words maximum.

Designate the data area in the designated program. If it is omitted, the own area is designated. However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

1. Conventional (Own program bit area)

:	:		$\stackrel{\rightharpoonup}{\square}$	\#	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$	R	D	R		Address 1 4 digits	Address2 4 digits	Data1 4 digits	Data2 4 digits

If extended bit area or extended register area (except EB) is designated with the program No., the program No. on the response is the following number.
GX, GY, GM : "7"
U : " 8 "
Others ; " 0 "

Computer Link Command

1. Conventional (Own program bit area)

:	:	$\stackrel{\text { İ }}{\substack{4}}$	$\frac{\grave{6}}{4}$?	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$	W	D	R	흘 ¢ ¢ ¢ ¢	Address1 4 digits	Address2 4 digits	Data1 4 digits	Data2 4 digits	

Identifiers ...all-data-area identifiers, except extended identifiers (S, N, R, D, B, H, U, P, K, V, T, C,L, X, Y,M).
The range of words in address 1 to address 2 shall be 128 words maximum.

Designate the data area in the designated program. If it is omitted, the own area is designated.
However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

Computer link response

2. Data area

If extended bit area or extended register area (except EB) is designated with the program No., the program No. on the response is the following number
GX, GY, GM : "7"
U : "8"
Others ; "0"

Program 0，2， 3 to be designated．
If program 1 is designated，it is processed as program designation error（Code 03H）．
Where no program is designated，Program O（System Program）is applied．

Computer link response

2．Other program

：	：	華	를	\＃	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$		H	L	T	笁	こ	C

10．SCAN HALT RESET（RELEASE）：RUN
to release the sequence scan from halt condition．（ No scan executed．）
Computer link command

11. SCAN RESTART : STA

to execute the sequence scan released from HALT condition.
Computer link command

2. Other program

Program 0,2,3 to be designated,
If program 1 is designated, it is processed as program designation error (Code 03H).

Computer link response

When scan halt reset (RUN) and scan start (STA) are executed for program 0 (System Program) with program -2,-3 kept halted, not only program-1 but also program-2,-3 start.

Computer link command

No program designated.

If designated, it is deemed as error.

:		$\stackrel{\rightharpoonup}{\square}$	\#	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$	M	P	C	Data1	Data2	$2 \xrightarrow{\text { İভ }}$	¢	C
	'	Data No.:1						Data No.:2				
	Bit	Content						Bit		Content		
	7	Major trouble						7	!	RUN		
	6	Minor trouble						6	T	In stop		
	5	Alarm						5		Stop request in continuing		
	4	\cdots						4	1	In dummy stop		
	3	I/O allocated parameters change						3	1	In DEBUG Mode		
	2	Memory card available						2		I/O Monitor User Mode		
	1	""w"mmswew						1		PC3 Mode		
	0	-						0		-		

13. FILL I/O REGISTER :FDR

to rewrite all addresses in the designated areas into thedesignated data.

Computer link command

1. Conventional (Own program bit area)

Identifiers ...all-data-area identifiers, except extended identifiers ($\mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{D}, \mathrm{B}, \mathrm{H}, \mathrm{U}, \mathrm{P}, \mathrm{K}, \mathrm{V}, \mathrm{T}, \mathrm{C}, \mathrm{L}, \mathrm{X}, \mathrm{Y}, \mathrm{M}$).

2. Data area

Designate the data area in the designated program. If it is omitted, the own area is designated. However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

Computer link response

1. Conventional (Own program bit area)

Identifiers ...all-data-area identifiers, except extended identifiers ($\mathrm{S}, \mathrm{N}, \mathrm{R}, \mathrm{D}, \mathrm{B}, \mathrm{H}, \mathrm{U}, \mathrm{P}, \mathrm{K}, \mathrm{V}, \mathrm{T}, \mathrm{C}, \mathrm{L}, \mathrm{X}, \mathrm{Y}, \mathrm{M}$).
2. Data area

If extended bit area or extended register area (except EB) is designated with the program No., the program No. on the response is the following number.
GX, GY, GM : "7"
U : "8"
Others ; " 0 "
14. WRITE MODE SETTING :EWR

Computer link command

No program designated.
If designated, it is deemed as error.

Write Mode setting data	
Bit	Content
3	Program restart permit
2	I/O write permit
1	Program, etc. write permit
0	Register write permit

to read write mode.

Write Mode setting data	
Bit	Content
3	Program restart permit
2	I/O write permit
1	Program, etc. write permit
0	Register write permit

16. RESET : RST
to halt the sequence program. But the system executes RESET processing.

Computer link command

No program designated.
If designated, it is deemed as error.

Computer link response

17. DUMMY SCAN HALT : PSC
to halt the sequence program with RUN signal kept ON.

Note: used hitherto in write processing during run.
The use of this command shall be limited to the processing for Program 1.
Hence, use the new command for writing program and parameters corresponding to PC3J.

No program designated. If designated, it is deemed as error. Furthermore, where the PC3J is in run under PC3 mode the PSC command is not accepted. (Although as a rule this command is not available for use in the built-in computer link it supports the same computer link when required from the link during run in PC 2 mode.

18. DUMMY SCAN HALT RESET : PRC

to reset (release) the dummy scan halt.

Note: used hitherto in write processing during run.
The use of this command shall be limited to the processing for Program 1.
Hence, use the new command for writing program and parameters corresponding to PC3J.

No program designated. If designated, it is deemed as error. Furthermore, where the PC3J is in run under PC3 mode the PSC command is not accepted. (Although as a rule this command is not available for use in the built-in computer link it supports the same computer link when required from the link during run in PC2 mode.

19. CPU ID READ : IDR
to read ID information of the CPU (Series, equipment No, type, version).

Computer link command

No program designated.
If designated, it is deemed as error.

The ROM version of computer line is identical that of tr, e CPU. ${ }_{1}$

to read the setup value and present value of timer/counter. Computer link command

2. Other program

This command does not support reading of the present value
(EN) and setup value (H) of the extended timer/counter. (EN and H shall be handled in the data register.

Timer and counter in the designated program are designated. However, this command does not support reading of the present value (EN) and setup value (H) of the extended timer/counter. (EN and H shall be handled in the data register.)

Computer link response

2. Other program

:	:	䓂	$\frac{\mathrm{O}}{\mathrm{O}}$	\#	$\begin{gathered} \mathrm{R} \\ \mathrm{I} \end{gathered}$		T	C	R	Setup value $B C D$ 5 digits	Present value BCD 5 digits	$\begin{aligned} & \widehat{\mathrm{I}} \\ & \text { © } \end{aligned}$	$\underset{\substack{\mathrm{O}}}{\stackrel{\rightharpoonup}{2}}$	C

21. TIMER/COUNTER SETUP VALUE \& PRESENT VALUE

WRITE : TCW
to write the setup value and present value of timer/counter.

Computer link command

This command does not support writing of the present value (EN) and setup value (H) of the extended timer/counter. (EN and H shall be handled in the data register.)

Timer and counter in the designated program are designated.However, this command does not support writing of the present value (EN) and setup value (H) of the extended timer/counter. (EN and H shall be handled in the data register.)

Computer link response

2. Other program

This command does not support writing of the setup value (H) of the extended timer/counter. (H shall be handled in the data register.)

Timer and counter in the designated program are designated. However, this command does not support writing of the reset value $\mathrm{H})$ of the extended timer/counter. (H shall be handled in the data register.)

Computer link response

2. Other program

Computer link command

This command does not support writing of the present value (EN) of the extended timer/counter. (EN shall be handled in the data register.)

Timer and counter in the designated program are designated.
However, this command does not support writing of the present value (EN) of the extended timer/counter. (EN shall be handled in the data register.)

Computer link response

1. Conventional (Own program)

2. Other program

:	:	王	$\frac{\mathrm{O}}{\mathrm{O}}$	\#	$\begin{gathered} \text { R } \\ \text { I } \end{gathered}$	$\begin{aligned} & \text { ¿் } \\ & \text { E } \\ & \text { Kin } \\ & \text { 은 } \end{aligned}$	P	P	W	$\underset{\substack{\text { I }}}{ }$	$\underset{\substack{\mathrm{J}}}{\substack{0 \\ \hline}}$	C R

Computer link command

The parameter in the designated program is designated. Any command (conventional command) with no designation of Program 1 to 3 shall not be accepted.
However, where the PC3J is in run under PC2 Mode even such a command is accepted even with no designation of program. Program-0 is system parameter.

Coumputer link response

25. PARAMETER WRITE : PRW

to write parameters
Computer link command

The parameter in the designated program is designated. Any command (conventional command) with no designation of Program 1 to 3 shall not be accepted.
However, where the PC3J is in run under PC2 Mode even such a command is accepted even with no designation of program. Program-0 is system parameter.

Coumputer link response

1. Conventional (Own program)

No program designated.

If designated, it is deemed as error
S/R shall be "1" for setting the execution right and " 0 " for resetting it. Where the write right for program, etc. is requested, the data bit 2 shall be set to "1". In addition, other execution rights are currently not supported.

Computer link response

27. EXECUTE RIGHT LIMIT READ : ELR

to read the request source which requested limitation to the execution right.

No program designated.
If designated, it is deemed as error.

The request source which has requested the execution right to Data 6 is displayed.
<In run under PC2 Mode: (1) when the built-in link parameter is not set up> "00": Peripheral equipment (currently not supported.) "01" to "08" ; Link No. 1 to 8 "09" : built-in computer link "FF": No
< In run under PC3 Mode >
"00" : peripheral equipment (currently not supported.)
"11" to 18" :Link No. 1 to 8 in Program 1
"21" to "28" :Link No. 1 to 8 in Program 2.
" 31 " to " 38 " :Link No. 1 to 8 in Program 3
"FF":No
<In run under PC2 Mode : (2) When the built-in link parameter is set up >
"00" : Peripheral equipment(currently not supported.)
" 01 "to "08" : Link No. 1 to 8 (including the built-in link)
"FF" : No

The execution right limit request source is held even under power OFF.
However, the request source data 6 comes to "FF" if somewhat error happens with the data upon memory check.
28.WATCH TIME READ : WTR
to read the watch time.

No program designated.
If designated, it is deemed as error.

29.WATCH TIME SETTING: WTC

to change the watch time

No program designated.
If docimnatod it ic doomod ac orrnr
In addition, the data shall all be BCD data and they shall not be checked even if beyond the watch time data range.

30.FILL SEQUENCE PROGRAM : FIL
to rewrite all the data between the addresses in the designated program area into the designated data.

Computer link command

Parameter in the designated program is designated.
Any command (conventional command) with no designation of Program 1 to 3 is not accepted.
However, the PC3J is in run under PC2 Mode such commands are accepted even no with designation of program. If address 2 exceeds 7FFF (32KW) or 3FFF (16KW), it is deemed as error.

Computer link response

to register the multi-point words read address in data area

Computer link command

1. Conventional (Own program bit area)

No program is designated. If designated, it is deemed as error.
The data number is represented by hexadecimal " 00 " to " 7 F ", but shown with the value after deduction of 1 from actual data number.
Data number "7F" is 128 datas.
The maximum number of registerable words is 128 words.
It is not allowed to designate an extended bit area.
However, this command shall support Program No. only which was set up with applicable link parameter.
EXTENDED MULTI-POINT READ command shall be effective to read multiple points including designation of program No.

to read multi-point words in the registered data area.

No program is designated. If designated, it is deemed as error.

Computer Link Command

No program is designated. If designated, it is deemed as error.
However, applicable program shall be designated for each address to be registered.
In case the bit of register is designated, it is designated as [register address 4 digits]-[bit No.].
The total number of addresses registered shall be 128 addresses irrespective of combination of bit points, byte points and word points.
The program number for extended bit area or extended register area (except EB) is the following number.
GX, GY, GM : "7"
U : "8"
Others ; "0"
However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

Computer link response

34. I/O REGISTER EXTENDED MULTI-POINT
to read extended multiple points in the registered data area.

to register the extended multi-point address in data area.

No program is designated. If designated, it is deemed as error.
However, applicable program shall be designated for each address to be registered.
In case the bit of register is designated, it is designated as [register address 4 digits]-[bit No.].
The total number of addresses registered shall be 128 addresses irrespective of combination of bit points, byte points and word points.
The program number for extended bit area or extended register area (except EB) is the following number.
GX, GY, GM : "7"
U : "8"
Others ; " 0 "
However, the identify EB is designated as follows

EB address	program No.	start address
EB00000 - EB07FFF	9	$0000-7 F F F$
EB08000 - EB0FFFF	A	$0000-7 F F F$
EB10000 - EB17FFF	B	$0000-7 F F F$
EB18000 - EB1FFFF	C	$0000-7 F F F$

to write extended multiple points in the registered data area.

No program is designated. If designated, it is deemed as error.

No program is designated. If designated, it is deemed as error.
Equipment information block No. and head address (4 digits) shall be designated.
(The block is equivalent to the most significant digit of equipment information area 00000 H to 6 FFFFH.)
The byte number is represented by hexadecimal " 00 " to "FF", shown with a numeral after deduction of 1 from actual byte number. Byte number "FF" comes to 256 bytes.

38. EQUIPMENT INFORMATION BYTE WRITE : IBW

to write the bytes of equipment information. The maximum number of bytes :256 bytes

No program is designated. If designated, it is deemed as error.
Equipment information block No. and head address (4 digits) shall be designated. (The block is equivalent to the most significant digit of equipment information area 00000 H to 6FFFFH.)
The byte number is represented by hexadecimal " 00 " to "FF", shown with a numeral after deduction of 1 from actual byte number. Byte number "FF" comes to 256 bytes.

designate the request for writing start of the program parameter of designated Program No.
Any command (conventional command) with no designation of Program 1to 3 is not accepted.
Program 0 is system parameter. System parameter write during run is prohibited.
By issuing this command before issuing PROGRAM PARAMETER WRITE command, pro-operation (transfer to the buffer) for parameter write is executed and issue of PROGRAM PARAMETER WRITE command is permitted.
Furthermore, program parameter write and equipment information write from other equipment are all prohibited until completion of this program parameter write.

Computer link response

40. PROGRAM PARAMETER WRITE TERMINATE ISTATUS

CONTINUE : ERC
to request termination of program parameter write and further continuance of run status (run/stop).

Program counter is used to write during run. Program parameter write during stop is ignored. (Dummy data to be input.)

Designate the request for termination of program parameter write of designated Program No.
After termination, the CPU continues the run status. (If it is in run, program parameter write during run is executed.)
Any command (conventional command) with no designation of Program 1to 3 is not accepted.
Program 0 is system parameter. System parameter write during run is prohibited.
By issuing this command, the CPU starts data transfer to the flash memory from edit RAM.
After complete data transfer to the flash memory, the status are monitored by STATUS READ.

41. PROGRAM PARAMETER WRITE TERMINATE, RESET ISTATUS CONTINUE :ERS
to request termination of program parameter write and reset/further status continuance.

Designate the request for termination of program parameter write of designated Program No.
After termination, the CPU continues the run status after resetting. (If it is in run, program parameter write during run is executed.) Any command (conventional command) with no designation of Program 1 to 3 is not accepted.
Program 0 is system parameter.
By issuing this command, the CPU starts data transfer to the flash memory from edit RAM.
Termination of data transfer to the flash memory is monitored by STATUS READ.

<Note>
Under single mode it is not allowed to use this command to write other than system parameter. (Because of the common data area, if the CPU is reset/starts by special-program write during run the data are cleared and other program result in operation error.)

However, in the case of the pattern of " Program 1 only working" (Program pattern 9, 10) or run under PC2 Mode this command can be used.
42. EQUIPMENT INFORMATION WRITE START : IWS to request equipment information writing start.

The equipment information of designated block No. is designated. Any command with no designation of block No. 0 to 6 is not accepted.
By issuing this command before issue of EQUIPMENT INFORMATION WRITE command, pre-operation (transfer to the buffer) for the equipment information write is executed and execution of the EQUIPMENT INFORMATION WRITE command is permitted. Furthermore, program parameter write from other equipment is prohibited.

43. EQUIPMENT INFORMATION WRITE

TERMINATE : IWE
to request termination of the equipment information write.

The equipment information of designated block No. is designated. Any command with no designation of block No. 0 to 6 is not accepter By issuing this command, the CPU starts transfer the write data to the flash memory from the edit RAM. Termination of data transfer to the flash memory is monitored by STATUS READ.

44. CPU STATUS EXTENDED READ : MPE to read CPU run status. (new command)

No program designated.
If designated, it is deemed as error.

Data No.	1
Bit	Content
7	RUN
6	In stop
5	Stop request in continuing
4	In dummy stop
3	In DEBUG Mode
2	I/O Monitor User Mode
1	PC3 Mode
0	-

Data No.	2
Bit	Content
7	Major trouble
6	Minor trouble
5	Alarm
4	-
3	I/O allocated parameters change
2	Memory card available
1	-
0	-

Data No.	7
Bit	Content
7	-
6	Limitation to program subsidiary information write
5	-
4	-
3	Equipment information write
error	

Data No.	8
Bit	Content
7	In program -7 run
6	In program -6 run
5	In program -5 run
4	In program -4 run
3	In program -3 run
2	In program -2 run
1	In program -1 run
0	-

9.1.2. Error report from Computer Link

This module counteracts by non-response or error response when being unable to response normally to command from host COMPUTER.
(1) Non-response In the following case this module does not send response respond.

- When start code "::" cannot detect in received data.
-When command code "?" cannot detect in received data.
- When end code "CR" cannot detect in received data.
- When station No. is different from own station No.
- When response time(RI) cannot detect correctly.
(2) Error response

This module sends response in the following format to host COMPUTER when it detects any of error which are detailed in Appendix 1 "Error codes".

$:$	$:$	A	A							
D	D	$\%$	R	E	E	S	S	C		
		(H)	(L)			(H)	C	C	C	R
(L)	(H)	(L)								

Hexadecimal two-digits Error Codes
(a) In case of no-response

No.	Possible causes	Actions			
1	Baud rate setup error	Match baud rate of this module with that of host COMPUTER.			
2	Different communication data type of host COMPUTER.	Select proper communication data type of host COMPUTER.			
3	Setup station No. in this module differs that in host COMPUTER.	Match station No. of this module with that of host COMPUTER or otherwise correct the station No. instruction in host COMPUTER command.			
4	Connection error or disconnection of communication cable.	Check the cable for polarity and disconnection.	$	$	No START code ":", ":" in command data
:---					
of host COMPUTER.	Prefix ":", ":" to command head..				

(b) In case of error response
(1) Error Code 01

No.	Possible causes	Actions
1	Incorrect command data format of host COMPUTER	Correct the command format.

