LASL Model 8048
This LASL scaler-mixer piece of testing equipment provides NIM testing standard levels. The front panel allows for SINGLES INPUT, COUNT/STOP, SINGLES BY< MIXED GATE OUT and COINC. Gate IN connector functionality.
The Nuclear Instrumentation Module (NIM) standard defines mechanical and electrical specifications for electronics modules used in experimental particle and nuclear physics. The concept of modules in electronic systems offers enormous advantages in flexibility, interchange of instruments, reduced design effort, ease in updating and maintaining the instruments.
The NIM standard is the first (and perhaps the simplest) such standard. First defined by the U.S. Atomic Energy Commission's report TID-20893 in 1968-1969, NIM was most recently revised in 1990 (DOE/ER-0457T). It provides a common footprint for electronic modules (amplifiers, ADCs, DACs, discriminators, etc.), which plug into a larger chassis (NIM crate, or NIM bin). The crate must supply ±12 and ±24 volts DC power to the modules via a backplane; the standard also specifies ±6 V DC and 220 V or 110 V AC pins, but not all NIM bins provide them. Mechanically, NIM modules must have a minimum standard width of 1.35 in (34 mm), a maximum faceplate height of 8.7 in (221 mm) and depth of 9.7 in (246 mm)[1]. They can, however, also be built in multiples of this standard width, that is, double-width, triple-width etc.[2]
The NIM standard also specifies cabling, connectors, impedances and levels for logic signals. The fast logic standard (commonly known as NIM logic) is a current based logic, with negative true (at -16 mA into 50 ohms = -0.8 Volts); an ECL-based logic is also specified.
cab-bat-acc
Cables, batteries and other accessories are sold separately unless otherwise stated.