(2) Error Code 03

No.	Possible causes	Actions
1	Incorrect selection of address in command data of host COMPUTER.	Reselect correct address in the command.

(3) Error Code 05

No.	Possible causes	Actions
1	The number of transfer data in the command data of host COMPUTER is 0 or exceed 256 bytes.	Correct the number of transfer bytes in the command.

(4) Error Code OA

No.	Possible causes	Actions
1	Communication data break by noise, etc.	Check that communication cable is exactly connected or the cable and strong power cable are not close to one another.

(5) Error Code 0D

No.	Possible causes	Actions
1	Error of sum check data that was created by host COMPUTER.	Correct sum check data.
2	Communication data break by noise, etc.	Check that communication cable is exactly connected or the cable and strong power cable are not close to one another.

(6) Error Code 0E

No.	Possible causes	Actions
1	Write or scanning restart permit were attempted without setting up WRITE PERMIT by "EWR" command or without executing RESTART PERMIT setup.	Correct sum check data. Check that communication cable is exactly connected or the cable and strong power cable are not close to one another.

(7) Error Code 13

No.	Possible causes	Actions
1	TOYOPUC-CPU interface error.	Check if this module is exactly connected to CPU printed board.
2	Error of this module	Execute RESET-START. If the display LED displays same error even after this execution, replace this module.
3	Error of the link parameter.	Check the link parameter setup.

(8) Error Code 20

No.	Possible causes	Actions
1	Error of communication command in command data of host COMPUTER.	Check communication command.

(9) Error Code 2J1

No.	Possible causes	Actions
1	CPU reset under processing.	Re-send the command.

(10) Error Code 22

No.	Possible causes	Actions
9	"RDM" command was sent without setting up address by "RDA" command.	Set up address by "RDA" command before reading it by "RDM" command.

(11) Error Code 31

No.	Possible causes	Actions
1	Program write was attempted while sequence program is in run.	Write program after having stopped sequence program run by "HLT" command, "PSC" command, etc.

(12) Error Code 32

No.	Possible causes	Actions
1	Scanning Stop Reset is not executed by "RUN" command.	Execute "STA" command after having executed Scanning Stop Reset by "RUN" command.
2	Scanning Stop command (STOP) is output from peripheral devices such as program, etc.	Execute "STA" command after having reset Scanning Stop command (STOP) from peripheral device.

(13) Error Code 34

No.	Possible causes	Actions
1	Read and write of sequence program and subsidiary information are prohibited.	Sequence program and subsidiary information read and write by peripheral device, etc.

(14) Error Code 35

No.	Possible causes	Actions
1	No execution right.	Reset the limit setup by device that has limited execution right.

(15) Error Code 36

No.	Possible causes	Actions
1	Execution right limit is set up.	Reset the limit setup by device that has limited execution right.

(16) Error Code 38

No.	Possible causes	Actions
1	EEPROM write is interlocked.	Reset EEPROM write interlock.

(17) Error Code 39

No.	Possible causes	Actions
1	I/O allocation parameter changed.	Operate CPU RESET-START switch.

(18) Error Code 3C

No.	Possible causes	Actions
1	CPU hardware error.	Check CPU.

(19) Error Code 3D

No.	Possible causes	Actions
1	Sequence program and subsidiary information were written simultaneously from peripheral device or other link.	Rewrite them.

(20) Error Code 3F

No.	Possible causes	Actions
1	Device address instructed by timer and counter, etc. does not exist in sequence program.	Check device address.

(c) In other cases
(1) The format of response from this module to host COMPUTER is not proper.

No.	Possible causes	Actions
1	Other station sent response while one station is sending ersponse.	Review the timing of command sending to each station in host COMPUTER.
2	Host COMPUTER has become ready for receiving after this module sent response.	Set up response time according to the processing speed of host COMPUTER.

(2) Host COMPUTER receives, as is, data that sent as command to station.

No.	Possible causes	Actions
1	Transmission-receiving switching of the communication circuit in host COMPUTER is not executed.	Control the circuit at host COMPUTER side.

(3) Sum check error occurs at host CPU side.

No.	Possible causes	Actions
1	Communication data break by noise, etc.	Check that communication cable is exactly connected or the cable and strong power cable are not close to one another.

9.2. Built-in PC Link

For the detail, see " Instruction Manual for PC2 Series PC Link /Computer Link ".
(1) PC link specification

Items	Specification
I/O points	Max 515 points/1 port
Transmission points per station	When 19/.2kbps/57.6kbps is selected $\quad:$ Max 384 points When NC $\times 3$ selected
No. of stations	Max 16 stations (master 1, slave 15) /1 line
I/O allocation	Minimum setting unit :8 points
Transmission distance	Max 1 km (total length)
Signal level	Conforming to EIA RS-422
Communication speed	$19.2 \mathrm{kbps} / 57.6$ kbps / NC \times 3speed ${ }^{* 1} \quad$ (Presetting)
Synchronous system	Start-stop synchronous
Transmission system	Semi-dual system (2-wire type)
Bit composition	JIS 7 unit system, 10 bits
Check system	Vertical parity, horizontal parity (Even number)
Cable	Shielded twist bare cable
Transmission data at CPU stopping	OFF data / Pre-stop data (Be presetting)
CPU operation against communication error	Stop/RUN continue (Be presetting)
Communication error under connection sequence	As error /repeat (Be presetting)

*1 This speed is set to communicate with NC machine corresponding to M-NET $\times 3$ speed.
(2) Link No. and Link Area

Link parameters can be optionally set for link No. $1 \sim 8$ of program $1 \sim 3$.
Where internal relay (M) or link relay (L) is set in the link area, the relay area in program for which the link parameter was set becomes the link area.
I/O (X, Y) area and extended area (EX • EY, EM, EL, GX • GY, GM) are common to each program.

(3) Matters to be attended to operation of I/O relay (X/Y)

Pay attention not to overlap I/O module and I/O address that are connected to CPU are not
overlapped when I/O relay (X and Y) is used in communication area.

Application command is not applied for such communication area as I/O refresh (RIO, FUN No. = 282), input refresh (RI, FUN No. = 281) and output refresh (RO, FUN No. = 282).

Even used as output of PC link, memory in CPU will be input.
Therefore display of X is resulted when communication area is monitored using I/O monitor.
9.2.1. The outline of PC Link operation

PC link communication includes a connective sequence and a normal sequence. Check a connecting situation and setting in the connective sequence when power is supplied, and then exchange ON/OFF information of I/O in a normal sequence.

(1) The conceptual figure of data

communication order 1) $\rightarrow 2$) $\rightarrow 3$) $\rightarrow 4$) $\rightarrow \cdots \cdots 2 \mathrm{~N}) \rightarrow 2 \mathrm{~N}+1) \rightarrow 1) \rightarrow 2) \cdots(\mathrm{N}=1 \sim 15)$
\# -........ Available for internal relay
**** Display a head address of an area to be used for communication in each station. The head address can freely be set in each station. Not necessary to adjust the address of the master station. However, those available for communication are only such areas as a link relay(L), an internal relay(M), an input-output relay (X, Y) a link relay (extended area) (EL), an internal relay(extended area)(EM,GM), an input-output relay(extended area) (EX,EY,GX,GY).
(2) Connective sequence

The master station checks the existence of connection and examine a coincidence of the input-output points between the master and the child station to set from the child station No. 1 to the child station No. 15.
When the child station respond to the master station as specified, the connective sequence becomes OK, in turn, the normal sequence is returned.
The child station will wait for the connective sequence from the master station after the power supply begins. Check the input-output points between the master and the child station. It is not until the connective sequence becomes OK that a response to a normal sequence from the master station can be made.
(3) Normal sequence

The master station carries out a normal sequence from child station No. 1 to the last child station in turn. In the normal sequence, the master station exchange data with the child station by transmitting an amount equal to set points of ON/OFF data of I/O and receiving an amount equal to selected points of ON/OFF data of I/O. The master station exchanges data with the child station by repeating such an action.
(4) Communication data when CPU stops

PC link performs communication whether CPU runs or stops. However, when CPU is stopped, it can't exchange data with an area to communicate with, making all the data to transmit turn into OFF data.
Stop with CPU reset switch.
Stop with a peripheral equipment
Stop RUN by a CPU error.
$\} \rightarrow \rightarrow \begin{aligned} & \text { Transmit OFF data } \\ & \text { (Received data is thrown away) }\end{aligned}$

9.2.2. Timing with PC operation

The operation of PC is not synchronized with that of PC link, but an input-output data exchange is conducted at end of each scan.

1) PC One scans of PC < One scan of communication one scan

2) PC One scan of communication < One scan of communication

: Data of PC link to an internal dummy. Sending data to PC link

: Receiving data to PC Exchanging sending data

The time for one scan (communication set by No. 1 child station, and covering the last child station) is determined depending on the number of the child stations and the points of communication.

Communication speed in case of 19.2
One scan of communication $(\mathrm{ms})=1.2 \mathrm{X}+9.5 \mathrm{~N}$
Communication speed incase of 57.6
One scan of communication $(\mathrm{ms})=1.0 \mathrm{X}+8.1 \mathrm{~N} \quad \mathrm{X}:$ Total number of input-output bytes
N : The number of the Slave-stations
Communication speed three times as fast as a normal one.
One scan of communication(ms) $=0.5 \mathrm{X}+7.3 \mathrm{~N}$
Example: Communication speed 19.2 kbps , the number of the Slave-stations $=7$ the total number of input-output bytes points $=32$ bytes (256points)
1 scan $=1.2 \times 32+9.5 \times 7=104.9(\mathrm{~ms})$

9.2.3. Reset communication

Perform the reset communication at communication abnormality.
(1) Method

Switch a dummy for the reset from OFF to ON, and the communication is reset. Reset is available only for a rise time to switch it ON and OFF .

Address	Content	Address	Content
V80	Reset communication 1	V84	Reset communication 5
V81	Reset communication 2	V85	Reset communication 6
V82	Reset communication 3	V86	Reset communication 7
V83	Reset communication 4	V87	Reset communication 8

Note) The above addresses of special relays are for PC 2 compatibility mode and PC 3 mode (data memory split mode).
(2) Reset timing

PC link starts the same operation as in the commencement of power supply by the reset communication.
(After execution of a communication sequence start I/O data exchange by a normal sequence)
Note 1) The reset communication is performed with a reset start switch of CPU.
Note 2) The reset communication is available only during the period of communication abnormality. However, when the link parameter is abnormal, it can't become effective, so supply power again or turn on the reset start switch after rewriting the parameter.
(3) Release communication abnormality

Supply power again, or turn on the reset start switch, or reset communication in the master station, and the communication abnormality is released, which starts communication again. It is not necessary to reset communication in the Slave-station station. The Slave-station respond to the connective sequence from the master station during the communication abnormality and such abnormality is released by accepting the connective sequence, which makes responding to the normal sequence available.
However, when the link parameter is modified, supply power again or turn the reset start switch of CPU on in the Slave-station.

(4) An example of communication reset circuit

1) When using the reset communication circuit.

Even when scattering occurs at the time of power supply, it can't be regarded as a communication abnormality, so it is a circuit to reset for 2 seconds after power is supplied.

Note 1) The above is the example for a circuit in the case of link No. 1
The communication abnormality special relay, reset communication push button signal and separate register differ depending on link number.

Note 2) Never fail to clear the separate register when it is not used.
2) When using the separate register,

When " 1) When using the reset communication " is employed and the raising of the power supply is delayed, "LINK ERROR"(error code :86) is stored in a register for outputting a error information" (error code :86).
This circuit won't display "LINK ERROR" for 2 seconds after power is supplied and is a circuit not to store the error code in the register for outputting the error information.

No. 1 scan

After supplying power, separate all the stations and doesn't inform them of any error for 2 seconds and then release separation, followed by a normal communication.

Note 1) In the above circuit, link No. 1 is used.
Make sure that the separate register changes depending link No.

Link No.	Separate register	Link No.	Separate register
1	S31C	5	S39C
2	S33C	6	S3BC
3	S35C	7	S3DC
4	S37C	8	S3FC

The address of the separate register changes in PC 3 mode.
Note 2) When connecting with a FS terminal (V1.00) with an incorporated PC link as a master station, put in a PC3JG sequence a circuit employing the above 2) separate register. If this circuit doesn't exist, it causes communication abnormality which may hinder communication.

9.2.4. Unlinking Function

When the slave gets in communication error, the master of DLNK stops communication to all the slaves and reports error.
The unlinking function is such that a specific slave is broken away (or reset) from the communication network.
This function makes it possible to separate the slave that is in the abnormal state from the communication network and continue communication for other normal slaves.
(1) Specify the Slave-station to be separated

Specify the Slave-station to be separated is carried out by setting data in the unlinking register of the master PC.

Note 1) When not using the unlinking function, clear the unlinking register by using a sequence program. Since the separate register is maintained even after power supply is cut, separation sometimes still remains without noticing it. In this case communication is still normally conducted, but all the data turns to OFF data.

Note 2) When the unlinking register is not 0000, turn off communicating with all the stations.
Note 3) The address of the above register is for PC compatibility mode and PC3 mode(data memory split mode)
(2) Communicating with the separated station

1) When the separated Slave-station is normal, The master station transmits OFF data of I/O to the separated Slave-station, threw away-received data from the Slave-station and performs operation, judging that the Slave-station has accepted OFF data of I/O. However, it normally communicates with the other Slave-stations not separated regarding ON/OFF data of I/O.
If power supply is conducted or communication is reset in the master station while separation of the master and the Slave-station still remains, start the connective sequence like the other Slave-stations start, so the normal sequence conducts exchange of OFF data.
2) When the separated Slave-station causes the abnormal communication

The parent station keeps transmitting the connective sequence till the abnormality of the child is released. If the abnormality is released and a normal response is obtained, it starts again the normal sequence as in the above 1) and continues the normal sequence to the rest of Slave-stations.
3) When the specify separation is released,

In case of 1) $\cdots \cdot$ exchange a normal I/O data of ON/OFF
In case of 2) $\cdots \cdots$ regard it as a communication abnormality and inform all the Slave-stations of such abnormality and stops communicating with them.
4) Others

When the Slave-station that was not separated causes the abnormal communication, inform all the Slave-stations of such abnormality and stops communicating with them.

9.2.5. PC Link status

PC link informs a CPU special register of status information (the state of communication of the Slave-station, the state of connection of the Slave-station)
Setting data in the separate register can separate the Slave-station.

MSB

Adress	F	E	D	C	B	A	9	8	7	6	5	4	3	2	1	0	Use
S3*0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	The state of communication of the Sub-station
S3*1												L					
S3*2												sta	ion	N			
S3*3																	
S3*4																	
S3*5																	
S3*6																	
S3*7																	
S3*8																	
S3*9																	
S3*A																	
S3*B																	
S3*C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	The state of communication of the Sub-station
S3*D																	
S3*E																	
S3*F																	
S3x0																	Abnormality information(Error code)
S3x1																	Abnormality information(error No. 1 of detail)
S3x2																	Abnormality information(error No. 2 of detail)
S3x3																	Abnormality information(error No. 3 of detail)
S3x4																	Abnormality information(error No. 4 of detail)
S3x5																	Abnormality information(error code stack No.1)
S3x6																	Abnormality information(error code stack No.2)
S3x7																	Abnormality information(error code stack No.3)
S3x8																	Abnormality information(error code stack No.4)
S3x9																	Abnormality information(error code stack No.5)
S3xA																	Abnormality information(error code stack No.6)
S3xB																	Abnormality information(error code stack No.7)
S3xC	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Separate the Sub-station
S3xD																	
S3xE																	
S3xF																	

Code of * and x

Link No	1	2	3	4	5	6	7	8
${ }^{*}$	0	2	4	6	8	A	C	E
X	1	3	5	7	9	B	D	F

Note) In a single data mode the address is as follows.

Program 1	S3\#0~
Program 2	ESO\#0~
Program 3	ES1\#0~

The above * and x are put into \#.

Inform communication status function

PC link incorporated in PC3JG conveys a status information to a special register (the state of communication of the Slave-station, and the state of connection of the Slave-station)
(1) The state of communication of the Slave-station

Inform the special register, " $\mathrm{S} 3^{*} 0^{\text {", of the state }}$ of communication of the Slave-station.

The bit becomes " 1 " corresponding to the Slave-station that performs normal communication.
(Even in the separate state, the bit becomes " 1 " if communication is carried out)
1 : the Slave-station performing a normal communication.
0 : the Slave-station where communication is not performed
When communication abnormality occurs, the bit becomes " 0 " corresponding to the Slave-station that detects the abnormality and the other Slave-stations retain the contents of state just before the occurrence of abnormality (when the communication abnormality occurs communication isn't really carried out, but the bit remains " 1 " corresponding to the Slave-station where the normal communication was carried out just before the abnormality occurred).

In the Slave-station,
When the link parameter is set, the bits that are set as connected in a local station alone become " 1 ". The bits all become " 0 " when the communication abnormality occurs.
(2) The state of connection of the Slave-station

Inform the special register, " $\mathrm{S} 3^{*} \mathrm{C}$ ", of the state of communication of the Slave-station

In the master station,
When the link parameter is set, the bit that is set as connected, corresponding to the Slave-station, becomes " 1 " .

In the Slave-station,
When the link parameter is set, among the bits that are set as connected, only those corresponding the local station, become " 1 " .
(3) Diagnostic method of communication abnormality

Execute using the separate function and the status of communication of the Slave-station.
Example of diagnosis(PC-Link master station on an operation board is assigned to link No.1)

PB2 : Light branch switch

1) Separate all the connecting stations.
2) Reset communication.
3) Monitor the state of connection and communication of the Slave-station.

S300 | MSB |
| :---: |
| 0 |
| 0 | 0

S30C

0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0

Slave- station No. 1 and No. 2 are impossible to be communicated with. Judged as a open circuit between No. 3 and No. 4 stations according to a link system diagram.
4) Distributing and connecting wires
5) Monitor the state of connection and communication of the Slave-station

Make sure that there are no Slave-station which cause communication abnormality.
7) Release separation and start operation again.

9.2.6. Inform abnormality of PC Link

When detecting an abnormality in PC link, inform CPU of the abnormality. CPU not only displays an error message but also sets a special relay, a register for outputting CPU error information, and a special register for a link error information.
(1) The special relay associated with the link

Address	Content	
VA1	Link1	Parameter abnormality
VA5	Link2	Parameter abnormality
VA9	Link3	Parameter abnormality
VAD	Link4	Parameter abnormality
VB1	Link5	Parameter abnormality
VB5	Link6	Parameter abnormality
VB9	Link7	Parameter abnormality
VBD	Link8	Parameter abnormalitv
VA2	Link1	Communication abnormality
VA6	Link2	Communication abnormality
VAA	Link3	Communication abnormality
VAE	Link4	Communication abnormality
VB2	Link5	Communication abnormality
VB6	Link6	Communication abnormality
VBA	Link7	Communication abnormality
VBE	Link8	Communication abnormality
VC4	Special module abnormality (failure of a communication module)	
VC8	I/O configuration abnormality	
	(over 9 sheets of communication modules are mounted)	
(The total memory capacity of the communication modules exceeds 60Kbyte.)		
VF2	Special module layout abnormality	
	(lack No., slot No. and link module name of the link parameter are different from	
those in a mounted state.)		

Note) The addresses of the above special relay are those in PC2 compatibility mode and PC 3 mode (data memory split mode)
(2)Link error code

Link error code is stored in the CPU special register.

$\begin{array}{l\|} \hline \text { CPU } \\ \text { (link) } \\ \text { error } \\ \text { code } \end{array}$	The address of CPU special register to store error information	The content of the address stated in the left column.	The error content	Corrective action	Abnor mality lank
$\begin{gathered} 85 \\ (01) \end{gathered}$	S 3×0	1001	(link parameter abnormality) Setting is not carried out in BCD (master and child stations)	Check and modify the content of the link parameter. Check the setting.	Alarm
	S3×1	0082			
$\begin{gathered} 85 \\ (01) \end{gathered}$	S 3×0	1001	(link parameter abnormality) Values other than 0.1 are set in master and Slave-stations.		
	S3×1	0083			
$\begin{gathered} 85 \\ (01) \end{gathered}$	S 3×0	1001	(link parameter abnormality) The total number of diverted bytes is over 65 bytes. (master and Slave-stations)		
	S 3×1	0085			
$\begin{gathered} 85 \\ (01) \end{gathered}$	S 3×0	1001	(link parameter abnormality) Exceeding the final address of communication area.		
	S3×1	0086			
$\begin{gathered} 85 \\ (01) \end{gathered}$	S 3×0	1001	(link parameter abnormality) Link area overlaps Real I/O.		
	S3×1	0087			
$\begin{gathered} 85 \\ (01) \end{gathered}$	S 3×0	1001	Sending points per one station exceed 48 bytes.		
	S 3×1	0088			
	S3×2	Slave station address(62~70)			
$\begin{gathered} 86 \\ \left({ }^{*} 0\right) \end{gathered}$	S 3×0	10*0	(connecting sequence error with \# station of the Slave-station) Vertical parity exists in a received data from the Slave-station. (master station)	Check whether \# station of the Slave-station is connected, or check the order of power supply. Check the setting Check the wiring of communication wires.	Alarm
	S 3×1	00D0			
	S3×2 (L)	Slave station address(62~70)			
$\begin{gathered} 86 \\ (* 0) \end{gathered}$	S 3×0	10*0	(connecting sequence error with \# station of the Slave-station) Negative response from the Slave-station. (master station)		
	S3×1	00D1			
		Alarm			
$\begin{gathered} 86 \\ (* 0) \end{gathered}$	S 3×0	10*0	(connecting sequence error with \# station of the Slave-station) Received an address data that had not been expected. (master station)		
	S3×1	00D2			
	$S 3 \times 2 \quad \text { (L) }$	Except address data			
	(H)	Receive data			
$\begin{gathered} 86 \\ \left({ }^{*} 0\right) \end{gathered}$	S 3×0	10*0	(connecting sequence error with \# station of the Slave-station) No response from \# station of the Slave-station. (master station)		
	S3×1	00D3			
	S3×2 (L)	Slave station address(62~70)			
$\begin{gathered} 86 \\ (* 0) \end{gathered}$	S 3×0	10*0	(connecting sequence error with \# station of the Slave-station) Horizontal parity error exists in the received data from the Slave-station. (Master station)		
	S 3×1	00D6			
	S3×2	Slave station address(62~70)			
$\begin{gathered} 86 \\ \left({ }^{*} 0\right) \end{gathered}$	S3×0	10*0	(connecting sequence error with \# station of the Slave-station) No horizontal paritv data has not been		
	S 3×1	00D8			
	S342	Slave station address(62~70)			

A code indicating the link No. of PC link that occurred an error is put into x in the table.
Code table for link No

Link no.	1	2	3	4	5	6	7	8
\times (link No. code)	1	3	5	7	9	B	D	F

Note 1) * indicates the Slave-station No.

CPU (link) error code	The address of CPU special register to store error information	The content of the address stated in the left column.	The error content	Corrective action	Abnorm ality lank
$\begin{gathered} 86 \\ (* 1) \end{gathered}$	S3×0	10*1	In \# station of the Slave-station the number of input-output bytes is different from that of the master station. (master and Slave-station)	Check the content of the link parameter.	Alarm
	S 3×1	00D7			
	S3×2	The address of the Slave-station(62~70) The received data (the byte number from the master to the sub)			
	S3×3 (L)	The received data (the byte number from the sub to the master) The data set in the local station (the byte number from the sub to the master)			
	S3×4 (L)	The received data (the byte number from the sub to the master)			
$\begin{gathered} 86 \\ (* 2) \end{gathered}$	S 3×0	10*2	Response from \# station from the Slave-station that is not set up in the connective sequence. (master station)	Check the content of the link parameter of the Slave-station.	Alarm
	S 3×1	00D9			
	S3×2 (L)	The address of the Slave-station(62~70)			
$\begin{gathered} 86 \\ (* 9) \end{gathered}$	S 3×0	10*9	The connective sequence was not carried out with \# station of the Slave-station. When multiple stations were set in one Slave-station, a normal sequence started though there were some stations where the connective sequence had not been completed. (Slave-station)	Check the content of the link parameter of the master station. The normal sequence doesn't start even	Alarm
	S 3×1	00D4			
	S3×2 (L)	Select a communication flag (1-7 stations)			
		Select a communication flag (8-15 stations)			
	S3×3 (L)	Completion flag of the connective sequence (1-7 stations)			
		Completion flag of the connective sequence ($8-15$ stations)			
$\begin{gathered} 86 \\ (08) \end{gathered}$	S 3×0	1008	10 minutes after the completion of the normal sequence. (Slave-station)	Check an error code of the master station.	Alarm
	S3×1	00D5			
$\begin{gathered} 86 \\ (* 4) \end{gathered}$	S 3×0	10*4	(the normal sequence error with \# station of the Slave-station) Vertical parity exists in the received	Check shear in to * of sub station	Alarm
	S 3×1	00E8			
	S3×2 (L)	Slave station address(62~70)			
$\begin{gathered} 86 \\ (* 4) \end{gathered}$	S 3×0	10*4	(the normal sequence error with \# station of the Slave-station) Negative response from \# station of the Slave-station master station)		
	S3×1	00E1			
	S3×2 (L)	Slave station address(62~70)			
$\begin{gathered} 86 \\ (* 4) \end{gathered}$	S 3×0	10*4	(the normal sequence error with \# station of the Slave-station) Receive the address data that was contrary to the expectation. (master station)		
	S3×1	00E2			
	$\begin{array}{ll}\text { S3×2 } & \\ \end{array}$	Except address data (62~70)			
	(H)	Receive address			
$\begin{gathered} 86 \\ (* 4) \end{gathered}$	S 3×0	10*4	(the normal sequence error with \# station of the Slave-station) No response from \# station of the		
	S3×1	00E3			
	S $\times 2$ (L)	Slave station address(62~70)			

Slave-station (master station)
A code indicating the link No. of PC link that occurred an error is put into x in the table.
Code table for links No.

Link no.	1	2	3	4	5	6	7	8
\times (link No. Code)	1	3	5	7	9	B	D	F

Note 1) * indicates the Slave-station No.

CPU (link) error code	The address of CPU special register to store error information	The content of the address stated in the left column.	The error content	Corrective action	Abnor mality lank
$\begin{gathered} 86 \\ (* 4) \end{gathered}$	S3×0	10*4	(the normal sequence error with \# station of the Slave-station) Parity error exists in the horizontal parity received from \# station of the Slave-station. (Master station)	Check whether wires are securely connected in \# station of the Slave-station.	Alarm
	S 3×1	0			
	S3×2	Slave station address(62~70)			
$\begin{gathered} 86 \\ (* 4) \end{gathered}$	S3×0	$10 * 4$	(the normal sequence error with \# station of the Slave-station) No data of the horizontal parity sent from \# station of the Slave-station (master station)		
	S3×1	00E6			
	S3×2	Slave station address(62~70)			
$\begin{gathered} 86 \\ (07) \end{gathered}$	S3×0	1007	No data of the normal sequence was sent from the master station. (Staye sequence) ack No., slot No. and link module name of the link parameter	Check the error code of the master station.	Alarm
	S3×1	00E4			
89				Check and modify the content of the link parameter.	Alarm
84			Abnormality of the module hardware. Interface abnormality with CPU module.	Supply power again or turn on a reset start switch of CPU, however, if an abnormality still occurs, replace the link module.	Alarm

A code indicating the link No. of PC link that occurred an error is put into x in the table.
Note 1) Code table for link No.

Link no.	1	2	3	4	5	6	7	8
\times (link No. code)	1	3	5	7	9	B	D	F

Note 2) The address of the Slave-station in the table is as follows.

The address of the Slave-station	The Slave-station No.	The address of the Slave-station	The Slave-station No.
62	The Slave-station 1	6 A	The Slave-station 9
63	The Slave-station 2	6 B	The Slave-station 10
64	The Slave-station 3	6 C	The Slave-station 11
65	The Slave-station 4	6 D	The Slave-station 12
66	The Slave-station 5	6 E	The Slave-station 13
67	The Slave-station 6	6 F	The Slave-station 14
68	The Slave-station 7	70	The Slave-station 15
69	The Slave-station 8		

Note 3) \# indicates the Slave-station number.
Note 4) The above addresses of special register are for PC2 compatibility mode and PC3 mode (data memory split mode).
(3) Special register for link error information output.

The link error code is composed of 8 step shift register and is able to store up to 8 times.

Note) Code for link No. of PC link that caused an error is put in X.
Link No. code table

Link No.	1	2	3	4	5	6	7	8
\times (link No. code)	1	3	5	7	9	B	D	F

(4) Inform abnormality of the separated Slave-station.

If the separated Slave-station can't respond to the master station because of power supply failure and the like, communication abnormality doesn't occur. Each data of an communication area remains OFF and the error code of communication can't be stored.
9.2.7. Flow chart to check PC Link abnormality

A code indicating the link No. of PC link that occurred an error is put into x.
Code table for link No.

Link no.	1	2	3	4	5	6	7	8
\times (link No. code)	1	3	5	7	9	B	D	F

Note 1) \# indicates the Slave-station No.

C

In port \#

1) Is the link parameter of the master station right? \rightarrow Set the link parameter of the master station again to get the right one
2) Is the Slave-station number right? \rightarrow Set the Slave-station number again to get the right one.

9.3. Built-in DLNK-M2

(1) DLNK specification

Item	Specification			
Communication speed	500/250/125kbps (selected with a switch)			
The distance of communication	Communication speed	The maximum length of a network	The length of a	The total length of the branch line
	500 kbps	Less than 100m	Less than 6m	Less than 39 m
	250kbps	Less than 250m	Less than 6m	Less than 78m
	125kbps	Less than 500m	Less than 6m	Less than 156 m
The maximum number of connection nodes	64 units (master 1 unit, slave 63 units) ${ }^{* 1}$			
Node address	Master : 00 Slave : 01~63			
I/O points	Input: Maximum 2048 points (256 bytes) Output: Maximum 2048 points (256 bytes)			
I/O layout	Minimum 8points unit			
Link area	X•Y,M,L,EX $\cdot \mathrm{EY}, \mathrm{EM}, \mathrm{EL}, \mathrm{GX} \cdot \mathrm{GY}, \mathrm{GM}{ }^{*}{ }^{2}$			

*1 In the case of TOYOPUC DLNK, this applies only to the asynchronous mode.
There are no relations in input and output type, and the number of maximum connection notebooks is restricted with synchronous mode in the following.

Data rate	Maximum number of connected nodes
500 kbps	9
250 kbps	7
125 kbps	6

*2 GX/GY and GM area can be used in the PC3JG separate mode.
(2) Link No. and Link Area

Link parameters can be optionally set for link No. $1 \sim 8$ of program $1 \sim 3$.
Where internal relay (M) or link relay (L) is set in the link area, the relay area in program for which the link parameter was set becomes the link area.

I/O (X, Y) area and extended area (EX • EY, EM, EL, GX • GY) are common to each program.

(3) Notes when input-output (X, Y) is used in the communication area.

Make sure that I/O module connected to CPU doesn't overlap I/O address.

Input-output refresh, input refresh, and output refresh of application order can not be used for the Even when used for DLNK output, the memory in CPU can be regarded as an input, so if the communication area is monitored with I/O monitor, X will be displayed.

Set the communication mode with a DLNK set up switch

Switches on the front panel

Name	Setting	Content	
Sync	OFF	Communication is not synchronized with a sequence scan.	Communication timing
	ON	Communication is synchronized with a sequence scan.	
	OFF	Continue RUN	RUN state of CPU when communication abnormality occurs.
	ON	Stop RUN	Output state when RUN of
CPU stops.			

Switches on the side panel

	No.	Setting				ntent			Function
$\underset{\infty}{5}$	1	-	OFF	$\begin{aligned} & 125 \mathrm{~K} \\ & \mathrm{bps} \end{aligned}$	ON	$\begin{aligned} & 250 \mathrm{~K} \\ & \text { bps } \end{aligned}$	OFF	500K bps	Baudrate
	2		OFF		OFF		ON		
	3	OFF	(Set all of them OFF)						
	4	OFF							
	5	OFF							Reserved
	6	OFF							
	7	OFF							
	8	OFF							
n	X1	0	Mast	statio					
$\frac{\overline{7}}{9}$	X10	0	(Set	of the					Node address

(5)Display

Display lamp indicating DLNK state includes NS, MS and DE. Each NS and Ms lamp has a green and a red color, and display these states by lighting, flashing, and putting out. DE lamp displays these states by lighting, flashing, and putting out.

Lamp name	Color	Define state	Define state a proposal	Content
MS	Green	\bigcirc	Normal state	Normal state of a module
		O-	Not yet set up	In the process of reading set switch
	Red	\bigcirc	Mortal failure	Hardware abnormality
		(0)	Light failure	Set switch failure and the like
	-	\bigcirc	No power supply	- The power supply is not supplied to DLNK-M2. - In the process of resetting - Waiting to be initially processed.
NS	Green	\bigcirc	Normal state	Normal state of a network
		©	Not yet connected	The network is normal; communcation is not yet established
	Mortal	\bigcirc	Communication abnormality	Detected abnormality unable to communicate on the network. - Duplicate node address - Detect Bus-off
		©	Communication abnormality	Communication abnormality of the child station of the communication part.
	-	\bigcirc	Abnormality of power supply of the network	No power supply for communication
DE	Red	\bigcirc	Mortal failure	Hardware abnormality
		©	Mortal failure of the communication part Parameter abnormality Set parameter abnormality	Hardware abnormality of the communication part Communication abnormality of a part of the slave station
		\bigcirc	Normal state	Normal state of module

\bigcirc : lighting
© : flashing
: putting out
(note) When building DLNK-M2 into is unused, the MS lamp might red light or blink red,but it does not have the influence on other functions.

9.3.1. System Configuration

The DLNK network can be constructed as shown below.

Name	Explanation
Node	In DeviceNet nodes, there are slaves to connect I/O devices and a master to integrate respective slaves. There exists a single unit of master on one network. The positions of master and slave are not fixed, so you may arrange master and slave at any node position. DLNK-M2 is the master unit.
Trunk line and Drop line	The trunk line indicates the cable to which connect the terminating resistance in both ends. All the cables branched from trunk line are drop lines.
Cable	The communication cable only for DevieNets (5-wire) is used. 3 wires are used for communication, while 2 wires are used for network power source. There are THICK cable and THIN cable as the communication cable.
Connection method	There are a multi-drop method and a T branch method in the connection method of the node. The T branch method is a wiring technique to which the communication cable is separated with the Branch unit. The multi-drop method is a wiring technique by which communication cable is extended from the node to the node.
Terminating Resistor	It is necessary to arrange terminating resistor at each end of the trunk line in order to stabilize the communication line. As the resistance, use a $121 \Omega 1 / 4 \mathrm{~W}$ metal film resistance.
Communications Power Supply	Each node requires communications power supply (24 VDC). The network power is supplied to each node through power line in 5-wire cable.

9.3.2. Order of Power on

Supply power first to the slave then to the master, or supply power to both the slave and master at the same time. Supplying power first to the master and then to the slave may cause communication error.
And cutting off power supply to the slave after start of communication may cause communication error too.

	Power supply order		
Master	$2)$	$1)$	
Slave	\AA	Simultaneously	$2)$
Result	0	\times	0

The master does not regard response delay in the slave for up to 18 seconds. During this period, the master carries out communication recovery actions. And if recovery is not possible then, it reports the situation as communication error.

Note 1: To remove communication error, reset and start the CPU or turn the communication reset ON. (Refer to "9.3.3. Communication Reset.")
Note 2: The master continues communication when the communication of all the slaves is normal. Even if one slave is missing, the master regards it as communication error and stops communication. (Use the unlinking function to continue communication. Refer to "9.3.4. Unlinking Function." DLNK-M2 can choose the communication stop / continuation at the communication error by setup of Link Parameter.)
Note 3: It will normally take 6.6 seconds from supplying power or reset/start to the establishment of communication. The actions of the master before the establishment of communication are shown below.

START	¢	Action contents	MS LED	NS LED	DE LED
6.6 sec	1)	Node address duplication checking	Green \bigcirc	\bigcirc	\bigcirc
	2)	Reading parameter	Green ○	Green (\bigcirc
	3)	Confirming slave	Green ○	Green ○	\bigcirc
	4)	At normal condition I/O data communication	Green ○	Green ○	\bigcirc
	4)	At error I/O data communication stop	Refer to "9-3-7 Abnormality information of DLNK-M2"		

Lighting on, © Flickering, - Lighting off

9.3.3. Communication Reset

Communication reset is the function to make communication resume, when communication stops by communication error.
To reset communication, turn the communication reset special relay OFF \rightarrow ON.
The special relay I/O address corresponding to the master's link number is as shown below:

Link No.	I/O address
1	V80
2	V81
3	V82
4	V83
5	V84
6	V85
7	V86
8	V87

Note 1: Communication reset is valid only at rise of the special relay.
Note 2: Communication reset is valid only at communication error. At normality, Communication reset is invalid.
Note 3: Communication reset in the state of Transmission error (E2) and Busoff (F1) is invalid. Please do communication reset after removing abnormality at transmission error. Please reenter the power supply in the master when Busoff is generated.
\square Communication reset by reset of CPU
The reset switch of the CPU resets the communication.
However, the communication is not reset as follows.

- There is no change in the link parameter
- It is not communication abnormal state (Be communicating normally)

Communication Reset Circuit Example

For 18 seconds after supplying power, communication recovery actions are carried out, so reset circuit is not necessary.
The figure below is a circuit example for communication recovery at communication error.

Note 1: The above shows a circuit example of Link No. $=3$.
Communication error special relay, communication reset differs with link number.
Note 2: When "CPU RUN Stop" is set at communication error, the above circuit does not become valid. The setting switch at the master station sets with RUN condition at communication error. As for details, refer to "9.3 (4) Set communication mode"
9.3.4. Unlinking Function

When the slave gets in communication error, the master stops communication to all the slaves and reports error.
The unlinking function is such that a specific slave is broken away (or reset) from the communication network.
This function makes it possible to separate the slave that is in the abnormal state from the communication network and continue communication for other normal slaves.

Communication to Unlinked Slave

(1) When the unlinked slave is normal:

The master sends I/O OFF data to the unlinking-designated slave. The master reads and disposes the received data from the slave, and works as if it was received I/O OFF data.
Even the output to the unlinked slave is turned ON, it sends OFF data on communication. The master carries out I/O data communication as usual with other slaves.
Even when the master is turned on or its communication is reset with a slave in unlinking status, OFF data is exchanged.
(2) When the unlinked slave gets in communication error:

The master continues communication recovery actions until the error of the slave is removed. When error is removed, and there is normal response, it starts exchanging OFF data. During this period, the master carries out I/O data communication as usual to other slaves.

To annunciate that the unlinking-designated slave has become abnormal in communication, the master generates error code D9 (Communication error) and abnormal slave number. Where the unlinking is designated for all slaves and all slaves get in communication errors, the master judges that not a single slave exists on the network, producing error code E2 (Transmission Error). At this time, in DLNK-M2, the unlinking function is valid, and it is invalid in DLNK-M/M-C.
(3) When unlinking designation is canceled:

In the case of (1) --------- I/O data of normal ON/OFF is exchanged.
In the case of (2) ---------- It is regarded as communication error, and error is reported, and communication is stopped to all the slaves.
(4) Others

When the unlinking-undesignated slave gets in communication error, the master reports error and stops communication to all the slaves.

Designation of Unlinking Slave

To unlink a slave, set data in special registers $\mathrm{S}^{*} \mathrm{C}$ to $3^{*} \mathrm{~F}$.

Bit No. represents node address (station number).

	MSB															LSB
S3*C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S3*D	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
S3*E	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
S3*F	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48

Each bit = 1 : unlinking designation
Each bit $=0$: no unlinking designation

The asterisk portion of each special register is replaced by the link No.

Link No.	1	2	3	4	5	6	7	8
$*$	1	3	5	7	9	B	D	F

9.3.5. Communication Processing Time and Refresh Processing Time

Here are explanations on the communication processing time and the refresh processing time in the case of DeviceNet network configuration using a master and a slave unit manufactured by JTEKT CORPORATION.
[Conceptual diagram of communication processing and refresh processing]

Refresh

(1)Theoretical value of communication processing time (ms)

Communication processing time : I/O data transmission processing time between master (master station) and slave (satellite station)

Communication processing time (T_{DV}) $=\left(\mathrm{T}_{\mathrm{IN}}+\mathrm{T}_{\text {OUt }}+\mathrm{T}_{\text {MIX }}+2.2\right.$)
T_{IN} : Communication processing time with IN slave
Tout : Communication processing time with OUT slave
$\mathrm{T}_{\text {MIX }}$: Communication processing time with IN/OUT mixture slave

1) $\mathrm{T}_{\text {IN }}=\Sigma\left[(0.102+0.008 \times \mathrm{Sin}) \times \mathrm{R}_{\mathrm{B}}+0.09 \times \mathrm{R}_{\mathrm{R}}+0.06\right]+0.265 \times \mathrm{S}_{\mathrm{C}-\mathrm{N}}+0.115 \times \mathrm{R}_{\mathrm{B}}+0.06$
2) $\mathrm{T}_{\text {OUT }}=\Sigma\left[(0.102+0.008 \times\right.$ Sout $\left.) \times \mathrm{R}_{\mathrm{B}}+0.06 \times \mathrm{R}_{\mathrm{s}}+0.09\right]+0.3 \times \mathrm{S}_{\text {c-оUT }}$
3) $\mathrm{T}_{\text {MIX }}=\Sigma\left[\left(0.102+0.008 \times \mathrm{S}_{\text {MIX }}\right) \times \mathrm{R}_{\mathrm{B}}+0.06 \times \mathrm{R}_{\mathrm{S}}+0.09 \times \mathrm{R}_{\mathrm{R}}\right]+0.3 \times \mathrm{S}_{\mathrm{C}-\mathrm{MIX}}$

Sin : Communication byte number of one IN slave
Sout : Communication byte number of one OUT slave
Smix : Communication byte number of one IN/OUT mixture slave
Sc-IN : Number of IN slave
Sc-out : Number of OUT slave
Sc-MIX : Number of IN/OUT mixture slave
$\mathrm{R}_{\mathrm{B}} \quad: 2(500 \mathrm{Kbps}), 4(250 \mathrm{Kbps}), 8(125 \mathrm{Kbps})$
$R_{R} \quad: \quad \mathrm{Sin}_{\mathrm{IN}} / 7$ (raising decimals to the nearest integer)
Rs : Sout / 7 (raising decimals to the nearest integer)
Note : Communication byte number and number of slave are values set in parameter.
(2)Theoretical value of refresh processing time (ms)

Refresh processing time : Time required to deliver I/O data between PLC(CPU) and master (master station)
Refresh processing time $\left(\mathrm{T}_{\mathrm{R}}\right)=0.028 \times$ [number of connected slaves]+ $0.024 \times$ [total communication byte number]+ 12.37
Note : Communication byte number and number of slave are values set in parameter.

9.3.6. Communication Data Response Time

Communication data response time is the time since the input data detected by slave is transmitted to DLNK-M and processed by PLC(CPU) until it is output by slave. IN communication data response, there are synchronous mode and asynchronous mode with sequence scan.
The timing chart of communication data response time at each mode is shown below.

$\mathrm{T}_{\text {ID }}$: Input ON/OFF delay time
T_{R} : Refresh processing time
TDV : Communication processing time

- Communication data response time theoretical value $=T_{I D}+T_{D V} \times 4+T_{s c} \times 2+T_{R} \times 3+T_{O D}$
(2)Synchronous mode

$\mathrm{T}_{\text {ID }}$: Input ON/OFF delay time
T_{R} : Refresh processing time
T_{sc} : Sequence scan time
Tod: Output ON/OFF delay time

TDV: Communication processing time

- Communication data response time theoretical value $=T_{I D}+T_{D V} \times 5+T_{S C}+T_{R} \times 4+T_{O D}$

Maximum number of connected nodes in synchronous mode communication
In synchronous mode communication, the maximum number of connected nodes is limited to the following irrespective of input / output type.

Communication speed	Maximum number of connected nodes
500 kbps	9
250 kbps	7
125 kbps	6

9.3.7. Abnormality information of DLNK-M2

Detecting an abnormality in DLNK-M2, inform DLNK-M2 and CPU of the abnormality. DLNK-M2 indicates the abnormality with DE, NS(network Status) and MS(Module Status) lumps and a message display.
CPU indicates the abnormality with a special relay, a special register (a register for error information output and a register for link error information output) and a message display. The Communication State of DLNK-M2 can be checked with the special register.
(1) NS, MS, DE lumps

Each NS and Ms lamp has a green and a red color, and display these states by lighting, flashing, and putting out.
DE lamp displays these states by lighting, flashing, and putting out.

Lamp name	Color	Define state	Define state in proposal	Content
MS	Green	O	Normal state	Normal state of a module
		0	Not yet set up	In the process of reading set switch
	Red	\bigcirc	Mortal failure	Hardware abnormality
		O-	Light failure	Set switch failure and the like
	-	-	No power supply	- No power supply of DLNK-M2 - In the process of resetting - Waiting to be initially processed.
NS	Green	\bigcirc	Normal state	Normal state of a network
		©	Not yet connected	The network is normal; communication is not yet established
	Red	\bigcirc	Mortal communication abnormality	- Detected abnormality unable to communicate on the network. - Duplicate node address - Detect Busoff
		©	Communication abnormality	Communication abnormality of the child station of the communication part.
	-	\bigcirc	Abnormality of power supply of the network	No power supply for communication
DE	Red	\bigcirc	Mortal failure	Hardware abnormality
		\bigcirc	Mortal failure of the communication part Communication abnormality Parameter abnormality	- Hardware abnormality of the communication part - Communication abnormality of a part of the slave station - Set parameter abnormality
		\bigcirc	Normal state	Normal state of module

(note) When building DLNK-M2 into is unused, the MS lamp might red light or blink red,but it does not have the influence on other functions.
(2) Message display

DLNK-M2 indicates an abnormal code, a node address of a slave that caused abnormality, and the like on the message display besides MS, NS, DE.

- Normal state-----The node address of DLNK-M2 is displayed in the decimal system(00-63).

Normally it is displayed in 00. It flashes before I/O is communicated and lights during communication.

- Abnormal state---Alternately display the abnormal code(hexadecimal system) with a node address of abnormality occurrence(decimal system).

9.3.8. Error information by CPU

(1) Special Relay

All station in communicating flag turn ON at normal, and other flags are turned ON at error.

Address	Contents	At normal	At error
VA0	Link No. 1 All station in communicating		
VA4	Link No. 2 All station in communicating		
VA8	Link No. 3 All station in communicating		
VAC	Link No. 4 All station in communicating Note) When the unlinking	1	0
VB0	Link No. 5 All station in communicating function is set, it becomes 0 .	1	0
VB4	Link No. 6 All station in communicating		
VB8	Link No. 7 All station in communicating		
VBC	Link No. 8 All station in communicating		
VA1	Link No. 1 Link parameter error		
VA5	Link No. 2 Link parameter error		
VA9	Link No. 3 Link parameter error		
VAD	Link No. 4 Link parameter error	0	1
VB1	Link No. 5 Link parameter error	0	1
VB5	Link No. 6 Link parameter error		
VB9	Link No. 7 Link parameter error		
VBD	Link No. 8 Link parameter error		
VA2	Link No. 1 Communication error		
VA6	Link No. 2 Communication error		
VAA	Link No. 3 Communication error		
VAE	Link No. 4 Communication error	0	1
VB2	Link No. 5 Communication error	0	1
VB6	Link No. 6 Communication error		
VBA	Link No. 7 Communication error		
VBE	Link No. 8 Communication error		
VC4	Error with special module(Communication module failure)	0	1
VC8	I/O configuration error (9 communication modules or more mounted) (Communication modules memory capacity over 61k bytes)	0	1
VF2	Special module allocated error (Rack No., Slot No., Link module name in link parameter different from state of mounting.)	0	1

(Note) The address of the special relays are the case of the PC2 compatible mode and the data memory separate mode (the PC3 mode).
(2) Special Register

DLNK-M2 stores the data of error condition and communication condition into the following address of PLC.

Address	Contents
$\begin{gathered} \mathrm{S} 200 \\ \text { । } \\ \text { S24F } \end{gathered}$	CPU error output register
$\begin{aligned} & \text { S3\#0 } \\ & \text { S3\#1 } \\ & \text { S3\#2 } \\ & \text { S3\#3 } \\ & \hline \end{aligned}$	Normal slave data area This displays the communication conditions (normal / error) of each slave.
$\begin{aligned} & \text { S3\#4 } \\ & \text { S3\#5 } \end{aligned}$	The slave status area Indicating DLNK-S2 and network status.
$\begin{gathered} \text { S3\#6 } \\ \text { I } \\ \text { S3\#B } \end{gathered}$	CAN error data area Various CAN error counts are set.
$\begin{gathered} \text { S3\#C } \\ \text { I } \\ \text { S3\#F } \end{gathered}$	Connection office connection state
$\begin{gathered} \mathrm{S} 3^{*} 0 \\ 1 \\ \mathrm{~S} 3^{*} \mathrm{~B} \end{gathered}$	Link error output register
$\begin{aligned} & \hline \text { S3* }{ }^{*} \\ & \text { S3*D } \\ & \text { S3** } \\ & \text { S3*F } \\ & \hline \end{aligned}$	Unlinking register

The \# and * portion of the above address are determined by link No.

Link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E
$*$	1	3	5	7	9	B	D	F

(Note) Information stored in the register is not cleared after restoration from error.
Write "0000" on the register by I/O monitor or programmer to clear error information.
The address of the special relays are the case of the PC2 compatible mode and the data memory separate mode (the PC3 mode).
(3) Special Register for Error Information Output

When any error is detected, error code, error related information, and error detection time are stored in the special register for error information. This register is a 8-step shift register and can store up to 8 errors.

When error are detected more than 8 times, the oldest error information is lost.
Error information stored in the register can be read by the programmer, etc.

Contents of register

Latest	S200	Error 0 Information		Error code
+	S20A	Error 1 Information		Error related information 1,2
	S214	Error 2 Information		Error related information 3,4
	$\begin{aligned} & \text { S21E } \\ & \text { con } \end{aligned}$	Error 3 Information	-	Error detection time(Second)
	S232	Error 4 Information	,	Error detection time(Minute)
	$\begin{aligned} & 5232 \\ & \text { c23 } \end{aligned}$	Error 5 Information	,	Error detection time(Hour)
\checkmark	S246	Error 6 Information		Error detection time(Day)
		Error 7 Information	\rangle	Error detection time(Month)
				Error detection time(Year)
		$\begin{gathered} \vee \\ \text { Lost } \end{gathered}$		Error detection time (Day of the week)

Error related data

(Note) This differs from error code of DLNK-M2 (error code displayed on DLNK-M2)
(4) Link Error Data Output Special Register

At detection of error in DLNK-M2, error message is carried out to CPU, and the error code of DLNK-M2 is stored into the link error data output special register.

This register has an 8-step shift register structure, and can memorize up to 8 errors.
At errors over 8 errors, the first stored error data is deleted.

Register contents of link error data output special register

Link No.	Error display address	Address	MSB Content LSB	
1	S310 ~ S31F	S3*0	Node Address(BCD)	Error Code(hex)
2	S330 ~ S33F	S3*1	Input bytes(BCD)low	Output bytes(BCD)low
3	S350~S35F	S3*2	Setting input bytes(BCD)low	Setting output bytes(BCD)low
4	S370 ~ S37F	S3*3	Input bytes(BCD)high	Output bytes(BCD)high
5	S390~S39F	S3*4	Setting input bytes(BCD)high	Setting output bytes(BCD)high
6	S3B0 ~ S3BF	S3*5	Node Address + Error Code stack1 NEWNode Address + Error Code stack1Node	
7	S3D0 ~ S3DF	S3*6		
8	S3F0 ~ S3FF	S3*7		
		S3*8		
		S3*9		
		S3*A		
		S3*B		

Note 1) * decides by link No..

Link No.	1	2	3	4	5	6	7	8
$*$	1	3	5	7	9	B	D	F

Note 2) In case that "Number of real slave I/O bytes" is "Recognizes" in the link-parameters and error is "Collation error (bytes discrepancy)", the number of I/O bytes is setting in the S3*1-S3*4.

S3*1: The number of I/O bytes of the real slave. (low byte)
S3*3: The number of I/O bytes of the real slave. (high byte)
S3*2: The number of I/O bytes in the link parameters. (low byte)
S3*4 : The number of I/O bytes in the link parameters. (high byte)
In case that "Number of real slave I/O bytes" is "Not recognize" in the link-parameters or error is other errors, these are set 0000(h).

Error Code Details and DLNK－M2 Error Display

Special register contents ＊Note 1		Error contents	PLC error code	DLNK error code	MS display	NS display	DE display
S3＊0	＠＠F9	RAM error	84	F9	Red \bigcirc	\bigcirc	（）
S3＊0	＠＠F8	Non－volatile memory error	84	F8	Red \bigcirc	\bigcirc	（）
S3＊0	0011	No response in communication portion （at normal status）	84	－	－	－	\bigcirc
S3＊0	＠＠12	Communication no resume	84	－	－	－	\bigcirc
S3＊0	＠＠13	Communication no stop	84	－	－	－	\bigcirc
S3＊0	0014	No response in communication portion at power on or reset	84	－	－	－	\bigcirc
S3＊0	0015	No response in communication portion （after parameter transfer）	84	－	－	－	\bigcirc
－	－	Other hardware error	84	－	－	－	\bigcirc
S3＊0	0021	Total number of bytes for input／output exceeding 256	85	－	－	－	（
S3＊0	0022	Station with 0 byte present	85	－	－	－	©
S3＊0	0023	Number of bytes for input／output per one slave exceeding 128	85	－	－	－	（
S3＊0	0024	Input／output designation error	85	－	－	－	（
S3＊0	0025	Range over	85	－	－	－	（
S3＊0	0026	PLC input／output and range in duplication	85	－	\bigcirc	\bigcirc	（
S3＊0	0027	Sub code error	85	－	－	－	\bigcirc
S3＊0	0028	Setting error of＂General－purpose status area＂	85	－	－	－	（
S3＊0	0029	Setting error of＂Short－circuit state area＂	85	－	－	－	（
S3＊0	002A	Setting error of＂Unconnected state area＂	85	－	－	－	（
S3＊0	＠＠F0	Node address duplication	85	F0	Green \bigcirc	Red \bigcirc	（
S3＊0	＠＠F3	Switch setting error	85	F3	Red（0）	\bigcirc	（
S3＊0	\＃\＃D6	Collation error（「 Disagreement of the number of I／O bytes」or「A slave cannot be recognized．」）	86	d6	Green \bigcirc	Red ©	（
S3＊0	\＃\＃D9	Transmission error	86	d9	Green \bigcirc	Red ©	（
S3＊0	＠＠E0	Transmission error（network power error） ＊Note 2	86	E0	Green \bigcirc	\bigcirc	©
S3＊0	＠＠E2	Transmission error（sending timeout） ＊Note 2	86	E2	Green \bigcirc	0	©
S3＊0	＠＠F1	Bus off detection	86	F1	Green \bigcirc	Red ○	（

\bigcirc ：Lighting on
© ：Flickering
－Lighting off
－：Undetermined

Note 1）The portion＊of address of error code storage special register is determined by link No．

Link No．	1	2	3	4	5	6	7	8
$*$	1	3	5	7	9	B	D	F

Content of S3＊0＠＠：Master＇s node address
＠＠is irregular for error code F3（switch set error）．
\＃\＃：Node address of abnormal slave
Note 2）When the error situation is released，＂EO＂and＂E2＂displays of DLNK error code become the exchange number blinking displays．

9.3.9. Communication Status

DLNK-M2 outputs the communication status in the special register.
(1) Normal Slave Data Area

Each bit of normal slave data area shows communication status of each slave.
The state flags of each slave are output to special register S3\#0 - S3\#3.
Each bit No. represents node address.

MSB																
S3\#0	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	\square
S3\#1	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
S3\#2	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
S3\#3	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48

1: Communication normal state
0: Communication error state (or node not to use)
(Either communications error or verification errors have occurred.)
μ \# part of the special register decides by link No.

Link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E

Note 1) At the occurrence of sending timeout, network power error, all the bits of normal slave data area are set at OFF (0).

Note 2) Even when the slave is unlinking state, and the master are set up for "Communication stop in communication error ", this flag functions.
(2) Master Status Area

The master status area shows master's node address, communication rate, error state, and state of network.

Each state flag is output to special register S3\#4 and S3\#5.

MSB
LSB
 set value 00-63(Binary)
(10) Under communication \qquad establishment
(13) Master's communication rate set value 00:125kbps
01:250kbps
10:500kbps
$11:$ Setting is illegal.
μ \# part of the special register decides by link No.

Link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E

Contents of each state flag
(1) Switch setting error

1: Illegal, set state of communication rate (turning on both of SW1-5, 6)
0 : Normal, set state of communication rate
(2) Non-volatile memory error

1: Error occurred in non-volatile memory of a master.
0 : Normal
(3) Node address duplication

1: Master's node address overlaps with other nodes.
(A master detects it, when a master joins after other nodes in a network.)
0: Normal
(4) Bus off detection

1: The network is in the state of cannot the use.
0 : The network is a normal condition.
(5) Network errors

1: There are no responses from all slaves. (The slave doesn't exist on the network at all or the network power supply is error.)
Note) When error is released, it becomes " 0 ".
0 : Normal
(6) Communications error

1: There is no response from the slave.
0 : Normal
（7）Verification errors（a：「Disagreement of the number of I／O bytes」 or b：「A slave cannot be recognized．D）
1：a：「Disagreement of the number of I／O bytes」
The number of bytes of a slave and the number of bytes of a link parameter are not in agreement．
（Note）When＂recognition of the number of slave I／O bytes＂of a link parameter setup is set up for＂not recognize＂by DLNK－M2 or when a slave cannot be recognized，the number of I／O bytes of a slave becomes 0 byte．
b：「A slave cannot be recognized．」
There is no response from a slave or A slave does not exist．
Note1）After the abnormalities（Error code：d9）in transmission occur，it detects＂a slave cannot be recognized＂，also when it resets，while an unusual cause has not been canceled．
Note2）When a slave cannot be recognized，the number of I／O bytes of a slave becomes 0 byte．
0 ：Normal
（8）Error occurring
1：It becomes one at any error from（1）to（7）or（11），（12）．
0 ：Normal
（9）I／O data communicating
1：I／O data communication is operating．
0 ：I／O data communication is stopped．（There is no response from all slaves by network errors or Bus off．）
Note）The state of this flag on generating transmission error（error code E2）maintains the state before error generating．
（10）Under communication establishment
1：During the communication preparation（While communication is established after a power supply ON．）
0 ：Communication is established．
（11）Hardware error
1：Hardware error occurred in built－in DLNK－M2．
0：Normal
（12）Link parameter error
1：Link parameter error occurred in master or CPU．
0：Normal
（13）Master＇s communication rate set value
These flags show the transmission rate set value of the master．
Please refer to＂9．3（4）Set communication mode＂for setting of transmission rate．
Transmission rate is set in the SW2－1，2．（Refer to＂9．3（4）Set communication mode＂）

Transmission rate	S3\＃5	
	Bit7	Bit6
125 kbps	0	0
250 kbps	0	1
50 kbps	1	0
illegal	1	1

（14）Master＇s node address set value
These flags show node address set value of the master．
Please refer to＂ 9.3 （5）Set communication mode＂for set of the node address．

S3\＃5	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10
Weight	$\times 32$	$\times 16$	$\times 8$	$\times 4$	$\times 2$	$\times 1$

(3)CAN error data area

DLNK has the CAN protocol. In the CAN protocol, error which occuers at the CAN level (lowest layer) is observed and the restoration is operated automatically. The total number of error which occuers at the CAN level is set in the CAN error data area. The CAN error is divided into six kinds according to the content, and is set in the special register S3\#6-3\#B.
The CAN error is the standard of the stability of the communication line. The communication error does not necessarily occur, even if the CAN error occurs. It is possible that the communication error occurs when the CAN error occurs frequently.
Please confirm the following items when the CAN error occurs frequently, even when communication error does not occur.
(1) The construction of the terminator and wiring, etc. is correct.
(2) The communication cable and the equipment do not have noise.
(The communication line and the power line are separated.)

The content of CAN error data area
The data is set in the special register S3\#6-3\#B according to the error (six kinds).

Address	Error	Description
S3\#6	Total number of stack error	Same bits were generated by 6 pieces or more consecutively.
S3\#7	Total number of form error	The format of the fixed portion of the received frame was wrong.
S3\#8	Total number of ACK error (Note 1)	There was no response from another node for the transmitted message.
S3\#9	Total number of bit 1 error	The bit of a logical value "1" was sent, but the value was changed to "0"
S3\#A	Total number of bit 0 error	The bit of a logical value "0" was sent, but the value was changed to "1"
S3\#B	Total number of CRC error	The mistake was found in the CRC check sum of the received message.

\# part of Address decides by the link number.

Link number	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E

* CAN error is observed by 10 ms . If CAN error occurs, 1 is added to the total number of error. So, all the CAN errors may not be counted.
* Error is counted to 65535(FFFFh). If the total number of error is 65535 (FFFFh), The count is stopped.
* The total number is cleared by power off or CPU reset at the communication error. But it is not cleared by the communication reset.
(Note1) When the power supply is turned on, the ACK error might be counted.
* Saving circuit of the number of CAN errors

The total number of CAN errors (CAN error data area) is cleared by power off or CPU reset at the communication error. But it is not cleared by the communication reset. So, please design the following circuit to save the total number of CAN errors.
example)
The following circuit is saving the slave state, master status, number of CAN error and time of error occurrence
communication error flag

\# part of Address decides by the link number.

Link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E

Address of communication error flag decides by the link number

Link No.	1	2	3	4	5	6	7	8
Communication error flag	VA2	VA6	VAA	VAE	VB2	VB6	VBA	VBE

According to the above-mentioned circuit, the area from DOFF0 is as follows

(3)Connected slave setting area

It is an area where the connection of the slave set in the link parameter of the CPU is shown. The state flag of each slave is output to special register S3\#C-3\#F.

Each bit number shows the node address (exchange number).
MSB
LSB

S3\#C	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
S3\#D	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
S3\#E	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
S3\#F	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48

> Each bit $=1:$ connect
> Each bit $=0:$ no connect
\# part of the special register decides by link No..

Link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E

9.3.10. Link file

DLNK-M2 stores the communication of the slave in the link file.
The link file is the data stored in the link module. It is possible to read the data to the CPU with special module byte data reading fiat (SPR-FUN304).
(1)Whole map

Link file address	Content
$0000-003 F$	Slave status
$0040-00 B F$	Number of real slave I/O bytes
$00 \mathrm{C} 0-00 \mathrm{FF}$	Retry frequency of slave
$0100-0107$	Communication cycle time

(2)Slave status

The communication of each slave is stored in link file (0000-003Fh).
Link file address DATA(hex)

0000h	Node00
0001h	Node01
δ	S
003Eh	Node62
003Fh	Node63

MSB
LSB

Transmission error flag
1 : There is no response from the slave.
0 : Normal
I/O size discrepancy (Collation error)
1 : Discrepancy between the communication byte number on parameter and the input/output byte number of slave on the communication line.
0 : Normal
I/O data communication in action
1 : I/O data communication is operating.
0 : I/O data communication stopped
An unused bit cannot be used because of the irregular data.
(3)Number of I/O bytes of real slaves

The number of I/O bytes of each slave connected on the communication line is stored in link file (0040-00BFh).

Link file address		
$\begin{aligned} & \text { 0040h } \\ & 0041 \mathrm{~h} \end{aligned}$	output bytes	node 00
	input bytes	
0042h	output bytes	node 01
0043h	input bytes	
0044h	output bytes	node 02
0045h	input bytes	
S	S	S
00BCh	output bytes	node 62
00BDh	input bytes	
00BEh	output bytes	node 63
00BFh	input bytes	

(4)Retry frequency of slave

The accumulation value of communication retry (communication the re-demand) frequency to each slaves is stored in link file (00C0-00FFh).

Link file address	Data(hex)
00C0h	node 00
00C1h	node 01
00C2h	node 02
S	S
00Feh	node 62
00FFh	node 63

* The maximum of the count is 255 times (FFh). After that it does not count up.
* When power on or the CPU is reset, it is clear (00h). It is not cleared in communication reset.
* Communication retry

The master does the re-demand to the slave five times or less when there is no response from the slave while communicating. Master informs transmission error when there is no response from the slave for the fifth demand.

The accumulation value of the retry frequency becomes stability of the communication line and a standard responded of the slave.
(5) communication cycle time

Loading the various cycle times, these are stored in link file (0100-0107h).
Link file address

Data(hex)

0100h	communication cycle time : setting data(low)
0101 h	communication cycle time : setting data(high)
0102 h	communication cycle time : current data(low)
0103 h	communication cycle time : current data(high)
	communication cycle time : maximum data(low)
0105 h	communication cycle time : maximum data(high)
0106 h	communication cycle time : minimum data(low)
0107h	communication cycle time : minimum data(high)

(6)Loading of link file

The link file is read to the CPU with special module byte data reading fiat (SPR-FUN304).
(6-1)Usage of SPR fiat
OP1 OP2 OP3

1 : A link fiat available flag is a flag which shows the response of the link module to the link file loading demand of the CPU.

The address of the flag is decided by link No.

Link No.	1	2	3	4	5	6	7	8
Flag address	V90	V92	V94	V96	V98	V9A	V9C	V9E

2 : OP1 sets link No. and the number of loading total bytes from the link file.
3 : OP2 sets the top address of the loading link file.
4 : OP3 sets the top address forwarding of the loading link file ahead by indirect addressing.
(6-2)Attention of link file loading
1 : The link file is not load while RUN of the CPU is stopping.
2 : Execute the execution condition by the edge in two seconds or more.
3 : The number of loading bytes is 256 bytes or less (100h).
4 : Setting as follows, becomes applied fiat error 1(special relay V50:ON).

* Set link No. excluding 1-8.
* The link module does not exist in specified link No..
* The address of the register forwarding ahead is outside a regulated range.

5 : Setting as follows, becomes applied fiat error 2(special relay VC9:ON).

* Read link file address exceeds 19Fh.
* Number of total bytes of read link files exceeds 416 bytes.
* There is no response from the link module.
(6-3)Example of circuit to loading retry frequency
It is an example of the circuit to read D0000-D001F the retry frequency of the slave.
Example of circuit reference

Link No. 2 (It is set according to link No. as for 1-8).

Register table

9.3.11. Error Contents and Supposed Causes

Special register contents	Error contents	Main supposed cause	Recovery method
@@F9	RAM (memory) error	RAM check error during initial processing	When it dose not start by
@@F8	Non-volatile memory error	Read / storage of config uration data impossible	supplying power once again, exchange PC3JG.
0011	No response from communication portion (at normal condition)	Communication portion hardware error - Error with communication circuit of DLNK	When it dose not start by supplying power once again, exchange PC3JG.
@@12	Communication no resume		
@@13	Communication no stop		
0014	No response from communication portion at power supply or at reset		
0015	No response from communication portion after parameter transfer		
0021	Total number of bytes exceeding 256	Link parameter error - Error with CPU main body or memory	Rewrite normal parameter, and reset or supply power once again.
0022	Station with 0 byte present		
0023	Total number of bytes of one slave exceeding 64		
0024	Input / output designation error		
0025	Range over		
0026	PLC input / output and range in duplication		
0027	Sub code error		
0028	Setting error of "General-purpose status area"		
0029	Setting error of "Short-circuit state area"		
002A	Setting error of "Unconnected state area"		
@@F0	Node address duplication	Duplication of DLNK node address with other node	Reset so that there should not be duplication of node address, and supply power once again.
@@F3	Switch setting error	Setting error in the communication speed setting switch	Reset the correct communication speed, and supply power once again.

@@ : Master's node address, \#\# : Node address of abnormal slave

Special register contents	Error contents	Main supposed cause	Recovery method
\#\#D6	Collation error (Disagreement of the number of I/O bytes)	The number of bytes of a slave and the number of bytes of a link parameter are not in agreement. (Note) When "recognition of the number of slave I/O bytes" of a link parameter setup is set up for "not recognize" by DLNK-M2 or when a slave cannot be recognized, the number of I/O bytes of a slave becomes 0 byte.	Confirm the I/O byte number of the slave to be connected, and change link parameter. ($*$ When the node address of the slave has been changed, turn on the slave once again and change the link parameter. When the slave has been removed, it is also necessary to change the link parameter.)
	Collation error (A slave cannot be recognized.)	There is no response from a slave or A slave does not exist. (Note1) After the abnormalities (Error code: d9) in transmission occur, it detects "a slave cannot be recognized", also when it resets, while an unusual cause has not been canceled. (Note2) When a slave cannot be recognized, the number of I/O bytes of a slave becomes 0 byte.	Please check the following item. - Is the power supply supplied to the slave? -The connector of a slave is connected correctly? - Doesn't the node address overlap? - Aren't there any abnormalities in a telecommunication cable?
\#\#D9	Transmission error	Response timeout from slave	Check whether the slave connector is connected correctly or not. Check whether the power is supplied to the slave or not. Check the wiring portion to the connector for disconnection or short circuit in communication line. In the case of a slave by other manufacturers, refer to the instruction manual for the slave concerned.
@@E0	Transmission error (network power error)	Communication power is not supplied to the communication connector.	Check whether the communication power supply unit works normally or not, and whether the voltage is within the rating or not. Check the power line for disconnection or short circuit.
@@E2	Transmission error (sending timeout)	Sending has not completed owing to any of the following: (1) No slave (2) Communication speed in discrepancy (3) Failure with DLNK-M2 Trouble with communication environment	Check the following and turn it on again. - Whether the connector of DLNK is connected or not - Whether power is supplied to the slave or not - Whether the communication speed of master meets that of the slave - Whether there is disconnection or short circuit in the connector concerned or not. In the case of recurrence, exchange module.

@@ : Master's node address, \#\# : Node address of abnormal slave

| Special
 register
 contents | Error contents | Main supposed cause | Recovery method |
| :--- | :--- | :--- | :--- |$|$| (|
| :--- |

@@ : Master's node address, \#\# : Node address of abnormal slave

9.3.12. Error Check Flowchart of DLNK-M2

PC3JG

Error	When trial run is adjusted	Be in operation	Main presumption cause	Standard value
E0:Network power supply error	-	0	The power supply voltage is abnormal in the network.	11-25Vdc
E2:Sending error	0	O	Connected confirmation of the slave cannot have been done (There is no answer from all slaves).	Wiring the same as system chart. Agreement of transmission rate
F9:Hard error	0	-	Abnormality occurred by the memory check in PC3JG.	Abnormality does not occur.
F1:BusOFF	0	-	Forwarding data layout is outside regulations (protocol abnormality).	Abnormality does not occur. (The protocol is CAN standard)
D9:Transmission error	0	-	Out of response time from slave	
D6:Collation error	0	-	a)."Disagreement of the number of I / O bytes" The number of bytes of a slave and the number of bytes of a link parameter are not in agreement. Note) When "recognition of the number of slave I/O bytes" of a link parameter setup is set up for "not recognize" by DLNK-M2 or when a slave cannot be recognized, the number of $1 / O$ bytes of a slave becomes 0 byte. b). "A slave cannot be recognized." There is no response from a slave or A slave does not exist. Note1) After the abnormalities (Error code: d9) in transmission occur, it detects "a slave cannot be recognized", also when it resets, while an unusual cause has not been canceled. Note2) When a slave cannot be recognized, the number of I/O bytes of a slave becomes 0 byte.	-

According to the instruction manual of each equipment
Please do the troubleshooting.

To the next page

Note 1: At the event of serious failures, CPU memorizes up to 8 error codes.
Therefore, check whether there is other serious failure by I/O monitor or so.
In the case of serious failure with DLNK-M2, error code 84 I/O MODULE ERROR 2 occurs.

(5) (error E0)

Confirm the communication cable.

$$
\text { Procedure (B) (3) to }(6)
$$

(6) (error E2)
\downarrow
Transmission error: For the master, connected confirmation of the slave cannot have been done.
(There is no answer from all slaves)
Check the attachment of connector.

When the T-branch connector is used in the control board, is the connection good?

Attach the connector to securely.

(A)

How to check the communication power:
(1) Check the voltage at the master.

Confirm that the voltage between $\mathrm{V}+$ (red) and V - (black) of the terminal block is 11 to 25 V .
(2) Check the communication power (24 V power).

Confirm that 24 V is being supplied correctly.

- In case of power interruption (trip), there is a short circuit; check the wiring.
- If 24 V is being output correctly, check the wiring for disconnection or wrong connection.

- Check the power source for faults.

B

How to check the communication cable:
(1) Check the terminating resistor.

Confirm that there are both 121Ω terminating resistors. It easy to check with the following method. Keep the communication wiring connected, turn off the power, and ensure that the resistance between CAN-H (white) and CAN-L (light blue) of the communication connector is 60.5Ω (60.5 to 65.1Ω [see Note 1]).

If there is only one terminating resistor, it is 121Ω. If there are three terminating resistors, it is 40Ω.
(2) Location of the terminating resistors

The line that has a terminating resistor at each of its ends is the main line. Branches are added to the main line. Please note that there are length restrictions for main line and branches.

Communication speed	Maximum network length	Branch line length	Total branch line extension
500 kbps	100 m Max.	$6 \mathrm{~m} \mathrm{Max}$.	$39 \mathrm{~m} \mathrm{Max}$.
250 kbps	$250 \mathrm{~m} \mathrm{Max}$.	$6 \mathrm{~m} \mathrm{Max}$.	$78 \mathrm{~m} \mathrm{Max}$.
125 kbps	500 m Max.	$6 \mathrm{~m} \mathrm{Max}$.	$156 \mathrm{~m} \mathrm{Max}$.

Check the wiring diagram included in the electric circuit diagram and the actual wiring.
(3) Check the terminal block for looseness.

Check for items such as pressure adhesion, unnecessary pieces of wire, foreign plastic chip entanglement, and pressure terminal size.
(4) Check the connector for looseness.
(5) Check the cable routing.

Verify whether the cable is subjected to forcible bending.
(Is it being stretched by the tie-wrap inside the bear? Is the junction connector inside the bellow?)
(6) Confirm that there is no disconnection, short circuits, or incorrect wiring (reverse connection of CAN-H/-L, reverse connection of $\mathrm{V}+/ \mathrm{V}-$).
(Note 1) R: Terminating resistor
r: Cable resistance

$0.1 \Omega / \mathrm{m}$ with standard cables
Assuming max. 100 m at 500 kbps , the overall resistance (max.) is:

$$
\begin{aligned}
& =\frac{1}{\frac{1}{R}+\frac{1}{R+2 r}} \\
& =\frac{1}{\frac{1}{121}+\frac{1}{121+2 \times 10}} \\
& =65.1(\Omega)
\end{aligned}
$$

(C) Setting switches and MS (module status) lamp

DLNK-S

Communication speed: 500 kbps

Communication speed: 500 kbps

D Confirmation of link parameter (set example in PCwin)

Link parameter screen
(3) Link area

Confirm the each slave's setting, do/do not, direction of forwarding
($\mathrm{M} \rightleftarrows \mathrm{S}$) and number of bytes.

Please refer to the instruction manual of PC win for details.

E
If communication errors may occur at different slaves on the line:
There is highly likely a short-circuited cable (in the case of a momentary short circuit).
Momentary short circuits occur during communications and related slaves are indicated as problem slaves.
To check for short circuits, disconnect the problem slaves and their wiring and specify "do not connect" with the link parameters. This problem may also result from noise; check the number of CAN errors. Procedure F

F

How to check the number of CAN errors:
(1) Example of a measuring tool (ex. measure with the diagnostic tool described below)

Checks with DeviceNet Detective (Synergetic Microsystems, Inc.)
Connection to the DeviceNet line will enable measuring the number of CAN errors. (during communications only)
(2)Check on the DLNK master (S register monitor on the operation panel or the peripheral equipment)

The number of CAN errors from the POWER ON is stored in S306-S30B(in case of Link No. = 1). (They are cleared at the POWER OFF)
The address are determined by link No.
Address : S3\#6 - S3\#B

link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E

If CAN errors are being counted, the communication cable and the devices may be subjected to noise.
please confirm that CAN-H, CAN-L, and additionally (DRAIN, V+, V-) are not short-circuited.

9.4. $\mathrm{SN}-\mathrm{I} / \mathrm{F}$

If Rack No.: Built-in / Slot NO.: Standard is not made setting in the link parameters, $\mathrm{SN}-\mathrm{I} / \mathrm{F}$ is selected automatically.

Because fixed parameters are automatically set as for the data link area, they can not be changed.
In the case of PC2 compatible mode, it cannot be used as SN-I/F.
If TOYOPUC-PCS is connected, the terminator must be turned ON If TOYOPUC-PCS is not connected, the terminator must be turned OFF

(1) PC link specification

Items	Specification
Data link	I/O : 32byte, register :32byte
Transmission distance	Max 3 m (only inside of controller box)
Data type	Parity1 bit (even parity) Data length.....8 bit Stop bit.........1 bit
Synchronous system	Start-stop synchronous
Transmission system	Semi-dual system (2-wire type)
Communication speed	288kbps
Cable	Shielded twist bare cable

(2) Data link areas

When PC3JG does not communicate with TOYOPUC-PCS (S130 bit 0 is OFF), The input data is all OFF.

Items		link area	note
$1 / O$	input	EVE00-EVEFF	32 byte $(256$ points $)$
	output	EVF00-EVFFF	32 byte $(256$ points $)$
register	input	S140-S14F	32 byte
	output	S150-S15F	32 byte

(3) Special registers

The communication state with TOYOPUC-PCS and The run state of TOYOPUC-PCS can be confirmed with S130 (communication status).

registers	contents
S130	Communication status information bit0:communicating bit1:RUN signal bit2:ERR0 signal bit3:ERR1 signal bit4:ALM signal bit8:link command usable bit9:link command error
S131	Flaming error counter
S132	Parity error counter
S133	Over run error counter

9.5. Set built-in link parameter

Total two ports are equipped as standard; one is port for CMP link (computer link) or PC link or SN-I/F, the other port for DLNK-M2.

Rack No. and slot No. when setting the link parameter set CMP link(computer link) or PC link as a rack No. built-in and slot No. standard; DLNK-M2 as a rack No. and slot No.0. When you use it as SN-I/F, please give rack number and slot number as un-setting up. It operates as CMP for PC2 interchangeable mode. Link No. can freely be changed. However, please do not set the same link parameter to each link No.

Set I/O module of rack No. 0 and slot No. 0

Link	Link No.	rack No.	Slot No.	Module name
CMP PC	Given	Built-in (F)	Standard (0)	Computer link PC link
DLNK	Given	0	0	DLNK-M2

(Note1) If built-in lack No., standard slot No. is not made setting, SN-I/F is selected. In the case of PC2 compatible mode, it can be used as computer link.
(Note2) Even when not using built-in DLNK-M2, a link module needs to be set up.
It is necessary to choose 「Do not」 to slave in a detailed setup of a link parameter.

9.5.1. Set the rack, slot and link module.

Click the link module and select a module name from a table after inputting the rack No. and slot No.

9.5.2. Computer Link

Set the computer link

When setting a built-in computer link of PC3JG, it is necessary to set the rack No. "built-in" and slot No. "standard".

Select the computer link and click a detailed setting.

Operating procedure

1. Set the station No.
2. Set the data length.
3. Set the stop bit.
4. Set the baud rate.

Click for the baud rate and select a desired baud rate from the list.
5. Set the 2-wire/4-wire system.

Select 2-wire.
6. When the setting is completed, click [OK].

9.5.3. PC Link

When setting a built-in computer link of PC3JG, it is necessary to set the rack No. "built-in" and slot No. "standard".
(1) Set up the master station of PC link

Select PC link (master).

Select PC link (master) and click a detailed setting.

Click a PC link (master).

Operating procedure

1. Set the head address of a link area.

The range available for input

Link relay	LOOL - L7FH
Internal relay	M00L - M7FH
Input-output	X/Y04L - X/Y7FH
Link relay(extended area)	EL000L - EL1FFH
Internal relay(extended area)	EM000L - EM1FFH
	GM000L - GMFFFH
Input-output(extended area)	EX/Y000L - EX/Y7FH
	GX/Y000L - GX/YFFFH

Note) Take care not to overlap I/O that is used in PC3JG when using X and Y areas.
2. Set up the connective slave stations.

Select the slave station to connect and click the set the slave station.
3. Set up the number of transmission bytes.

The sum total of the number of transmission is to 64 bytes.
4. [Software SW] is clicked and a soft switch is set up.
5. If a setup is completed, please click [O.K.].

Setting of soft switch

The following switches need to be set up for built-in PC link.

Operating procedure

1. Select the state of transmitting data at CPU stop.

- transmitting data when CPU stop

OFF DATA
Off DATA is transmitted at the time of CPU stop.
DATA BEFORE A STOP
Data before a stop is transmitted at the time of CPU stop.
2. Select state of CPU RUN at the time of the communication error.

- CPU operation at the communication error.

STOP

CPU is stopped at the time of the communication error.

RUN Continuation

CPU RUN is continued at the time of the communication error.
The special relay for communication error is turned ON.
3. Select the baud rate of communication.

- Baud rate of communication

Select the baud rate of communication.

- 57600 bps
- 19200 bps
- X3 (triple) speed

Attention

Communicating with NC machine which corresponded to X3 (triple) speed, if a setup of baud rate is set to 57600 bps , the check of communication error may not be made.
4. If a setup is completed, please click [O.K.].
(2) Set up the slave station of PC link

Select PC link (slave).

Select PC link (slave) and click a detailed setting.

Click a PC link (slave).
Refer to the setup of PC link master station for the following setup.

9.5.4. DLNK-M2

When setting a built-in DLNK of PC3JG, it is necessary to set the rack No. " 0 " and slot No. " 0 ".

9.5.4.1. I/O Module Parameter Setting

"I/O Module" is chosen at a parameter menu and the following screen is displayed.

(1) Rack No. and Slot No. in which the module is mounted are chosen.
(2) [Setup] is clicked and the following screen is displayed.

(3) [Special/Communication] is chosen in Module identification.
(4) [High speed remote I/O, DLNK-M, DLNK-S2, AS-i, DLNK-M2] are chosen in Module Name.
(5) By clicking [OK], the following screen is displayed and Allocated Points and Module Name are set up.

(6) $[O K]$ is clicked after completing the setup.

9.5.4.2. Link Parameter Setting

"Link parameter" is chosen at a parameter menu and the following screen is displayed.

[Setting Link module name]
(1) Program No. and Link No. are chosen.
(2) [Link setup] is clicked and the following screen is displayed.
(3)

(5)

(3) Rack No. in which the module is mounted is chosen.in Rack No. column is clicked and rack No. ($0-\mathrm{E}$) is chosen.
(4) Slot No. in which the module is mounted is chosen. ∇ in Slot No. column is clicked and Slot No. (0-7) is chosen.
(5) Setting Link module name
\square in Link module name column is clicked and Link module name is chosen. Here, the example which chose [DLNK-M2] is shown.
(6) By clicking [OK], the following screen is displayed and Link module name is set up.

(7) By clicking [Detail], the following screen is displayed.
[Setting detailed setup]
Setting the detailed parameter of DLNK-M2

(1) [Link area]

The top address of the communication area is set up. The last address is automatically set up by the sum total of transmission bytes of slaves.
The area which can be used as I/O communication is as follows.
Input / Output relay: X•Y000-X•Y7FF,EX•EY000-EX•EY 7FF,GX•GY000-GX•GYFFFF
Link relay: L000-L7FF,EL000-EL1FFF
Internal relay: M000-M7FF,EM000-EM1FFF,GM000-GMFFFF
Note 1: GX•GY and GM area can be used in the PC3JG separate mode.
Note 2: When using $X \bullet Y$ area for the communication area, don't overlap I/O address used by CPU.
(2) [Slave setup list]

Slave No. at Slave setup list is clicked, [Slave setup] is clicked, and detailed parameter of Slave is set up. Please refer to "Setting detailed parameter of Slave " for details.
(3) [Communication stop in communication error]

Communication is set up for "stop" or "not stop" in communication error.
When it sets up for "not stop", the master does not report errors to CPU in communication error, but the master continues the communication with normal slaves. The master resumes the communication with the slaves automatically, when error slaves return normally.
(4) [Number of real slave I/O bytes]
-The number of I / O bytes of each slave connected on the network is set up for "Recognizes" or "Not recognize".
-When it sets up for "Recognizes", the number of real slave I/O bytes is set to the link error data output special register at the time of the I/O size mismatch (error code: d 6) generating. When it sets up for "Not recognize", it is not set (00h is set).
-When it sets up for "Recognizes", the time of the processing which the number of I/O bytes recognizes is added to initial processing time until supplying power or reset/start to the establishment of communication for about 10 seconds. Therefore, we recommend you to set up for "Recognizes" during network configuration and to set up after the completion of configuration for "Not recognize".
(5) [Message issue retry count]

DLNK-M2 issues Explicit messaging to a slave at the time of collecting diagnosis data on DRMT series or at the time of MSET command execution. The number of times of message retrying after failing in the receipt of the response data from a slave is set up as [Message issue retry count]. Usually, default 0 is set up. Setting range: 0 to 15 (Decimal)
(6) [Message response watch time]

The waiting time of the response data from the slave to explicit messaging by DLNK-M2 is set up. Usually, default 20 (2 seconds) is set up. Setting range: 1 to 655 (Decimals)
(7) [Extended setting]

When a slave is DRMT series, the area that stores diagnosis data (General-purpose status, Short-circuit state, Unconnected state) in CPU is set up.
Refer to "9.5.4.3 Collection of Diagnosis Data" for the details of diagnosis data.

1. "P1", "P2", "P3", "Ext." selection

Either program No. (P1-P3) or Extended I/O Address is chosen.
2. Setting top address

The top address of the storing area is set up.
The last address is set up automatically (The capacity of each diagnosis data is fixed to 128 bytes.)
Useful I/O Address: Area other than "B" and "EB"
(8) [Unconnected detecting effective I/O address list] The I/O address that set "Enable" to Unconnected detecting is displayed about a slave clicked in [Slave setup list].
(9) $[O K]$ is clicked after completing the setup.
[Setting the detailed parameter of slaves]

(1) [Slave connection setup]
"Do" is set up in the case that connects a slave to the network.
"Do not" is set up in the case that does not connect a slave to the network.
(2) [Transferred bytes setup] M: Master, S: Slave, \leftarrow : Transmission Direction The number of slave I/O bytes is set up with decimal.

The number of input bytes is set to [$\mathrm{M} \leftarrow$ Bytes transferred to slave], the number of output bytes is set to [$\mathrm{S} \leftarrow$ Bytes transferred to master].
I/O address of the upper row in [Transferred bytes setup] is previously allocated, I/O address of the lower is allocated in the following order.
In the order of I/O address of the previous setting example, input is previous and output is following. The transmission direction changes by click of [Transmission Direction].

Range of the number of transferred bytes per one slave: Input 0-128 and output 0-128 The sum total of the number of transferred bytes: Less than 256 bytes.
(3) [Connection path setup]

Connection path is a parameter for choosing I/O data type within a slave.
Refer to a "Device Profile" or "EDS file" of each slave maker for the setting value of Connection path.
(3)-1 Connection type selection

- Any one of "No set", "Poll", and "Bit-Strobe" is chosen. Both "Poll" and "Bit-Strobe" cannot be chosen.
- When "No set" is chosen, default value is specified to be I/O data type of a slave.

(3)-2 IN/OUT Connection Path setup

- When a connection type is chosen as "Poll", "IN connection path" and "OUT connection path" is set up.
- When a connection type is chosen as "Bit-Strobe", only "IN connection path" is set up (The setting part of OUT connection path is masked.).
- Data (Hex) is inputted into the 2nd byte, the 4th byte, and the 6th byte from the head of a connection path (6 byte data). The setting range of each data is $00-\mathrm{FFh}$.
- When "Poll" is chosen and it sets a path to either "IN connection path" or "OUT connection path", all (the 2nd byte, the 4th byte, and the 6th byte) the connection paths of another side set up " 00 ."

[Restriction matter]

- The number of the maximum slaves that can set up a connection path is ten sets.
- When a setup of "Number of real slave I/O bytes" is " Recognizes ", a connection path is set up after recognition processing of I/O bytes.
(4) [Extended setting]

In case that the correspondent slave is DRMT series, please set the following.
(4)-1. Diagnosis function

In case that the diagnosis function of DRMT series is used, [Enable] is set. In case that the diagnosis function of DRMT series is not used, [Disable] is set.
Refer to "9-5.4.3 Collection of Diagnosis Data" for the details of diagnosis data.
(4)-2. [Unconnected detecting Enable/Disable]
[Enable] or [Disable] for the function of detecting disconnection is set to each point.
Check ∇ is [Enable] and no check \square is [Disable].
$00-3 F$ are I/O address.
(Note) Data of "Detection of disconnection Enable/Disable" is written into the slave by initial processing of the master when diagnosis function "Enable". This data is maintained even if the slave's power supply is turned on again.
(5) $[\mathrm{OK}]$ is clicked after completing the setup.

9.5.4.3. COLLECTION OF DIAGNOSIS DATA

In DRMT series, there are diagnosis data as 'general-purpose status', 'short circuit data', 'disconnection data', and 'validity/invalidity of the disconnection detecting function' besides the I/O data.
DLNK-M2 saves/loads these diagnosis data by I/O communication and explicit message which conform to the DeviceNet ${ }^{\top M}$. I/O communication is that I/O is always refreshed and explicit message communication is that the command is issued only when it is necessary and the response data is received.
These diagnosis data is allocated to I/O in CPU by the link parameter.
I/O data / diagnosis data flow

I/O allocation by the link parameter of DLNK-M2 (Refer to "9.5.4.3.1 Collection of diagnosis data by link parameter" about details)

1. I/O data: the top address is set to 'link area'.
2. General-purpose status and error record reset / arbitrary reading switch: the top address is set to 'General-purpose status area' in the extended setting.
3. Validity/invalidity of the disconnection detecting function: 'validity/invalidity of the disconnection detecting function' is set for the I/O address of the each slave. This data is kept during turning off the slave's power supply.
4. Short-circuit data: the top address is set to ' Short-circuit state area' in the extended setting.
5. Disconnection data: the top address is set to ' Unconnected state area' in the extended setting.
(Note 1) In general-purpose status, error record reset / arbitrary reading switch, validity/invalidity of the disconnection detecting function, short-circuit data and disconnection data, the target slave is DRMT series and these are effective when set by the link parameter, diagnosis function "Enable".
(Note 2) If the diagnosis functions of all slaves are 'Disable', 'General-purpose status area' of the node $00-63$ must be set to the unused area because these are always refreshed. If the diagnosis function will not be used in the future, please use the link parameter of "DLNK-M".
9.5.4.3.1. Collection of Diagnosis Data by Link Parameter

I/O allocation to CPU for 'general-purpose status', 'short-circuit data' and 'disconnection data', and the setting of 'validity/invalidity of the disconnection detecting function' are set to the link parameter of DLNK-M2 with PCwin(Ver5.1 or later).
Please refer to "9.5.4 DLNK-M2" for the method of setting the link parameter.
The link parameter setting screen of DLNK-M2 with PCwin

I/O allocation to CPU for 'general status', 'short-circuit data' and 'disconnection data' are set.
Select the program No.(P1-P3)/the extended area, and set the top address.

The detail setting screen of the slave

If the diagnosis function is used for the DRMT series, 'Enable' is set.
'validity/invalidity of the disconnection detecting function' are set.
' \square ' is is checked to the I/O address ฟ' : validity, \qquad : invalidity

9.5.4.3.2. General-purpose Status

If the general-purpose status is allocated to CPU by the link parameter, 'general-purpose status' is allocated to the top address to set [+00L] - [+1FH], and 'error record reset / arbitrary reading switch' is allocated to [+20L] - [+3FH] in CPU. (Refer to "9.5.4.3.3 Error Record Reset / Arbitrary Reading Switch" about details)
The general-purpose status and the error record reset / arbitrary reading switches are allocated in 1byte per 1 node.
(Note) Even if the diagnosis functions of all slaves are set to 'Disable' in the link parameter of DLNK-M2, the general-purpose status and the error record reset / arbitrary reading switch of the node 00-63 are allocated.

Allocation of the general-purpose status and error record reset / arbitrary reading switch

relative byte address	data
+00L	node 00 : general-purpose status
$+00 \mathrm{H}$	node 01 : general-purpose status
\|	
+1FL	node 62 : general-purpose status
+1FH	node 63 : general-purpose status
+20L	node 00 : error record reset / arbitrary reading switch
$+20 \mathrm{H}$	node 01 : error record reset / arbitrary reading switch
1	
+3FL	node 62 : error record reset / arbitrary reading switch
+3FH	node 63 : error record reset / arbitrary reading switch

Error record reset / arbitrary reading switch

The format of general-purpose status is the following.
General-purpose status format

bit	content	
0	Voltage flag of I/O power supply to I/O terminal block1(terminal with I/O address 0-F) 0 : I/O power ON, 1 : I/O power OFF	
1	Voltage flag of I/O power supply to I/O terminal block2(terminal with I/O address 10-1F) 0 : I/O power ON , $1:$ I/O power OFF	
2	Reserved	
3	Reserved	
4	In case of the input unit detection flag of disconnection 0 : normal (all sensor connection) 1 : disconnection (nothing less than a disconnected sensor is detected) In case of the output unit detection flag of disconnection 0 : normal (all load connection) 1 : disconnection (nothing less than a disconnected external load is detected)	Please refer to the operation manual of the DRMT series ("2.5.2 Detection timing of disconnection") for the state of the flag
5	In case of the input unit only detection flag of short-circuit 0 : normal (all sensor are normal) 1 : short-circuit (nothing less than a sensor power supply is short-circuited)	In error: 1 (keep for minimum 1s) After releasing : 0
6	Response of setting 'invalidity' of the general-purpose status 0 : error response , 1:normal response	Slave's response for Explicit
7	Response of setting the validity/invalidity of the disconnection detecting function 0 : error response , 1: normal response	message which master issues at initialization

9.5.4.3.3. Error Record Reset / Arbitrary Reading Switch Format

In DRMT series, after detecting 'short-circuit' and 'disconnection', if the factor is removed, I/O control is returned automatically but the short-circuit data and the disconnection data are kept and I/O LED is maintained in the red flicker.
Setting various bits of the error record reset switch can reset these kept data.
The error record and the error are loaded to the diagnosis data map (Refer to "9.5.4.3.4 Diagnosis Data Map" about details) by setting various bits of the arbitrary reading switch.

Format of error record reset / arbitrary reading switch

bit	content	
0	short-circuit error record reset for input unit (1: reset)	Error record reset switch (Note) It is validity only the rise differentiation
1	disconnection error record reset for input unit $(1:$ reset)	
2	set 0	disconnection error record reset for output unit $(1:$ reset)

9.5.4.3.4. Diagnosis Data Map

In DRMT series, when detecting 'short-circuit' and 'disconnection', the master (DLNK-M2) saves the diagnosis data in the short-circuit data area or the disconnection data area automatically.
Please refer to '(1) Format of short-circuit data area' about the data from the top address [+00L] to $[+3 \mathrm{FH}]$ in the short-circuit data area that is set in the link parameter.
Please refer to '(2) Format of disconnection data area' about the data from the top address $[+00 \mathrm{~L}]$ to $[+3 \mathrm{FH}]$ in the disconnection data area that is set in the link parameter.

Common explanation of 'Short-circuit data area' and 'disconnection data area'

1) The error record data and the error current data are saved at the same time
2) This area is a shift structure of four steps, and information 0 is latest data and data shifts in order of information 1 -> information 2 -> information 3 and information 3 disappears.
3) Get/Set flag (Only information 0)

When the master (DLNK-M2) saves the error record data and the error current data, bit 0 of the Get/Set flag is set.
Bit 0 of the Get/Set flag is observed, and when the bit is set, the error record data and the error current data are taken out and clear the bit. (Clear the bit at initialization)
(Note) If the diagnosis function is set to 'validity' for as much as 1 slave, the data of the short-circuit data area and the disconnection data area is allocated to CPU
(1) Format of short-circuit data area

(2) Format of disconnection data area

9.5.4.4. Message Communication Function

CPU sends explicit message to a slave from a master by MSET command.
(1) MSET ---- Explicit message command (FUN302)
(1-1) Usable devices (O: usable)

	X	Y	M	K	V	T	C	L	D		R N	S	Constant							
OP1													O							
OP2	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		00	\bigcirc								
OP3	\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc		$\bigcirc 0$	\bigcirc								
	EX		EY	GX		GY	EM	GM	EK		EV	ET	EC	EL	EP	U	EN	H	ES	EB
OP1																				
OP2	\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
OP3	\bigcirc		\bigcirc	\bigcirc		\bigcirc	\bigcirc	\bigcirc	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc		\bigcirc	\bigcirc	O	O	

(1-2) Number of steps: 5
(1-3) Symbol:

MSET OP1
OP2

(1-4) Function:
The message that is saved in the register area shown in OP2 is commanded to the master module shown in OP1, and the response is saved in the register area shown in OP3.

OP1 ----- link program No., link No., data size of the transferred message are set. (Hex data)

link program No.(1-3) link No.(1-8) data size of the transferred message(10-138bytes: 0A-8Ah) OP2 ---- The top address of the register area that the transferred message is saved is set. OP3 ---- The top address of the register area that the response data is saved is set.
(1-5) Flag

CY	BO	Z	$>$	$=$	$<$	$E R$
						\downarrow

Error flag (ER): Conditions for ON
(1) The link programs No. is except $1-3$. (Function error 1)
(2) The link No. is except $1-8$. (Function error 1)
(3) The link module of the specified links No. do not exist.
(6) Format of the transferred message

relative word address	setting item	data size	data range
+00 W	Destination node address(MAC ID)	2 bytes	$0000 \mathrm{~h}-003 \mathrm{Fh}$
+01 W	Service code	2 bytes	$0000 \mathrm{~h}-00 \mathrm{FFh}$
+02 W	Class ID	2 bytes	$0000 \mathrm{~h}-\mathrm{FFFFh}$
+03 W	Instance ID	2 bytes	$0000 \mathrm{~h}-\mathrm{FFFFh}$
+04 W	Service data size	2 bytes	$0000 \mathrm{~h}-0080 \mathrm{~h}$
+05 W			
\mid			
+44 W	Service data	$0-128$ bytes	-

Destination node address (MAC ID): The destination node address $(0-63)$ of the explicit message is set.
Service code: The service code defined by DeviceNet is set.
Class ID: The destination class ID of the explicit message is set.
Instance ID: The destination instance ID of the explicit message is set.
Service data size: The byte number of the service data is set.
Service data: The data defined by the service code is set.
Attribute ID: In case that the destination attribute ID of the explicit message is set, it is set to the top of the service data.
(7) Format of the response data

relative word address	setting item	data size	data range
+00 W	Completed flag of reception	2 bytes	0000 h or 0001h
+01 W	Destination node address(MAC ID)	2 bytes	$0000 \mathrm{~h}-003 \mathrm{Fh}$
+02 W	Service Code	2 bytes	$0000 \mathrm{~h}-00 \mathrm{FFh}$
+03 W	Reserved	2 bytes	indetermination
+04 W	Reserved	2 bytes	indetermination
+05 W	Service data size	2 bytes	$0000 \mathrm{~h}-0080 \mathrm{~h}$
+06 W			
\mid	Service data	$0-128$ bytes	-
+45 W			

Completed flag of reception: The flag is shown the reception completion of the receiving data. 0000h: not completed, 0001h: completed
Service Code: In case of the normal response, the data that the MSB of the service code specified by the command is set is saved. (ex: service code 10h -> response code 90h) In case of the error response, 94 h is saved.

Service data: The data defined by the service code is set.
In case of the error response, the error code (2 bytes) is saved. So, the service data area must have 2 bytes or more area.
Reserved: For extending in the future
Note) The area saved the response data must clear (set 00h) at the initial stage.
(8) Usage of MSET command

Example for usage

OP1 ---- Link program No. = 1, Link No. = 3, Data size of transferred message $=16$ bytes
OP2 ---- Top address of register area saved transferred message = DOL
OP3 ---- Top address of register area saved response data = D100L

The usable flag for the link command is shown the response condition for the explicit message command. The address of the flag is determined by link No.

Link NO.	1	2	3	4	5	6	7	8
Address of	V90	V92	V94	V96	V98	V9A	V9C	V9E

Note)
(1) This command can not be executed when CPU has stopped.
(2) The condition for execution must be edge.
(3) On the same condition, the number of the executable MSET commands is MAX 15. In case of 16 or more, the function error is occurred.

9.6. Special register

The register associated with the built-in link of PC3JG is as follows.

\(\left.\begin{array}{|l|l|l|} \& \&

\hline S3\#C \& Slave 1~15

S3\#D \& Slave 16~31

S3\#E \& Slave 32~47

S3\#F \& Slave 48~63\end{array}\right\}\)| The state of connection of the child |
| :--- |
| station (existence of connection |\quad| PC link PC3JG |
| :--- |
| DLNK-M2 PC3JG |

Note. PC3JG PC3JG built-in link is exclusively applied.
The above address is determined by link Number.
In the data separate mode, "link No. in each program", "\#" and "夫" correspond as follows.

Link No.	1	2	3	4	5	6	7	8
$\#$	0	2	4	6	8	A	C	E
$*$	1	3	5	7	9	B	D	F

In the data single mode, the "link 2-1 to 2-8" and "3-1 to 3-8" correspond as follows.

Address	Name		correspondence
ES000	Link2-1	Communication(Link)	Correspondence toS300~S3FF
\imath	1	Module	
ESOFF	Link2-8	Status info.	Correspondence toS300~S3FF
ES100	Link3-1	Communication(Link) l ES1FF	1
Link3-8	Module Status info.		

Link module code list

module name	code
PC link master	0102
PC1-I/F output	0102
PC link slave	0002
PC1-I/F input	0002
Computer link	0003
ME-NET master	0104
ME-NET slave	0004
SIO module	0005
Memory card I/F	0005
High speed remote I/O	0008
AS-I	0008
HPC link master	4009
SUB-CPU master	4009
HPC link slave	${ }^{* *} 09$
SUB-CPU slave	${ }^{* *} 09$
2-port M-NET	0002
Pulse output module	0100
DLNK-M	8008
DLNK-S2	8008
DLNK-M2	8208
Ethernet	8203
AF1K	$800 E$
MA1K	810 E
Motion controller	820 E
FL-net(8KB)	8009
FL-net(16KB)	8109
FL-net(32KB)	8209
PROFI-S2	8309

** : Slave number
**: Slave number

10. Message display

PC3JG message display has four types of monitor modes: "Monitor of operation state" ,"Monitor of error code", "Monitor of I/O state", "Monitor of link communication state", and "Library information". These modes are readily switched, by pushing a mode push button, from "Monitor of operation state" ,"Monitor of error code", "Monitor of I/O state", "Monitor of link communication state", "Monitor of library information", up to "Monitor of operation state".

10.1. Monitor operating state

"Message display" indicate the operating statuses and error statuses of PC3JG.

(1) The selection program number by operating mode is indicated.

The program number "G123" is indicated in PC3JG mode .
The program number "2 MOD" is indicated in PC2 mode .
(2) The program runs drawing a letter " 8 " during operation. The program indicates " " while halted.
(3) ERR or ALM is indicated at the time of abnormal. Moreover, the error code of 2 figures is indicated
(4) While writing data to a flush memory, "W" is blinking. If power supply is cut off in the process of writing, backup of the program or data is not properly carried out.

Writing data to the flush memory will be finished in a minutes.
Take care not to cut off power supply while "W" is blinking.

10.2. Error code monitor

Error history information is indicated.

(1) Error history information number is indicated.

The 8 error histories from No. 0 to No. 7 are indicated in order by pushing INC push button
(2) The error code is indicated.
(3) The error message code is indicated.
(4),(5) Change the indication by pushing INC push button 4) and MODE push button at the same time; the order is "error message" \rightarrow "detailed error information" \rightarrow "time of occurrence" \rightarrow "error message."

10.3. I/O monitor

ON/OFF of built-in I/O (64points : X/Y000 to 03F) is indicated.

(1),(2) ON/OFF of built-in I/O (64points : X/Y000 to 03F) is indicated.

Change the indication by pushing INC push button (3); the order is "all indication of 64 points" \rightarrow "indication X00W and Y01W(hexadecimal system and four digits)"
\rightarrow "indication X02W and Y03(hexadecimal system and four digits)" \rightarrow " all indicat ion of 64 point.
X or Y show the input or output composition of PC3JG.

10.4. Monitor link communication state.

The communication state of the built-in links (SN-I/F. CMP, PC, DLNK-M2) is indicated.

(1) The communication state of the SN-I/F/ built-in computer / built-in PC link is indicated.
([CMP] is displayed in case of selecting the built-in computer.)
($[\mathrm{PC}]$ is displayed in case of selecting the built-in PC link.)
In case of SN-I/F
The display, " \square " alternately below a TOYOPUC-PCS display during communication.indicating during operation' is to image communication, not to display a real communication data
In case of built-in computer link
The display, " \square " alternately below a CMP display during communication.
" \square " indicating during operation' is to image communication, not to display a real communication data

In case of built-in PC link
The display, \square ' flashes alternately below a PC display during communication.indicating 'during operation' is to image communication, not to display a real communication data

The error code is indicated when the error occurs.

Error code	Connection/Normal	Cause
${ }^{* 1}$	When connected	Link parameter and setting
${ }^{*} 2$	When connected	Link parameter and setting
${ }^{*} 4$	During normal communication	Wiring and the like
07	During normal communication	Confirm the error code of the master station.
08	When starting normal communication	Confirm the error code of the master station.
${ }^{*} 9$	When connected	Link parameter and setting ${ }^{*} 0$
When connected	The abnormalities in a connection sequence	

[^1](2) The communication state of built in DLNK-M2 is indicated

The node address is indicated during communication.
The error code is indicated when the error occurs.

Error code	The content of the error
D2	Configuration abnormality(not yet supported slave)
D6	Collating abnormality(absence of the slave)
	Collating abnormality(no coincidence of byte number)
D9	Transfer abnormality
E0	Transmit abnormality(network power supply abnormality)
E2	Transmit abnormality(transmit time-out)
F0	Node address overlapping
F1	Bussoff Detect
F3	Set switch abnormality
F6	Watch dog abnormality
F8	Nonvolatile memory abnormality
F9	RAM abnormality

(3) State of communication speed of PCwin and CPU

It is displayed as " H " at (3) position when communication speed is high-speed.
To enable a high-speed communication, it is necessary for the baud rate to be set by AUTO in setting PCwin.
For the communication setting method, please operate "setting" and then operate "the communication module setting".

10.5. Library information

(1) ID and version information in the library

When INC is pushed, it is displayed each ID and version on the indicator in order of FB library, the standard library and the user library.
(The version of CPU corresponds to user and/or the standard library since 2.00.)
(For details, please refer to $\mathrm{T}-315$ in manual of the library.)

The character displayed on the right-obliquely downward of indicator means the kind of the library mounted on CPU now.

Library status information
The state of the indicator when each library is mounted is displayed. (CPU correspond to user and standard library is since version2.00.For the previous version before ver.2.00, it displays only a)
a .FB library
b. standard library

c.user library

e.FB+standard library

d. standard+user library

f. FB+user library

g.FB+standard+user library

Explanation of the library call error (7C)
The output of the indicator in the state that the FB library, the standard library and the user library are not enabled is as follows. (B and C are displayed in using the version of CPU since ver.2.00.)

C user library disable

When you use the version of CPU since ver.2.00, the following "case 1" and "case 2 " are output to the indicator.
(case 1)When program capacity in P 2 is 32 Kw or more and enabled user library.

(case. 2)When program capacity in P3 is 32 Kw or more and enabled the standard library.

(4) Limitations when standard and user library is used (Since ver.2.00)

When the standard and user library is used at the time that operation mode is in PC3JG division mode, there is a limitation in the program capacity shown in the following figures. However, there is no limitation in separate mode 1-5. The FB library is usable as usual.

When the standard and user library is not used at the time that operation mode is in PC3JG division mode, the program capacity is equal to the program capacity before ver.1.90.

P1
60 KW

P2
60 KW

11. SFC Programming(Sequential Function Chart) FB Programming(Function Block)

SFC is a graphical programming language like a flow chart specified in "IEC61131-3"
A specially designed programming soft ware "PCwin" is necessary for programming by SFC or FB. Refer to "Instruction manual for SFC introduction" and "PC win" about programming by SFC.
Refer to "PCwin" about programming by FB.
11.1. Indication of SFC.

When SFC program is stored, "SFC" is indicated in the display.

11.2. Indication of FB.

When FB program is stored, "FB" is indicated in the display.

The function blocks are used.

11.3. Restriction of SFC

When carrying out Programming based on SFC, Data memory area indicated below is selected exclusively for execution control of SFC. Therefore, be careful that it can not be used as user memory.
Further, note that sometimes programming based on SFC is not possible depending on the operation mode. Since "V58 - V5D"and "EV 800 - EVBFF" of special relay are also occupied for SFC execution control, do not access this area.

Data area	Program No.	Steps	Transitions	Actions/ Step	Action Labels	$\begin{aligned} & \text { SUB- } \\ & \text { SFCs } \end{aligned}$	Processes	The data memory occupation area			
PC3JG Separate Mode	P1	*1	1000	16	1000	256	100	P1-R580~R7FF	$\begin{gathered} \text { ET000~ET5FF } \\ { }^{*} 2 \end{gathered}$	$\begin{gathered} \text { H000~H5FF } \\ { }^{*} 2 \end{gathered}$	$\begin{gathered} \text { ENOOO~EN5FF } \\ { }^{*} 2 \end{gathered}$
	P2		1000	16	1000	256	100	P2-R580~R7FF			
	P3		1000	16	1000	256	100	P3-R580~R7FF			
Separate mode1	P1	500	1000	16	1000	256	100	P1-R580~R7FF	ET000~ET1FF	H000~H1FF	ENOOO~EN1FF
	P2	500	1000	16	1000	256	100	P2-R580~R7FF	ET200~ET3FF	H200~H3FF	EN200~EN3FF
	P3	500	1000	16	1000	256	100	P3-R580~R7FF	ET400~ET5FF	H400~H5FF	EN400~EN5FF
Separate mode2	P1	1000	1000	16	1000	256	100	P1-R580~R7FF	ET000~ET3FF	H000~H3FF	ENOOO~EN3FF
	P2	---	---	---	---	---	---	---	---	---	---
	P3	500	1000	16	1000	256	100	P3-R580~R7FF	ET400~ET5FF	H400~H5FF	EN400~EN5FF
Separate mode3	P1	500	1000	16	1000	256	100	P1-R580~R7FF	ET000~ET1FF	H000~ H 1 FF	ENO00~EN1FF
	P2	1000	1000	16	1000	256	100	P2-R580~R7FF	ET200~ET5FF	H200~H5FF	EN200~EN5FF
	P3	---	---	---	---	---	---	---	---	---	---
Separate mode4	P1	500	1000	16	1000	256	100	P1-R580~R7FF	ET000~ET1FF	H000~H1FF	ENOOO~EN1FF
	P2	500	1000	16	1000	256	100	P2-R580~R7FF	ET200~ET3FF	H200~H3FF	EN200~EN3FF
	P3	---	---	---	---	---	---	---	---	---	---
Separate mode5	P1	500	1000	16	1000	256	100	P1-R580~R7FF	ET000~ET1FF	H000~H1FF	ENOOO~EN1FF
	P2	---	---	---	---	---	---	---	---	---	---
	P3	500	1000	16	1000	256	100	P3-R580~R7FF	ET400~ET5FF	H400~H5FF	EN400~EN5FF
Single mode1	P1	500	1000	16	1000	256	100	R580~R7FF	ET000~ET1FF	$\mathrm{HOOO} \sim \mathrm{H} 1 \mathrm{FF}$	ENOOO~EN1FF
	P2			Imposible				Imposible			
	P3			Imposible				Imposible			
Single mode2	P1	1000	1000	16	1000	256	100	R580~R7FF	ET000~ET3FF	H000~H3FF	ENOOO~EN3FF
	P2	---	---	---	---	----	---	---	----	---	---
	P3			Imposible				Imposible			
Single mode3	P1	500	1000	16	1000	256	100	R580~R7FF	ET000~ET1FF	H000~H1FF	ENOOO~EN1FF
	P 2 l ande							Imposible			
	P3	---	--	---	---	---	---	---	---	---	---
Single mode4	P1	1000	1000	16	1000	256	100	R580~R7FF	ET000~ET3FF	H000~ H 3 FF	ENOOO~EN3FF
	P2	---	---	---	---	---	---	---	---	---	---
	P3	---	---	---	---	---	---	---	---	---	---
Single mode5	P1	500	1000	16	1000	256	100	R580~R7FF	ET000~ET1FF	H000~H1FF	ENOOO~EN1FF
	P2	---	---	---	---	---	---	---	---	---	---
	P3	---	---	---	---	---	---	---	---	---	---
Single mode6	P1	500	1000	16	1000	256	100	R580~R7FF	ET000~ET1FF	H000~H1FF	ENOOO~EN1FF
	P 2							Imposible			
	P3	---	---	--	---	---	---	---	---	---	---
PC2 interchange	P1			Imposible				---	---	---	---
Usable number	---	$\begin{aligned} & 0000 \\ & -9999 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 0000 \\ -9999 \\ \hline \end{array}$	---	$\begin{array}{r} 000- \\ 999 \\ \hline \end{array}$	$\begin{aligned} & 000- \\ & 255 \\ & \hline \end{aligned}$	00-99	---	---	---	---

*1 The number of steps for which each program number can be used is shown (PC3JG Separate mode).

$\begin{gathered} \mathrm{P} 1+\mathrm{P} 2+\mathrm{P} 3 \leq 1500 \\ \mathrm{P} 1+\mathrm{P} 2 \leq 1000 \\ \mathrm{P} 2+\mathrm{P} 3 \leq 1000 \\ \mathrm{P} 3 \leq 500 \end{gathered}$	Example			
	P1	P2	P3	Explanation
	700	300	500	At 700 step use of P1. P2 is $300(1000-700)$ step. P3 can use 500 steps.
	400	600	400	At 400 step use of P1. P2 is 600(1000-400) step. P3 can use 400(1000-600) step.

*2 The use area in the ET/H/EN address is decided depending on the number of use steps of each program.
(1) They cannot be used in PC2 compatible mode/PC2/PC1 series•MX.
(2) In case of single mode, it can be used only in Program 1.
(3) When Program capacity is 16 KW, step number is restricted to maximum 500.
(4) Identifier R (Link Register Area) and Extension Timer Area of User Data Memory are for SFC control.
(5) Extension label (EL****) is for SFC.

Note) Extension Timer and Counter and Extension Label reserved for SFC can not be used.
Co-existence of SFC and usual LD (Ladder) is possible. Even when using SFC, no special setting is required. When programming is carried out with SFC, always carry out Editing and Monitoring with "PC Win". Never carry out editing with peripheral devices like Hellowin, GH3 etc. which corresponds only with LD.

12. Tool

Tools are as follow.
I/O operation panel
I/O check (for output)
In case of using this function, Pcwin Ver5. 1 or later must be used.
Refer to "PCwin" about explaining in full.

12.1. I/O operation panel

This function is the debug support function that enables I/O operation when actual input device is not connected.

Input from this I/O operation panel ignores the input from sequence program and forcibly turns I/O ON/OFF.
(Note) Forced output of the output in the I/O operation panel function cannot be carried out.

About difference from [Forced ON/OFF of I/O]

- Forced ON/OFF of I/O :There is forced setting of I/O but thereafter, it is the actual input state.
- I/O Operation Panel (Input Retention) : Retains I/O state even after I/O operation setting. (Only PC3JG is valid)

Setting type

- Hold : Holds input state from I/O operation panel.
(Actual input of the sequence program is ignored) (PC3JG)
- 1 Shot : Carries out forced setting only once. After execution, input of actual sequence program becomes valid. (This function is similar to [//O Forced ON/OFF]

displayed while executing this function

12.2. I/O Check (for Output)

This function is meant for output wiring check at the time of equipment start up. Output based on I/O check function forcibly turns I/O ON/OFF ignoring the output of sequence program.

Kindly avoid using the equipment under operation and also take sufficient care for safety.
(Note) Forced output of input cannot be carried out in the I/O check function.

Automatic Stoppage Timer

This timer is meant for stopping the present function automatically on the PC3JG side, in case communication between Pcwin and PC3JG breaks, for the safety of the system. It can be set in the range of $2 \sim 300 \mathrm{sec}$.

Kindly carry out setting on the I/O operation panel.

displayed while executing this function

Appendix 1. Dimensional outline drawing Appendix 1-1 PC3JG

Appendix1-2 Power module

Appendix 1-3 Selector module

Appendix 1-4 I/O module

Appendix1-5 Base
(1) 8Slot Base

(2) 8Slot Base(2)

(3) 6Slot Base

(4) 4Slot Base

(5) 2Slot Base

Appendix1-6 Selector Base

(1) 8Slot Selector Base

(2) 6Slot Selector Base

(3) 4Slot Selector Base

Appendix1-7 Installation dimension
(1) 8Slot Base

(2) 8Slot Base(2)

(3) 6Slot Base

(4) 4Slot Base

(5) 2Slot Base

Appendix 2. Others

Appendix 2-1 Module type discriminating codes

Module type discriminating codes are hexadecimal 2-digit numeric values(00 - FF) assigned to each module every type, which are used for I/O module allocation parameters.
The I/O occupation point is a value of two hexadecimal digits (either 00, 16, 32, 48 or 64) by the modules, and the point used for the I/O module allocation parameter etc.
These are set up using various Programmers (PCwin etc.).

Types of modules				Identif	on code	alloca	oints	Note1		
$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underline{I} \end{aligned}$	IN-11	AC100/115V input		OF		16				
	IN-12	DC24V input		07		16				
	IN-22D	DC24V input		06		32				
	OUT-1	AC100/115V TRIAC output		1 F		16				
	OUT-3	AC240/DC24V Independent Contact output		2E		16				
	OUT-4	AC240VTRIAC output		1D		16				
	OUT-11	AC100/115V TRIAC output		1E		16				
	OUT-12	AC240/DC24V Contact Output		2F		16				
O	OUT-15	Power MOSFET Output(-) COM.		14		16				
	OUT-16	Power MOSFET Output(+) COM		15		16				
	OUT-18	Transistor Output(-) COM.		16		16				
	OUT-19	Transistor Output(+) COM.		17		16				
	OUT-28D	Transistor Output(-) COM.		13		32				
	OUT-29D	Transistor Output(+) COM.		12		32				
Uninstalled module				7F		00				
PC/CMP-LINK PC/CMP2-LINK		Case of PC Link		B2		00				
		Case of CMP Link		B3		00				
	2PORT-LINK	2-Port link		Note 2						
	2PORT-M-NET	2-Port M-NET		B2		00				
	$\begin{aligned} & \text { HPC-LINK } \\ & \text { HPC-LINK2 } \end{aligned}$	High Speed PC link		B9		00				
		FL-net	8KB	C9		00				
	FL-net		16KB	D9		00				
			32KB	E9		00				
	ME-NET	ME-NET		C4		00				
	RMT-I/O M	High speed Remote I/O Master		B8		00				
	EN-I/F	Ethernet		B3		00				
	S-LINK	S-Link		Note 3						
	B7A-I/F	B7A-Interface		06		32				
	MPLX-TR-I/F	Multiplex Transmission I/F		BC	7F	00	00	*		
	J-DLNK-M	Device Net		B8		00				
	J-DLNK-M2									
	J-DLNK-S2									
	AS-i M	ASi interface				B8		00		

Types of modules			Identification code		allocation points		Note1
$\begin{aligned} & . \frac{\overline{0}}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	COUNTER	High Speed Counter					
	AD	Analog Input					
	DA	Analog Output	B5				
	SIO	Serial I/O			00		
	AF1KA-C	1 axis CNC	BE	7F	00	00	*
	MA1KA-C	Multi axes motion controller					
	AF1VI-C	Absolute 1 axis CNC	2C	7F	64	00	*
	MC360VI-C	Absolute Indexing	3C	7F	64	00	*
	PC1-I/O-I/F	PC1 Bus Interface					
	SUB-CPU	Sub CPU	B9	7F	16	00	*
	ID I/F	ID Interface	BD	7F	16	00	*
	PULSE OUT	Pulse Output					
	SIO-M	Modem Interface					
	MEMORYCARD-I/F	Memory card I/F					
	DIAGNOSTIC	Diagnosis Module	CE	7F	00	00	*

Note 1) *-mark shows the modules which occupies two slots. Native identification codes and allocation points are set in the left one of these two slots and code-7F / point-00 set in the remaining right slot.
Note 2) A different coding method is used for 2-port links.
code-7F/point-00 meaning that no module is mounted shall be used for the point at which 2-port is mounted. Instead, code-B2/point-00 for PC link or code-B3/point-00 for computer link shall be used for slots 0 and 1 of one of racks 8 to E as determined by the 2-port link switch.
(The CPU considers that a PC link or computer link is mounted in slot 0 and 1 of one racks 8 to E.)
Note 3) The identification codes of S-LINK are assigned differently from the above. The mounting position of S-LINK is given code-7F/point-00 (module not installed). Instead, slots 0, 1 are given code-27/points-64 of racks 1 through E (set by the switch of S-LINK) and slot 2 is given code-27/points-32.Total points is 160 points.

Appendix 2-2 Individual current consumption of each module

Module	Current consumption (mA)	Module	Current consumption (mA)
PC2J/J16/J16R	260	MPLX-TR-I/F	700
PC2JS/JR	190	J-DLNK-M	180 (5VDC main part)
PC2JC	330		25 (24VDC communication part)
PC2J16H/J16HR	370	J-DLNK-M2	300 (5VDC main part)
PC2J16P/J16PR	390		40 (24VDC communication
SELECTOR	31	J-DLNK-S	100 (5VDC main part)
SELECTOR BASE	32 (8,6,4 slot)		25 (24VDC communication part)
IN-11,12	60^{11}	J-DLNK-S2	180 (5VDC main part)
1N-22D	$63^{* 1}$		25 (24VDC communication part)
OUT-1,4	$174{ }^{\text {"1 }}$	COUNTER	300
OUT-3	$356{ }^{-1}$	AD	140
OUT-11	$336{ }^{+1}$	DA	670
OUT-12	$380{ }^{-1}$	SIO	310
OUT-15,16	310^{-1}	AF1KA-C	1000
OUT-18,19	$136{ }^{11}$	MA1KA-C	1000
OUT-28D,29D	$210^{* 1}$	AF1VI-C	1900
PC/CMP-LINK	170	PC1-I/O-I/F	200
PC/CMP2-LINK		ID I/F 1ch	170(5VDC)
2PORT-LINK	330		190(24VDC)
2PORT-M-NET	150	ID I/F 2ch	190(5VDC)
HPC-LINK	250		380(24VDC)
HPC-LINK2		SUB-CPU	380
FL-net	600	PULSE OUT	250
ME-NET	600	SIO-M	310
RMT-I/O M	210	MEMORY CARD-I/F	100 (no memory card)
RMT-I/O S	210	DIAGNOSTIC	650
EN-I/F	600		
S-LINK	100		
B7A-I/F	100		

*1 The current consumption of input/output module is based on the condition of all ON (Typ.).

Appendix 2-3 Error in self-contained clock

TOYOPUC-PC3JNF and TOYOPUC-PC3JNM self-contain a quartz oscillator type clock.
The quartz oscillator provides high precision oscillation frequency, but it fluctuates slightly depending on temperature.
The chart below shows the frequency - temperature characteristic of the quartz oscillator for reference use.

The frequency characteristic can be approximated by the following equation.

$$
\Delta \mathrm{fx}(\mathrm{PPM})=\mathrm{f}_{0} \mathrm{~T}+\mathrm{a}(\theta \mathrm{~T}-\theta \mathrm{x})^{2}
$$

$$
\begin{array}{ll}
\Delta \mathrm{fx}(\mathrm{PPM}): & \text { Frequency deviation at a certain temperature degree } \\
\mathrm{FoT}(\mathrm{PPM}): & \text { Frequency deviation at } \theta \mathrm{T} \\
\mathrm{a}\left(\mathrm{PPM} /{ }^{\circ} \mathrm{C}\right): & \text { Secondary temperature coefficient }\left(-0.035 \pm 0.005 \mathrm{PPM} /{ }^{\circ} \mathrm{C}^{2}\right) \\
\theta \mathrm{T}\left({ }^{\circ} \mathrm{C}\right): & \text { Peak point temperature }\left(25 \pm 5^{\circ} \mathrm{C}\right) \\
\theta \times\left({ }^{\circ} \mathrm{C}\right): & \text { Ambient temperature }
\end{array}
$$

Error under approximately 11.574 PPM is 1 sec/day.

Appendix 2-4 Hexadecimal system

The hexadecimal is one type of numerical expression, wherein the digit is carried over every 16.
(EX.)
$1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$, $10,11,12,13,14,15,16,17,18,19,1 A, 1 B, 1 C, 1 D, 1 E, 1 F$, 20, ...

As per (EX.), numerals exceeding 9 are represented by A, B, C, D, E and F. Calculator, etc. handles data with 8 bits, 16 bits, 32 bits, etc. If these data are expressed in decimal system we are usually, the data expressed with 1-10 are easy to understand, but those exceeding 10 are difficult to understand the contents thereof. To eliminate such difficulty, octal number system and hexadecimal system are used.

Hexadecimal expression

Higher		Lower		
23 $=$ 8	$\begin{gathered} 22 \\ = \\ 4 \end{gathered}$	$\begin{gathered} 21 \\ = \\ 2 \end{gathered}$	$\begin{gathered} 20 \\ = \\ 1 \end{gathered}$	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	B
1	1	0	0	C
1	1	0	1	D
1	1	1	0	E
1	1	1	1	F

In the case of hexadecimal system, numerals 0-15 are expressed with $0-F$ as left.
For example, 20 bits are expressed as follows.
Higher

0	Lower			
0001	0011	1010	1100	0101

Also, 16 bits are expressed as follow.

Higher Lower				1234
0001	0010	0011	0100	
1010	1011	1100	1101	ABCD
1110	1111	0001	0010	FE12

0 and 1 status in each bit can be well understood by use of hexadecimal expression.

Appendix 2-5 Precautions in use of output modules OUT-15 and -16

In the above diagram, even while the output portion OUT ** of OUT-15 and -16 Modules is kept OFF in the sequence program, rush current flows across the OUT ** for 1 to 2 mS when DC24V is rapidly applied to loads by switching ON the push button (PB). Rush current across the OUT ** differs as follows depending on loads.
(1) Case of resistance load

1) Load resistance value $1 \mathrm{k} \Omega$

(2) Case of solenoid load
2) Solenoid : SLH3-L3-D2
(MFR.: TOYOOKI KOGYO)

3) Load resistance value $0.1 \mathrm{~K} \Omega \mathrm{k}$

ON
2) Solenoid : ASOL-Q0-DC-D
(MFR.: TOYOOKI KOGYO)

Rush current of such an extent does not allow ordinary valves (solenoids) to turn ON. But RUN LED could turn ON momentarily
(Response speed of ordinary valves is around 10 ms .)

- The descriptive contents of this Manual are subject to change due to better improvement of applicable product without prior notice.
- This Manual is issued after careful check and review of the contents thereof. However, should any doubt or any descriptive error be found in the contents, please feel free to contact us.
- It is prohibited to copy and transfer, wholly or partly, the descriptive contents of this manual to others.

1st Edition: May 21,2003
15th Edition: November 7, 2008

* We are ready to comply with your request for maintenance , Please forward: Service Group (Phone: 0566-21-8621), Higashi-Kariya Plant

JTEKT JTEKT CORPORATION

Machine Tools\&MECHATRONICS DIVISION

HIGASHI KARIYA Plant KitaJizoyama1-7,Nodacho,Kariya, Aichi-Pref.
Post Code 448-0803 Japan
TEL 81-566-21-8611 FAX 81-566-23-6670
${ }^{\ominus}$ JTEKT CORPORATION 2003-2008.

Manual No.
T-31115E

[^2]
[^0]: *1 It is set up by the link parameter.

[^1]: *indicates the slave station number.

[^2]: *The specification and other given in this manual are subject to change due to improvement without prior notice.

 * Any product applicable to the strategic goods (or the services) stipulated in the Foreign Exchange and Foreign Trade Control Act is subject to export license of the Japanese Government, where exported to overseas.

